共查询到20条相似文献,搜索用时 0 毫秒
1.
Nagatsugi F Kawasaki T Tokuda N Maeda M Sasaki S 《Nucleosides, nucleotides & nucleic acids》2001,20(4-7):915-919
We have previously described that oligonucleotides (ODN) containing phenylsulfoxide derivative of 2-amino-6-vinylpurine nucleoside analog (1) are activated within duplex to form cross-link toward cytidine selectively at the target site. In this paper, we wish to report the search for more stable precursor susceptible for activation within duplex. 相似文献
2.
We have previously described that oligonucleotides containing phenylsulfoxide derivative of 2-amino-6-vinyulpurine nucleoside analog (1) are activated within duplex to form cross-link toward cytidine selectively at the target site. The new cross-linking motif with phenylsulfoxide structure (2) is characteristic in that the stable precursor may be transformed automatically within duplex to a reactive species. To search for more stable precursor susceptible for activation, we designed a series of substituted phenylsulfide analogs of 1. It has been demonstrated that introduction of an electron-donating group on the phenyl ring improved the cross-linking reaction. Particularly, 2-carboxyphenyl sulfide derivative exhibited cross-linking as effectively as phenylsulfoxide derivative without chemical oxidation prior to cross-linking. 相似文献
3.
Intramolecular cross-linking of single-stranded copolymers of 4-thiouridine and cytidine 总被引:2,自引:0,他引:2
Highly polymerized copolymers of 4-thiouridine and cytidine were prepared by direct thiolation of polycytidylic acid. Irradiation with 300–400 nm light of these copolyribonucleotides results in the covalent linkage of about 10% of the thiouridines with cytidines. No such photoreaction occurs with the corresponding mixture of nucleosides, nor with either the thiolated CpC dinucleotide or the double-stranded complexes formed by the copolymers when associated with poly(I) or poly(G): the thiouridine-cytidine covalent links are formed between . 相似文献
4.
Direct cross-linking of snRNP proteins F and 70K to snRNAs by ultra-violet radiation in situ. 总被引:3,自引:1,他引:3
Protein-RNA interactions in small nuclear ribonucleoproteins (UsnRNPs) from HeLa cells were investigated by irradiation of purified nucleoplasmic snRNPs U1 to U6 with UV light at 254 nm. The cross-linked proteins were analyzed on one- and two-dimensional gel electrophoresis systems, and the existence of a stable cross-linkage was demonstrated by isolating protein-oligonucleotide complexes from snRNPs containing 32P-labelled snRNAs after exhaustive digestion with a mixture of RNases of different specificities. The primary target of the UV-light induced cross-linking reaction between protein and RNA was protein F. It was also found to be cross-linked to U1 snRNA in purified U1 snRNPs. Protein F is known to be one of the common snRNP proteins, which together with D, E and G protect a 15-25 nucleotide long stretch of snRNAs U1, U2, U4 and U5, the so-called domain A or Sm binding site against nuclease digestion (Liautard et al., 1982). It is therefore likely that the core-protein may bind directly and specifically to the common snRNA domain A, or else to a sub-region of this. The second protein which was demonstrated to be cross-linked to snRNA was the U1 specific protein 70K. Since it has been shown that binding of protein 70K to U1 RNP requires the presence of the 5' stem and loop of U1 RNA (Hamm et al., 1987) it is likely that the 70K protein directly interacts with a sub-region of the first stem loop structure. 相似文献
5.
6.
Stuart D C Ward Fadi F Hamdan Lanh M Bloodworth Jürgen Wess 《The Journal of biological chemistry》2002,277(3):2247-2257
The structural changes involved in ligand-dependent activation of G protein-coupled receptors are not well understood at present. To address this issue, we developed an in situ disulfide cross-linking strategy using the rat M(3) muscarinic receptor, a prototypical G(q)-coupled receptor, as a model system. It is known that a tyrosine residue (Tyr(254)) located at the C terminus of transmembrane domain (TM) V and several primarily hydrophobic amino acids present within the cytoplasmic portion of TM VI play key roles in determining the G protein coupling selectivity of the M(3) receptor subtype. To examine whether M3 receptor activation involves changes in the relative orientations of these functionally critical residues, pairs of cysteine residues were substituted into a modified version of the M(3) receptor that contained a factor Xa cleavage site within the third intracellular loop and lacked most endogenous cysteine residues. All analyzed mutant receptors contained a Y254C point mutation and a second cysteine substitution within the segment Lys(484)-Ser(493) at the intracellular end of TM VI. Following their transient expression in COS-7 cells, mutant receptors present in their native membrane environment (in situ) were subjected to mild oxidizing conditions, either in the absence or in the presence of the muscarinic agonist, carbachol. The successful formation of disulfide cross-links was monitored by studying changes in the electrophoretic mobility of oxidized, factor Xa-treated receptors on SDS gels. The observed cross-linking patterns indicated that M(3) receptor activation leads to structural changes that allow the cytoplasmic ends of TM V and TM VI to move closer to each other and that also appear to involve a major change in secondary structure at the cytoplasmic end of TM VI. This is the first study employing an in situ disulfide cross-linking strategy to examine agonist-dependent dynamic structural changes in a G protein-coupled receptor. 相似文献
7.
We have assayed the cross-linking of oligonucleotides containing repeated mitomycin-reactive CpG sites in order to assess the factors that enhance activation of the carbamoyl function at C10, yielding efficient mitomycin cross-linking. Drugs studied include mitomycin C (MC), N-methylmitomycin A (NMA), and the aziridinomitosene of NMA (MS). Drugs were reduced both by catalytic hydrogenation and by diothionite. We find that cross-linking by fully reduced NMA can be increased severalfold by addition of either excess dithionite reductant or the oxidant FeCl3. Enhancement by FeCl3 is not seen with MC or MS, but excess dithionite increases cross-linking by all three compounds. We explain the action of Fe3+ by postulating production of the semiquinone of the monoadduct of mitomycin reacted at the C1-position; according to this mechanism, departure of the carbamate from C10 is more efficient for the semiquinone than for the hydroquinone. However, our results imply that the hydroquinone can also function as a cross-linking agent. Excess dithionite, beyond that required for stoichiometric reduction, activates the carbamate 2-3-fold for cross-linking. We find that the fully reduced leucoaziridinomitosene is highly unstable in solution, yet it produces efficient cross-liking. Hence, this compound is highly reactive in DNA alkylation and a good candidate for the role of primary alkylating agent. 相似文献
8.
Human neutrophils constitutively synthesize two receptors for the constant region of IgG, FcgammaRII, and FcgammaRIIIB. Fluo-3-loaded neutrophils were treated with biotinylated Fab fragments of anti-FcgammaR antibodies and cross-linked with streptavidin, and intracellular calcium ([Ca2+](i)) was monitored by flow cytometry. Polymerization of filamentous actin was quantitated by NBD-phallacidin using flow cytometry. Cross-linking of FcgammaRII by monoclonal antibody (mAb) IV.3 induces an increase in [Ca2+](i), superoxide generation, and the polymerization of actin. [Ca2+](i) responses from cross-linking of FcgammaRIIIB by mAb 3G8 varied from minimal to no release. To determine whether discrepancies in 3G8-induced [Ca2+](i) release were due to allotype variation, we selected five donors who were homozygous for the NA1 allotype of FcgammaRIIIB and five who were either heterozygous or homozygous for the NA2 allotype and compared their [Ca2+](i) response and actin polymerization induced by FcgammaRIIIB cross-linking. Cross-linking of FcgammaRIIIB by 3G8 produced minimal [Ca2+](i) release and polymerization of actin irrespective of donor allotype. 相似文献
9.
C. S. Lee 《Chromosoma》1978,65(2):103-114
Chromatin structure can be probed by cross-linking DNA in situ using trioxsalen and irradiation with UV light. Presumably DNA within a nucleosome is protected from cross-linking so that this region appears as a single-strand loop in the electron microscope under a condition in which single-strands and double-strands are distinguished. Unprotected regions appear as duplex due to cross-linking.We have used this approach to investigate the structure of chromatins containing satellite DNAs of Drosophila nasutoides. We have previously shown that D. nasutoides has an unusually large autosome pair which is almost entirely heterochromatic. Its nuclear DNA reveals four major satellite components amounting up to 60% of the total genome. All of them are localized in this large heterochromatic chromosome. We wish to ask whether chromatins containing different satellite sequences have different arrangements of nucleosomes. Our results from cross-linking experiments show that all DNA components including main band DNA have different patterns of protected and unprotected regions: (a) The length distributions of protected regions show multiple peaks with the smallest unit lengths being 200 nucleotides for main band DNA, 180 for satellites I, II and III, and 160 for satellite IV. (b) The amounts of unprotected regions, presumably internucleosome DNA, vary from 16% for main band DNA to 60% for satellite IV, suggesting that satellite chromatins have fewer nucleosomes per given length of chromatin than main band DNA chromatin. The spacings between nucleosomes appear to be random in satellite chromatins. 相似文献
10.
Biological RNAs, like their DNA counterparts, contain helical stretches, which have standard Watson-Crick base pairs in the anti conformation. Most functional RNAs also adopt geometries with far greater complexity such as bulges, loops, and multihelical junctions. Occasionally, nucleobases in these regions populate the syn conformation wherein the base resides close to or over the ribose sugar, which leads to a more compact state. The importance of the syn conformation to RNA function is largely unknown. In this study, we analyze 51 RNAs with tertiary structure, including aptamers, riboswitches, ribozymes, and ribosomal RNAs, for number, location, and properties of syn nucleobases. These RNAs represent the set of nonoverlapping, moderate- to high-resolution structures available at present. We find that syn nucleobases are much more common among purines than pyrimidines, and that they favor C2'-endo-like conformations especially among those nucleobases in the intermediate syn conformation. Strikingly, most syn nucleobases participate in tertiary stacking and base-pairing interactions: Inspection of RNA structures revealed that the majority of the syn nucleobases are in regions assigned to function, with many syn nucleobases interacting directly with a ligand or ribozyme active site. These observations suggest that judicious placement of conformationally restricted nucleotides biased into the syn conformation could enhance RNA folding and catalysis. Such changes could also be useful for locking RNAs into functionally competent folds for use in X-ray crystallography and NMR. 相似文献
11.
Ferrochelatase (EC 4.99.1.1) catalyzes the final step of heme biosynthesis, the insertion of iron(II) into protoporphyrin. It is an integral protein of the inner mitochondrial membrane. The functional size of bovine hepatic ferrochelatase has been studied in situ using radiation inactivation analysis. The functional unit required for enzymic activity in intact mitochondria was found to have a mass of 82 +/- 13 kDa. In contrast, the structural unit (evaluated in immunoblots following sodium dodecyl sulfate-polyacrylamide gel electrophoresis) has a mass of 40 +/- 10 kDa. Similar results were obtained when irradiation was performed on sodium cholate-solubilized mitochondria. The presence or absence of dithiothreitol during irradiation had no effect on target sizes obtained from either intact or solubilized mitochondria. Pairwise comparison of the functional and structural target sizes from each set of irradiated samples yielded a ratio of 2.0 +/- 0.4. Previous studies using sodium dodecyl sulfate-polyacrylamide gel electrophoresis and gel filtration chromatography have shown that a Mr 40,000 peptide is associated with ferrochelatase activity. This study shows that the functional size of bovine ferrochelatase is approximately 80 kDa; the data are most consistent with a model for active ferrochelatase composed of two structural subunits of about 40 kDa each. 相似文献
12.
13.
Transglutaminase-mediated cross-linking of alpha-crystallin: structural and functional consequences. 总被引:1,自引:0,他引:1
Aggregation and covalent cross-linking of the crystallins, the major structural proteins of the eye lens, increase light scattering by the lens leading to opacification and cataract. Disturbance of calcium homeostasis in the tissue is one of the factors implicated in cataractogenesis. Calcium-activated transglutaminase (TG)-catalyzed cross-linking of some lens proteins has been reported earlier. We show here that alpha-crystallin, a major structural protein in the lens and a member of the small heat shock protein family, is also a substrate for TG-mediated cross-linking, indicating the presence of donor Lys and acceptor Gln residues in the protein. Upon TG-catalyzed dimerization, the secondary and tertiary structures of the protein are altered, and its surface hydrophobicity reduced. The chaperone-like property of the protein, suspected to be one of its functions in situ, is substantially reduced upon such cross-linking. These results, taken together with earlier ones on lens beta-crystallins and vimentin, suggest that TG-mediated events might compromise lens function. Also, since alpha-crystallin occurs not only in the lens but in other tissues as well, such TG-catalyzed cross-linking and the associated alterations in its structure and activity would be of general pathological interest. 相似文献
14.
T Kawakami N Inagaki M Takei H Fukamachi K M Coggeshall K Ishizaka T Ishizaka 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(11):3513-3519
We investigated the possible role of tyrosine phosphorylation in the activation process of mast cells by cross-linking of cell-bound IgE antibodies. Bone marrow-derived mouse mast cells (BMMC) were sensitized with mouse IgE antiDNP mAb and then challenged with multivalent Ag DNP conjugates of human serum albumin. Analysis of phosphotyrosine-containing proteins in their lysates by SDS-PAGE and immunoblotting revealed that cross-linking of cell-bound IgE antibodies induced a marked increase in tyrosine phosphorylation of several proteins. To obtain direct evidence for activation of protein-tyrosine kinases (PTK), phosphotyrosine-containing proteins in lysates of mast cells were affinity purified, and kinase activity of the immunoprecipitates was assessed by an in vitro kinase assay. The results clearly showed activation of PTK upon cross-linking of Fc epsilon RI. Activation of PTK was not detected by the same assay when the sensitized BMMC were challenged with monovalent DNP-lysine. Treatment of sensitized BMMC with either Ca2+ ionophore or PMA failed to induce the activation of PTK. A representative IgE-independent secretagogue, thrombin, induced histamine release from BMMC but failed to induce activation of PTK. The results excluded the possibility that PTK activation is the consequence of an increase in intracellular Ca2+ or activation of protein kinase C. Addition of genistein, a PTK inhibitor, to sensitized BMMC before Ag challenge inhibited not only Ag-induced PTK activation, but also inositol 1,4,5-trisphosphate production, and histamine release in a similar dose-response relationship. Other PTK inhibitors, such as lavendustin A and tyrphostin RG50864, also inhibited the Ag-induced activation of PTK and histamine release. The results collectively suggest that activation of PTK is an early event upstream of the activation of phospholipase C, and is involved in transduction of IgE-dependent triggering signals to mediator release. 相似文献
15.
Nagatsugi F Tokuda N Maeda M Sasaki S 《Bioorganic & medicinal chemistry letters》2001,11(19):2577-2579
We have already demonstrated that the oligonucleotides DNA (ODNs) bearing a 2-amino-6-vinylpurine derivative (1) exhibited efficient interstrand cross-linking to cytidine selectively. In this study, a new reactive nucleoside analogue, 2-amino-6-(1-ethylsulfoxy)vinylpurine derivative (7), was designed based on a computational method to achieve high and selective alkylation with cytidine under neutral conditions. It has been demonstrated that the ODN (13) bearing 2-amino-6-(1-ethylsulfoxy)vinylpurine achieved highly selective and efficient cross-linking to cytidine under neutral conditions. 相似文献
16.
Protein modification methods represent fundamental techniques that are applicable in many fields. In this study, a site-specific protein cross-linking based on the oxidative tyrosine coupling reaction was demonstrated. In the presence of horseradish peroxidase (HRP) and H(2)O(2), tyrosine residues undergo one-electron oxidation reactions and form radicals in their phenolic moieties, and these species subsequently react with each other to form dimers or further react to generate polymers. Here, a peptide-tag containing a tyrosine residue(s) (Y-tag, of which the amino acid sequences were either GGGGY or GGYYY) was genetically introduced at the C-terminus of a model protein, Escherichia coli alkaline phosphatase (BAP). Following the incubation of recombinant BAPs with HRP and H(2)O(2), Y-tagged BAPs were efficiently cross-linked with each other, whereas wild-type BAP did not undergo cross-linking, indicating that the tyrosine residues in the Y-tags were recognized by HRP as the substrates. To determine the site-specificity of the cross-linking reaction, the Y-tag was selectively removed by thrombin digestion. The resultant BAP without the Y-tag showed no reactivity in the presence of HRP and H(2)O(2). Conversely, Y-tagged BAPs cross-linked by HRP treatment were almost completely digested into monomeric BAP units following incubation with the protease. Moreover, cross-linked Y-tagged BAPs retained ~95% of their native enzymatic activity. These results show that HRP catalyzed the site-specific cross-linking of BAPs through tyrosine residues positioned in the C-terminal Y-tag. The site-selective enzymatic oxidative tyrosine coupling reaction should offer a practical option for site-specific and covalent protein modifications. 相似文献
17.
A Somasekaram A Jarmuz A How J Scott N Navaratnam 《The Journal of biological chemistry》1999,274(40):28405-28412
The cytidine deaminases belong to the family of multisubunit enzymes that catalyze the hydrolytic deamination of their substrate to a corresponding uracil product. They play a major role in pyrimidine nucleoside and nucleotide salvage. The intracellular distribution of cytidine deaminase and related enzymes has previously been considered to be cytosolic. Here we show that human cytidine deaminase (HCDA) is present in the nucleus. A highly specific, affinity purified polyclonal antibody against HCDA was used to analyze the intracellular localization of native HCDA in a variety of mammalian cells by in situ immunochemistry. Native HCDA was found to be present in the nucleus as well as the cytoplasm in several cell types. Indirect immunofluorescence microscopy indicated a predominantly nuclear localization of FLAG-tagged HCDA overexpressed in these cells. We have identified an amino-terminal bipartite nuclear localization signal that is both necessary and sufficient to direct HCDA and a non-nuclear reporter protein to the nucleus. We also show HCDA binding to the nuclear import receptor, importin alpha. Similar putative bipartite nuclear localization sequences are found in other cytidine/deoxycytidylate deaminases. The results presented here suggest that the pyrimidine nucleotide salvage pathway may operate in the nucleus. This localization may have implications in the regulation of nucleoside and nucleotide metabolism and nucleic acid biosynthesis. 相似文献
18.
Efterpi Papouli Martine Defais Florence Larminat 《The Journal of biological chemistry》2002,277(7):4764-4769
DNA cross-linking agents such as mitomycin C (MMC) and cisplatin are used as chemotherapeutic agents in cancer treatment. However, the molecular mechanism underlying their antitumor activity is not entirely clear. Critical steps in cytotoxicity toward cross-linking agents can involve DNA repair efficiency, inhibition of replication, cell-cycle checkpoints, regulation, and induction of apoptosis. The complexity of the mechanisms of the mammalian cell defense against cross-linking agents is reflected by the existence of many complementation groups identified in rodent cells that are specifically sensitive to MMC. We recently showed that increased induction of apoptosis contributes to the MMC sensitivity of the group represented by the V-H4 hamster mutant cell line. In this study, through the analyses of a substractive library, we discovered that sensitive V-H4 cells display a 40-fold increase of steady-state expression of metallothionein II (MT-II) mRNA compared with resistant parental V79 cells. Down-regulation of MT-II by antisense oligonucleotides partially restores MMC resistance in V-H4 cells, indicating that MT-II overexpression is directly involved in MMC hypersensitivity of these cells. MTs have been reported to regulate the activation of NF-kappaB, one of the key proteins that modulates the apoptotic response. Here we found that NF-kappaB activation by MMC is impaired in V-H4 cells and is partially restored following down-regulation of MT-II by antisense oligonucleotides. All these data suggest that the overexpression of MT-II in V-H4 cells impairs NF-kappaB activation by MMC, resulting in decreased cell survival and enhanced induction of apoptosis. 相似文献
19.
Photochemical cross-linking of secondary structure in HeLa cell heterogeneous nuclear RNA in situ 1. 总被引:4,自引:2,他引:2
The psoralen derivative 4'-hydroxymethyl-4, 5', 8-trimethylpsoralen (hydroxymethyltrioxsalen) has been used in experiments with isolated HeLa cell nuclei to photochemically cross-link double helical regions in heterogeneous nuclear RNA in situ. Although there are other self-complementary sequences in hnRNA that can form base-paired structures upon phenol deproteinization of annealing, the present in situ cross-linking results demonstrate that some double-stranded regions are an authentic component of native hnRNA structure. Moreover, these special regions of secondary structure are apparently highly accessible to chemical probes within the intact cell nucleus, despite the fact that hnRNA possesses a ribonucleoprotein organization. 相似文献
20.
Yuanzhi Chen Chenguang Shen Jing Chen Junyu Chen Fentian Chen Limin Zhang Xue Liu Siyuan Chen Sen Xue Yongliang Liu Jixian Tang Quan Yuan Yixin Chen Wenxin Luo Ningshao Xia 《中国病毒学》2022,37(4):619-622
Highlights
1. Class-switch recombination was mimicked in hybridomas through a controllable expression system of activation-induced cytidine deaminase.
2. IgG antibodies were generated through this system in an anti-Flu B IgM hybridoma 7G1.
3. IgG1 and IgG2a subtypes of 7G1 present improved antiviral activity in vitro and in vivo. 相似文献
1. Class-switch recombination was mimicked in hybridomas through a controllable expression system of activation-induced cytidine deaminase.
2. IgG antibodies were generated through this system in an anti-Flu B IgM hybridoma 7G1.
3. IgG1 and IgG2a subtypes of 7G1 present improved antiviral activity in vitro and in vivo. 相似文献