首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Mizuseki K  Royer S  Diba K  Buzsáki G 《Hippocampus》2012,22(8):1659-1680
The CA3 and CA1 pyramidal neurons are the major principal cell types of the hippocampus proper. The strongly recurrent collateral system of CA3 cells and the largely parallel-organized CA1 neurons suggest that these regions perform distinct computations. However, a comprehensive comparison between CA1 and CA3 pyramidal cells in terms of firing properties, network dynamics, and behavioral correlations is sparse in the intact animal. We performed large-scale recordings in the dorsal hippocampus of rats to quantify the similarities and differences between CA1 (n > 3,600) and CA3 (n > 2,200) pyramidal cells during sleep and exploration in multiple environments. CA1 and CA3 neurons differed significantly in firing rates, spike burst propensity, spike entrainment by the theta rhythm, and other aspects of spiking dynamics in a brain state-dependent manner. A smaller proportion of CA3 than CA1 cells displayed prominent place fields, but place fields of CA3 neurons were more compact, more stable, and carried more spatial information per spike than those of CA1 pyramidal cells. Several other features of the two cell types were specific to the testing environment. CA3 neurons showed less pronounced phase precession and a weaker position versus spike-phase relationship than CA1 cells. Our findings suggest that these distinct activity dynamics of CA1 and CA3 pyramidal cells support their distinct computational roles.  相似文献   

2.
Csicsvari J  Hirase H  Mamiya A  Buzsáki G 《Neuron》2000,28(2):585-594
Transfer of neuronal patterns from the CA3 to CA1 region was studied by simultaneous recording of neuronal ensembles in the behaving rat. A nonlinear interaction among pyramidal neurons was observed during sharp wave (SPW)-related population bursts, with stronger synchrony associated with more widespread spatial coherence. SPW bursts emerged in the CA3a-b subregions and spread to CA3c before invading the CA1 area. Synchronous discharge of >10% of the CA3 within a 100 ms window was required to exert a detectable influence on CA1 pyramidal cells. Activity of some CA3 pyramidal neurons differentially predicted the ripple-related discharge of circumscribed groups of CA1 pyramidal cells. We suggest that, in SPW behavioral state, the coherent discharge of a small group of CA3 cells is the primary cause of spiking activity in CA1 pyramidal neurons.  相似文献   

3.
The hippocampal CA1 region is most susceptible to cerebral ischemia in both rodents and humans, whereas CA3 is remarkably resistant. Here, we investigated the possible role of membrane lipids in differential susceptibility in these regions. Transient ischemia was induced in rats via bilateral occlusion of common carotid arteries and membrane lipids were analyzed by mass spectrometry. While lipid profile differences between the intact CA1 and CA3 were rather minor, ischemia caused significant pyramidal cell death with concomittant reduction of phosphatidylserine, phosphatidylinositol, phosphatidylethanolamine, plasmalogen and sphingomyelin only in CA1. The phospholipid loss was evenly distributed in most molecular species. Ischemia also significantly increased cell death mediator ceramides only in CA1. Our data suggests that differential susceptibility to ischemia between CA1 and CA3 is not linked to their unique phospholipid profile. Also, selective activation of phospholipase A2, which primarily releases polyunsaturated fatty acids, might not be characteristic to cell death in CA1.  相似文献   

4.
《Current biology : CB》2023,33(9):1689-1703.e5
  1. Download : Download high-res image (138KB)
  2. Download : Download full-size image
  相似文献   

5.
6.
Heterosynaptic interactions between synapses located at a considerable distance from the cell body (perforant path) and lying close to the body of the neuron (synapses of Schaffer's collaterals and axons of the dentate fascia) on guinea pig hippocampal neurons were investigatedin vitro. It was shown by the paired stimulus method that, using stimulation of subthreshold intensity for action potential generation, spatiotemporal summation takes place in both pairs of synaptic systems. If above-threshold stimulation was used, afferents lying close to the cell body suppressed responses evoked by stimulation of distant afferents for a longer time (up to 20 msec in area CA1 and up to 300 msec in area CA3) than during the opposite combination of stimuli (up to 3–8 msec). After tetanization of the dentate fascia depression of responses of area CA3 neurons to stimulation of the perforant path was observed for 2–30 min. In the remaining cases, no significant prolonged heterosynaptic posttetanic changes were observed. The possible mechanisms of these interactions are discussed.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 6, pp. 524–532, November–December, 1979.  相似文献   

7.
目的:在体视显微镜下分割Wistar大鼠海马CA1区、CA3区和齿状回(DG)区。方法:24只健康Wistar大鼠,分组如下:①6只大鼠取脑后硫堇染色,观察海马各区细胞形态;②6只大鼠分离出海马,体视显微镜下观察海马形态并分割CA1区、CA3区和DG区,各区分别切片后硫堇染色;③12只大鼠检测海马各区HSP 70的表达。结果:①大脑冠状切片硫堇染色清晰显示出海马CA1区、CA3区和DG区;②体视显微镜下,在海马腹侧面,沿着CA1区和DG区之间的海马沟可分割开CA1区和DG区,沿着CA3区和DG区之间的裂隙可分割开CA3区和DG区;分割后的海马各区细胞形态结构与整体大脑冠状切片上相对应区域的细胞形态结构一致;③Western blot结果显示:与对照组相比,脑缺血组HSP 70的表达在海马CA3+DG区明显上调、而在CA1无明显变化,这一结果与免疫组织化学结果一致。结论:上述方法可比较明确地分割Wistar大鼠海马CA1区、CA3区和DG区,分割得到的各区组织可用于蛋白质表达的检测。  相似文献   

8.
The efficiency of synapses of the perforant path located on terminals of apical dendrites of CA1 and CA3 neurons was investigated in sections of the guinea pig hippocampus in vitro. Neurons of both areas were shown to respond to stimulation of the perforant path by action potential generation. Responses of most CA1 neurons appeared to repetitive stimulation with a frequency of up to 30–80/sec. Neurons in area CA3 respond only to low-frequency stimulation (under 5/sec). Posttetanic potentiation of responses to stimulation of the perforant path was found in both areas of the hippocampus.Institute of Biophysics, Academy of Sciences of the USSR, Pushchino-on-Oka. Translated from Neirofiziologiya, Vol. 11, No. 4, pp. 303–310, July–August, 1979.  相似文献   

9.
STAM1, a member of the STAM (signal transducing adapter molecule) family, has a unique structure containing a Src homology 3 domain and ITAM (immunoreceptor tyrosine-based activation motif). STAM1 was previously shown to be associated with the Jak2 and Jak3 tyrosine kinases and to be involved in the regulation of intracellular signal transduction mediated by interleukin-2 (IL-2) and granulocyte-macrophage colony-stimulating factor (GM-CSF) in vitro. Here we generated mice lacking STAM1 by using homologous recombination with embryonic stem cells. STAM1(-/-) mice were morphologically indistinguishable from their littermates at birth. However, growth retardation in the third week after birth was observed for the STAM1(-/-) mice. Unexpectedly, despite the absence of STAM1, hematopoietic cells, including T- and B-lymphocyte and other hematopoietic cell populations, developed normally and responded well to several cytokines, including IL-2 and GM-CSF. However, histological analyses revealed the disappearance of hippocampal CA3 pyramidal neurons in STAM1(-/-) mice. Furthermore, we observed that primary hippocampal neurons derived from STAM1(-/-) mice are vulnerable to cell death induced by excitotoxic amino acids or an NO donor. These data suggest that STAM1 is dispensable for cytokine-mediated signaling in lymphocytes but may be involved in the survival of hippocampal CA3 pyramidal neurons.  相似文献   

10.
The CA1 and CA3 regions of the hippocampus markedly differ in their susceptibility to hypoxia in general, and more particularly to the intermittent hypoxia that characterizes sleep apnea. Proteomic approaches were used to identify proteins differentially expressed in the CA1 and CA3 regions of the rat hippocampus and to assess changes in protein expression following a 6-h exposure to intermittent hypoxia (IH). Ninety-nine proteins were identified, and 15 were differentially expressed in the CA1 and the CA3 regions. Following IH, 32 proteins in the CA1 region and only 7 proteins in the more resistant CA3 area were up-regulated. Hypoxia-regulated proteins in the CA1 region included structural proteins, proteins related to apoptosis, primarily chaperone proteins, and proteins involved in cellular metabolic pathways. We conclude that IH-mediated CA1 injury results from complex interactions between pathways involving increased metabolism, induction of stress-induced proteins and apoptosis, and, ultimately, disruption of structural proteins and cell integrity. These findings provide initial insights into mechanisms underlying differences in susceptibility to hypoxia in neural tissue, and may allow for future delineation of interventional strategies aiming to enhance neuronal adaptation to IH.  相似文献   

11.
One-shot memory in hippocampal CA3 networks   总被引:2,自引:0,他引:2  
Moser EI  Moser MB 《Neuron》2003,38(2):147-148
The hippocampus plays a crucial role in the encoding and retrieval of episodic memory. In this issue of Neuron, Nakazawa and coworkers show that synaptic modification in hippocampal CA3 neurons is critical for immediate storage of information, a key feature of episodic memory.  相似文献   

12.
The present article develops quantitative behavioral and neurophysiological predictions for rabbits trained on an air-puff version of the trace-interval classical conditioning paradigm. Using a minimal hippocampal model, consisting of 8,000 primary cells sparsely and randomly interconnected as a model of hippocampal region CA-3, the simulations identify conditions which produce a clear split in the number of trials individual animals should need to learn a criterion response. A trace interval that is difficult to learn, but still learnable by half the experimental population, produces a bimodal population of learners: an early learner group and a late learner group. The model predicts that late learners are characterized by two kinds of CA-3 neuronal activity fluctuations that are not seen in the early learners. As is typical in our minimal hippocampal models, the off-rate constant of the N-methyl-d-aspartate receptor receptor gives a timescale to the model that leads to a temporally quantifiable behavior, the learnable trace interval.  相似文献   

13.
A model with intermediate complexity is introduced to reproduce the basic firing modes of the CA3 pyramidal cell. Our model consists of a single compartment, has two variables (membrane potential and internal calcium concentration), and involves two separate stages for interspike mechanisms and firing. Interspike dynamics is governed by voltage- and calcium-dependent ionic channels but no channel kinetics are provided. This model is suitable to be included in our statistical population model (Part II, following paper). Bifurcation analysis reveals that interspike dynamics rather than sodium firing has the dominant role in the control of bursting/nonbursting behavior. Received: 29 August 1997 / Accepted in revised form: 17 July 1998  相似文献   

14.
This study describes a detailed cable model of neuronal structure, which can predict the effects of discrete transient inputs. Neurons in in vitro hippocampal slices (CA1 and CA3 pyramidal cells and dentate granule neurons; n = 4 each) were physiologically characterized and stained with horseradish peroxidase (HRP). The HRP morphology was approximated with numerous small segments. The cable model included both these segments and spatially dispersed dendritic spines. The transient response function at the soma of the segmental model was numerically derived, and charging responses to simulated current inputs were computed. These simulations were compared with the physiological charging responses from the somatic penetrations, using an analysis of the charging time constants (tau i) and intercepts. The time constant ratio (tau 0/tau 1) did not significantly differ between the observed and simulated responses. A second index of comparison was the equivalent cylinder electrotonic length (L), which was derived using only the tau i values and their intercepts. The L values also did not differ significantly between the observed and simulated transients and averaged 0.91 length constant. Thus, using criteria based only on analysis of charging responses, the segmental cable model recreated accurately the observed transients at the soma. The equivalent cylinder model (with a lumped soma) could also adequately simulate the observed somatic transients, using the same criteria. However, the hippocampal neurons (particularly the pyramidal cells) did not appear to satisfy the equivalent cylinder assumption anatomically. Thus, the analysis of somatic charging transients alone may not be sufficient to discriminate between the two models of hippocampal neurons. Anatomical evidence indicates that, particularly for discrete dendritic inputs, the detailed segmental model may be more appropriate than the equivalent cylinder model.  相似文献   

15.
How does the information of spatiotemporal sequence stemming from the hippocampal CA3 area affect the postsynaptic membrane potentials of the hippocampal CA1 neurons? In a recent study, we observed hierarchical clusters of the distribution of membrane potentials of CA1 neurons, arranged according to the history of input sequences (Fukushima et al Cogn Neurodyn 1(4):305–316, 2007). In the present paper, we deal with the dynamical mechanism generating such a hierarchical distribution. The recording data were investigated using return map analysis. We also deal with a collective behavior at population level, using a reconstructed multi-cell recording data set. At both individual cell and population levels, a return map of the response sequence of CA1 pyramidal cells was well approximated by a set of contractive affine transformations, where the transformations represent self-organized rules by which the input pattern sequences are encoded. These findings provide direct evidence that the information of temporal sequences generated in CA3 can be self-similarly represented in the membrane potentials of CA1 pyramidal cells.  相似文献   

16.
The passive electrical cable properties of CA3 pyramidal neurons from guinea pig hippocampal slices were investigated by applying current steps and recording the voltage transients from 25 CA3 neurons, using a single intracellular microelectrode and a 3-kHz time-share system. Two independent methods were used for estimating the equivalent electrotonic length of the dendrites, L, and the dendritic to somatic conductance ratio, . The first method is similar to that used by Gorman and Mirolli (1972) and gave an average L of 0.96; the average was 2.44. The second method is derived here for the first time and assumes a finite-length cable with lumped soma. It is an exact solution for L and , using the slopes and intercepts of the first two peeled exponentials. The average L was 0.94; the average was 1.51. The results, using both methods, are in close agreement. The average membrane time constant for all 25 CA3 neurons was 23.6 ms, suggesting a large (23,600 cm2) average membrane resistivity. It is concluded that CA3 neurons are electronically short.This work was supported by Grants NS 11535 and NS 15772 from the National Institute of Neurological and Communicative Disorders and Stroke, National Institutes of Health, U.S. Public Health Service.  相似文献   

17.
The dose-dependent effects of phencyclidine were examined in guinea pig hippocampal slices using intracellular and extracellular recordings. Orthodromically evoked population potentials from the CA1 cell body layer were enhanced by low doses (0.2-0.4 microM) and depressed by high doses (0.01-10 mM). Medium doses of the drug (2.0-10.0 microM) showed little effect. Intracellular recordings from CA1 pyramidal neurons gave similar dose-dependent results. Low doses increased spontaneous firing rates and caused silent cells to fire. Medium doses both increased and decreased firing rates, whereas high doses depressed firing rates. Large transient depolarizing shifts were seen in some phencyclidine-treated cells at medium and high doses. Phencyclidine effects took 15-30 min to develop and were only partially reversible after a washout of up to 1 h.  相似文献   

18.
The actions of serotonin (5-HT) and its putative agonists and antagonists were examined in vitro on hippocampal CA1 neurons using intracellular recordings, demonstrating that the cellular pharmacological effects can not necessarily be predicted from binding characteristics alone. The first response following 5-HT application was often a long-lasting (several minutes) hyperpolarization associated with decreased input resistance. Subsequent 5-HT applications caused only brief hyperpolarizations (30-120 s) and associated decreased input resistance, often followed by membrane depolarization. The post-spike train afterhyperpolarization (AHP) was prolonged for several minutes following the 5-HT induced hyperpolarization. 5-HT1 agonists (8-hydroxy-2-(di-n-propylamino)tetralin, 5-methoxytryptamine, MK-212) caused a prolonged hyperpolarization, decreased input resistance, and enhancement of the AHP. 5-HT applied following agonist application elicited only short-lasting hyperpolarizations. The 5-HT2 antagonists, cyproheptadine and mianserin, and a nonspecific 5-HT antagonist, methysergide, also caused a prolonged hyperpolarization with decreased input resistance. Spiperone, a nonspecific 5-HT antagonist, and ritanserin, a putative specific 5-HT2 receptor antagonist, depolarized CA1 neurons with little or no change in input resistance. The 5-HT-induced short-lasting hyperpolarization was not affected by drop application of 5-HT antagonists, except for methysergide, but perfusion of methysergide, ritanserin, and spiperone attenuated this response. The long-lasting 5-HT hyperpolarization might be mediated by 5-HT1A receptor activation, and the short-lasting hyperpolarization by another serotonergic receptor subtype.  相似文献   

19.
Hyperpolarizing potentials in guinea pig hippocampal CA3 neurons   总被引:2,自引:0,他引:2  
There is a bewildering variety of hyperpolarizing potentials which control activity in hippocampal pyramidal cells. These include an inhibitory postsynaptic potential (IPSP) with early and late components, voltage- and calcium-dependent potassium conductances, a voltage-dependent potassium conductance modulated by muscarinic agents (the M-current), and a complex and poorly understood afterhyperpolarization following epileptiform bursts. In hippocampal CA3 pyramidal cells, mossy fiber stimulation elicits an IPSP which is made up of two readily separable components. Using the in vitro slice preparation, we investigated the underlying ionic basis of these IPSP components and compared them to other hyperpolarizing potentials characteristic of the CA3 neurons. Intracellular recordings were obtained and then tissue was exposed to bathing medium low in chloride concentration or high in potassium concentration; the ion "blockers" EGTA (intracellular); tetraethylammonium (TEA) (intra- and extracellular), and barium and cobalt (extracellular); and the gamma-aminobutyric acid (GABA)/chloride antagonists penicillin, bicuculline and picrotoxin.  相似文献   

20.
By simultaneously recording the activity of individual neurons and field potentials in freely behaving mice, we found two types of interneurons firing at high frequency in the hippocampal CA1 region, which had high correlations with characteristic sharp wave-associated ripple oscillations (100―250 Hz) during slow-wave sleep. The firing of these two types of interneurons highly synchronized with ripple oscillations during slow-wave sleep, with strongly increased firing rates corresponding to individual ripple episodes. Interneuron type I had at most one spike in each sub-ripple cycle of ripple episodes and the peak firing rate was 310±33.17 Hz. Interneuron type II had one or two spikes in each sub-ripple cycle and the peak firing rate was 410±47.61 Hz. During active exploration, their firing was phase locked to theta oscillations with the highest probability at the trough of theta wave. Both two types of interneurons increased transiently their firing rates responding to the startling shake stimuli. The results showed that these two types of high-frequency interneurons in the hippocampal CA1 region were involved in the modulation of the hippocampal neural network during different states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号