首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
 A recombinant strain of Pseudomonas putida GPp104 (pHP1014::E146), which expressed the polyhydroxyalkanoic acid (PHA) synthase of Thiocapsa pfennigii exhibiting an unusual substrate specificity at a high level was incubated in two-stage batch or fed-batch accumulation experiments with 5-hydroxyhexanoic acid (5HHx) as carbon source in the second cultivation phase, copolyesters of 3-hydroxybutyric acid (3HB) plus 5HHx, or of 3HB, 3-hydroxyhexanoic acid (3HHx) plus 5HHx were accumulated as revealed by gas-chromatographic and 13C-NMR spectroscopic analysis. When the recombinant P. putida GPp104 was incubated with 4-hydroxyheptanoic acid (4HHp) as carbon source in the second cultivation phase, a copolyester consisting of 3HB, 3-hydroxyvaleric acid and 3- and 4-hydroxyheptanoic acid accumulated. Providing 4-hydroxyoctanoic acid as carbon source in the second cultivation phase led to the accumulation of a polyester that contained 1–2 mol% 4-hydroxyoctanoic acid besides 3-hydroxyoctanoic acid, 3HHx, 3-hydroxyvaleric acid and 3HB. In addition to PHA containing these new constituents, PHA with 4-hydroxyvaleric acid was accumulated from laevulinic acid. Eleven strains from five genera have been also analysed for their ability to utilize different carbon sources for colony growth, which might serve as potential precursors for the biosynthesis of PHA with unusual constituents. Although most of the carbon sources were utilized by some strains for colony growth, accumulation experiments gave no evidence for the accumulation of new PHA by these wild-type strains. Received: 22 April/Received revision: 23 May 1996/Accepted: 2 June 1996  相似文献   

2.
Screening experiments identified several bacteria which were able to use residual oil from biotechnological rhamnose production as a carbon source for growth. Ralstonia eutropha H16 and Pseudomonas oleovorans were able to use this waste material as the sole carbon source for growth and for the accumulation of polyhydroxyalkanoic acids (PHA). R. eutropha and P. oleovorans accumulated PHA amounting to 41.3% and 38.9%, respectively, of the cell dry mass, when these strains were cultivated in mineral salt medium with the oil from the rhamnose production as the sole carbon source. The accumulated PHA isolated from R. eutropha consisted of only 3-hydroxybutyric acid, whereas the PHA isolated from P. oleovorans consisted of 3-hydroxyhexanoic acid, 3-hydroxyoctanoic acid, 3-hydroxy decanoic acid, and 3-hydroxydodecanoic acid. The composition was confirmed by gas chromatography of the isolated polyesters. Batch and fed-batch cultivations in stirred-tank reactors were done. Received: 15 June 1999 / Received revision: 10 August 1999 / Accepted: 13 August 1999  相似文献   

3.
Summary A citronellol-utilizing bacterium was isolated that accumulated a polyester consisting of 3-hydroxybutyric acid (3HB) and of medium-chain-length 3-hydroxyalkanoic acids (3HAMCL) from various carbon sources up to approximately 70% of the cellular dry matter if the cells were cultivated in ammineral salts medium under nitrogen limitation. In octanoate-grown cells, for instance, the polyester consisted of 87.5 mol% 3HB and 12.5 mol% 3-hydroxyoctanoic acid (3HO), whereas it consisted of 10.3 mol% 3HB, 16.7 mol% 3HO and 73.0 mol% 3-hydroxydecanoic acid (3HD) in gluconate-grown cells. However, the results of various experiments indicated that a blend rather than a copolyester was synthesized in the cell. It was the only strain among 45 different recently isolated citronellol-utilizing bacteria that accumulated such a polyester. All other citronellol-utilizing bacteria behaved like Pseudomonas aeruginosa with respect to their polyhydroxyalkanoic acid (PHA) biosynthetic capabilities and accumulated PHA consisting of 3HAMCL with 3HO and 3HD as the main constituents from octanoate or gluconate, respectively, whereas 3HB was never present. None of 232 different heavy-metal-resistant bacteria was able to accumulate PHA composed of 3HB plus, for example, 3HO. Only 20.3% did not accumulate any PHA at all, 44.8% accumulated PHB from gluconate, and 34.9% behaved like P. aeruginosa. Many bacteria belonging to the latter group were distinguished from the other by rapid growth in nutrient broth and in gluconate mineral salts medium and by their ability to grow in the presence of a high concentration (up to 1.5%, w/v) of octanoate. Correspondence to: A. Steinbüchel  相似文献   

4.
Summary Recombinant strains of Pseudomonas oleovorans, which harbour the poly(3-hydroxybutyrate)-biosynthetic genes of Alcaligenes eutrophus, accumulated poly(hydroxyalkanoates), composed of 3-hydroxybutyrate(3HB), 3-hydroxyhexanoate (3HHx) and 3-hydroxyactanoate (3HO), up to 70% of the cell dry weight if the cells were cultivated with sodium octanoate as the carbon source. Physiological and chemical analysis revealed multiple evidence that this polymer is a blend of the homopolyester poly(3HB) and of the copolyester poly(3HHx-co-3HO) rather than a random or a block copolyester of 3HB, 3HHx and 3HO. The molar ratio between poly(3HHx-co-3HO) and poly(3HB) varied drastically during the process of fermentation. Whereas synthesis of poly(3HHx-co-3HO) started immediately after ammonium was exhausted in the medium, synthesis of poly(3HB) occurred only after a lag-phase. From freeze-dried cells poly(3HHx-co-3HO) was much more readily extracted with chloroform than was poly(3HB). The blend was fractionated into petrol-ether-insoluble poly(3HB) and petrol-ether-soluble poly(3HHx-co-3HO). The molecular weight values of these polyesters measured by gel permeation chromatography were 2.96 × 106 and 0.35 × 106 and were similar of those polymers accumulated by A. eutrophus or by wild-type P. oleovorans, respectively. Offprint requests to: A. Steinbüchel  相似文献   

5.
Loo CY  Lee WH  Tsuge T  Doi Y  Sudesh K 《Biotechnology letters》2005,27(18):1405-1410
Palm kernel oil, palm olein, crude palm oil and palm acid oil were used for the synthesis of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) [P(3HB-co-3HHx)] by a mutant strain of Wautersia eutropha (formerly Ralstonia eutropha) harboring the Aeromonas caviae polyhydroxyalkanoate (PHA) synthase gene. Palm kernel oil was an excellent carbon source for the production of cell biomass and P(3HB-co-3HHx). About 87% (w/w) of the cell dry weight as P(3HB-co-3HHx) was obtained using 5 g palm kernel oil/l. Gravimetric and microscopic analyses further confirmed the high PHA content in the recombinant cells. The molar fraction of 3HHx remained constant at 5 mol % regardless of the type and concentration of palm oil products used. The small amount of 3HHx units was confirmed by 13C NMR analysis. The number average molecular weight (Mn) of the PHA copolymer produced from the various palm oil products ranged from 27 0000 to 46 0000 Da. The polydispersity was in the range of 2.6–3.9.  相似文献   

6.
Aims: Polyhydroxyalkanoate (PHA) with enhanced physicochemical properties will be ideal for a wide range of practical applications. The incorporation of 3‐hydroxy‐4‐methylvalerate (3H4MV) into the polymer backbone is known to improve the overall properties of the resulting polymer. However, the most suitable micro‐organism and PHA synthase that can synthesize this monomer efficiently still remain unknown at present. Therefore, we evaluated the abilities of a locally isolated Chromobacterium sp. USM2 to produce PHA containing 3H4MV. Methods and Results: The ability of Chromobacterium sp. USM2 to synthesize poly(3‐hydroxybutyrate‐co‐3‐hydroxy‐4‐methylvalerate) [P(3HB‐co‐3H4MV)] was evaluated under different culture conditions. It was found that Chromobacterium sp. USM2 can synthesize P(3HB‐co‐3H4MV) when glucose and isocaproic acid were fed as carbon source. However, the highest molar fraction of 3H4MV, 22 mol% was detected in Chromobacterium sp. USM2 when isocaproic acid was provided as the sole carbon source. In addition, aeration was identified as a crucial factor in initiating the accumulation of high 3H4MV molar fractions. Conclusions: Chromobacterium sp. USM2 was able to synthesize broad comonomer compositional distribution of P(3HB‐co‐3H4MV). Significance and Impact of the Study: Compared with Cupriavidus necator and Burkholderia sp., Chromobacterium sp. USM2 was found to have better ability to bioconvert isocaproic acid to form 3H4MV unit.  相似文献   

7.
Summary Twenty-four different strains of aerobic Gram-negative bacteria, mainly belonging to the genera Alcaligenes, Paracoccus, Pseudomonas and Methylobacterium, were examined with respect to their ability to utilize 4-hydroxyvaleric acid (4HV), 4-valerolactone (4VL) and 3-hydroxypropionic acid (3HP) as carbon sources for growth and for accumulation of polyhydroxyalkanoic acid (PHA). A gas chromatographic (GC) method for the detection of 3-hydroxyalkanoic acid methyl esters has been extended for the detection of derivatives obtained from the methanolysis of 4-hydroxybutyric acid (4HB) and 4HV. Most of the Alcaligenes species and P. oxalaticus Ox1 accumulated a terpolyester consisting of 3-hydroxybutyric acid (3HB), 3-hydroxyvaleric acid (3HV) and 4HV as constituents from 4HV or 4VL as sole carbon sources in batch, fed-batch or two-stage fed-batch cultures. Poly(3HB-co-3HV-co-4HV) accumulated from 4HV by A. eutrophus strain NCIB 11599 amounted to approximately 50% of the cell dry matter and was composed of 42.0 mol % 3HB, 52.2 mol % 3HV and 5.6 mol % 4HV, respectively. Pseudomonads, which belong to the rRNA homology group I, were not able to incorporate 4HV. With 3HP as carbon source, the GC analysis provided evidence for the presence of 3HP in the PHA of many bacteria. Nuclear magnetic resonance spectroscopic analysis confirmed that, for example, A. eutrophus strain TF93 accumulated poly(3HB-co-3HP) with 98 mol % 3HB and 2 mol % 3HP if the cells were cultivated in the presence of 0.5% (w/v) 3HP. Offprint requests to: A. Steinbüchel  相似文献   

8.
Aeromonas hydrophila CGMCC 0911 isolated from lake water was found to be able to synthesize a polyhydroxyalkanoate (PHA) copolymer (PHBHHx) consisting of 3-hydroxybutyrate (HB) and 4–6 mol% 3-hydroxyhexanoate (HHx). The wild-type bacterium accumulated 49% PHBHHx containing 6 mol% HHx in terms of cell dry weight (CDW) when grown on lauric acid for 48 h. When A. hydrophila CGMCC 0911 expressed the Acyl-CoA dehydrogenase gene (yafH) of Escherichia coli, the recombinant strain could accumulate 47% PHBHHx, while the HHx content reached 17.4 mol%. The presence of changing glucose concentration in the culture changed the HHx content both in wild type and recombinant A. hydrophila CGMCC 0911. When 5 g l–1 glucose was added to a culture containing 5 g l–1 lauric acid as co-substrate, 45% PHBHHx/CDW consisting of 8.8 mol% HHx was produced by wild-type A. hydrophila CGMCC 0911 compared with only 5% in the absence of glucose. When the recombinant A. hydrophila CGMCC 0911 was grown on a mixed substrate containing lauric acid and 8–10 g l–1 glucose, the HHx content could be further increased to 35.6 mol%. When the glucose concentration exceeded 10 g l–1, cell growth, PHA content and mole percentages of HHx in PHBHHx were significantly reduced.  相似文献   

9.
AIMS: Burkholderia sp. USM (JCM15050) isolated from oil-polluted wastewater is capable of utilizing palm oil products and glycerol to synthesize poly(3-hydroxybutyrate) [P(3HB)]. To confer the ability to produce polymer containing 3-hydroxyhexanoate (3HHx), plasmid (pBBREE32d13) harbouring the polyhydroxyalkanoate (PHA) synthase gene of Aeromonas caviae (phaC(Ac)) was transformed into this strain. Methods and Results: The resulting transformant incorporated approximately 1 ± 0·3 mol% of 3HHx in the polymer when crude palm kernel oil (CPKO) or palm kernel acid oil was used as the sole carbon source. In addition, when the transformed strain was cultivated in the mixtures of CPKO and sodium valerate, PHA containing 69 mol% 3HB, 30 mol% 3-hydroxyvalerate and 1 mol% 3HHx monomers was produced. Batch feeding of carbon sources with 0·5% (v/v) CPKO at 0 h and 0·25% (w/v) sodium valerate at 36 h yielded 6 mol% of 3HHx monomer by controlled-feeding strategies. CONCLUSIONS: Burkholderia sp. USM (JCM15050) has the metabolic pathways to supply both the short-chain length (SCL) and medium-chain length (MCL) PHA monomers. By transforming the strain with the Aer. caviae PHA synthase with broader substrate specificity, SCL-MCL PHA was produced. Significance and Impact of the Study: This is the first study demonstrating the ability of transformant Burkholderia to produce P(3HB-co-3HHx) from a single carbon source.  相似文献   

10.
11.
A locally isolated Gram-negative bacterium, Cupriavidus sp. USMAA2-4 was found capable of producing terpolymer poly(3-hydroxybutyrate-co-3-hydroxyvalerate-co-4-hydroxybutyrate) [P(3HB-co-3HV-co-4HB)] using γ-butyrolactone or 1,4-butanediol with either valeric acid or 1-pentanol as the carbon source. The present of 3HB, 3HV and 4HB monomers were confirmed by gas chromatography (GC) and nuclear magnetic resonance (NMR) analysis. PHA concentration of 1.9 g/l was the highest value obtained using the combination of 1,4-butanediol and 1-pentanol through one-step cultivation process. PHA concentration obtained through two-step cultivation process was higher for all the combinations and the highest value achieved was 2.5 g/l using γ-butyrolactone and 1-pentanol as carbon source. Various molar fractions of 4HB and 3HV ranging from 6 to 14 mol% and 39 to 87 mol%, respectively were produced through two-step cultivation process by manipulating the concentration of γ-butyrolactone. As the culture aeration was reduced, the molar fraction of 3HV and 4HB increased from 40 to 67 mol% and 10 to 24 mol%, respectively while the dry cell weight and PHA content decreased. The terpolymer produced was characterized using gel permeation chromatography (GPC) and differential scanning calorimetry (DSC). The number-average molecular weight (M n) and the melting temperature (T m)) of the terpolymer were in the range of 177–484 kDa and 160–164°C, respectively.  相似文献   

12.
嗜水气单胞菌WQ中PHBHHx的合成及其分子基础研究   总被引:3,自引:0,他引:3  
聚羟基脂肪酸酯(Polyhydroxyalkanoate,PHA)是一系列生物合成的高分子材料,其单体可由多种3-羟基脂肪酸(3-hydroxyalkanoate,3HA)构成^[1]。PHA物理和机械性能的变化很大,从高脆性到弹性体,这跟它们的单体成分有很大关系^[2]。短链和中长链单体共聚的PHA比短链单体或中长链单体聚合得到的PHA有着更好的性能^[3]。在1994年,豚鼠气单胞菌(Aeromonas caviae)FA440被发现能以偶数碳原子数脂肪酸或植物油作为碳源在体内积累PHBHHx^[4]其PHA生物合成基因被成功克隆^[5]。根据亚基数目和底物特异性,PHA合成的关键酶,即PHA合酶或PhaC,被分成了3种类型。A.caviae的PHA合酶属于第1类PHA合酶^[6]。PHA合酶的一些类型含有一些保守的基因序列,该特征可被用于克隆,特别是第Ⅱ类PHA合酶^[2,8]。嗜水气单胞菌(Aeromonas hydrophila)WQ和A.hydrophila 4AK4是能够合成PHBHHx的另外两种菌株,其中A.hydrophila 4AK4已被用作大规模生产PHBHHx。就目前来说,不管生长条件怎么改变,其合成的PHBHHx中3羟基己酸单体(3-hydroxyhexanoate,3HHx)的含量始终在12%~17%之间变化^[9]。而A.hydrophila WQ合成的PHBHHx中则含有6%~14% 3HHx。本论文研究了A.hydrophila WQ的PHA生物合成及其分子基础。  相似文献   

13.
3-羟基丁酸和3-羟基己酸共聚酯(PHBHHx)是一种性能优良的新型生物可降解材料,其机械和加工性能与3-羟基己酸(3HHx)在共聚物中的含量密切相关。在嗜水气单孢菌Aeromonas hydrophila 4AK4中引入了编码β-酮基硫解酶(β-ketothiolase)的phbA基因和编码乙酰乙酰辅酶A还原酶(Acetoacetyl-CoA reductase)的phbB基因,使重组菌增加了一条利用乙酰辅酶A合成3-羟基丁酸-CoA的代谢途径,这使得利用非相关性碳源调控PHBHHx的单体组成比例成为可能。利用葡萄糖酸钠和月桂酸作为碳源,对重组Aeromonas hydrophila 4AK4进行了摇瓶培养及5L发酵罐培养的研究。在摇瓶实验中,通过改变碳源中两种组分的比例,可以使A,hydrophila 4AK4合成的PHBHHx中的3HHx摩尔含量由原来的15%左右降低到3%~12%,成功地实现了对PHBHHx单体组成的调控;当以月桂酸为唯一碳源时,在5L发酵罐中,经过56h的培养,获得了51.5g/L的细胞干重(CDW),其中62%为PHBHHx,3HHx在PHBHHx中的摩尔含量为9.7%;当以1:1的葡萄糖酸钠和月桂酸为碳源时,48h的5L发酵罐培养获得了32.8g/L的CDW和52%的PHBHHx含量,其中3HHx在PHBHHx中的摩尔含量为6.7%。结果证明了该重组菌在大规模生产单体组成可控PHBHHx方面具有很大的应用潜力。  相似文献   

14.
The methanolysis products of polyhydroxyalkanoic acids (PHAs) containing 4-hydroxybutyric acid (4HB), 4-hydroxyvaleric acid (4HV), and 4-hydroxyhexanoic acid (4HHx), when analyzed by GC-MS, showed two major chromatographic peaks with characteristic retention times of each methyl ester of 4-hydroxyalkanoic acid and the corresponding g-lactone (-butyrolactone, -valerolactone, -caprolactone, respectively). The method and results of GC-MS could be incorporated into an efficient screening procedure for isolation of bacterial strains which could accumulate a PHA containing 4-hydroxyalkanoic acid as the principal monomer from structurally related carbon substrates.  相似文献   

15.
The recombinant Escherichia coli strain, equipped with the newly cloned Aeromonas PHA biosynthesis genes, could produce a terpolymer of 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV), and 3-hydroxyhexanoate (3HHx) [P(3HB-co-3HV-co-3HHx)] from dodecanoic acid plus odd carbon number fatty acid. In addition, the orf1 gene of Aeromonas hydrophila was found to play a critical role in assimilating the 3HV monomer and in regulating the monomer fraction in the terpolymer.  相似文献   

16.
The newly screened Aeromonas hydrophila produces copolymer consisting of 3-hydroxybutyrate (3HB) and 3-hydroxyhexanoate (3HHx). The characteristics of cell growth and polymer accumulation were examined using various carbon sources. P(3HB-co-3HHx) was produced from lauric acid and oleic acid only. P(3HB-co-3HHx) content can be increased by limitation of phosphorus. A maximal P(3HB-co-3HHx) content of 28.8 wt% could be obtained in flask culture. By applying the optimally designed nutrient feeding strategy, cell dry weight, P(3HB-co-3HHx) content, and 3HHx fraction obtained over the course of 43 h were 95.7 g/L, 45.2 wt%, and 17 mol%, respectively, resulting in a productivity of 1.01 g polyhydroxyalkanoate (PHA)/L. h.  相似文献   

17.
Saturation point mutagenesis was carried out at position 479 in the polyhydroxyalkanoate (PHA) synthase from Chromobacterium sp. strain USM2 (PhaCCs) with specificities for short-chain-length (SCL) [(R)-3-hydroxybutyrate (3HB) and (R)-3-hydroxyvalerate (3HV)] and medium-chain-length (MCL) [(R)-3-hydroxyhexanoate (3HHx)] monomers in an effort to enhance the specificity of the enzyme for 3HHx. A maximum 4-fold increase in 3HHx incorporation and a 1.6-fold increase in PHA biosynthesis, more than the wild-type synthase, was achieved using selected mutant synthases. These increases were subsequently correlated with improved synthase activity and increased preference of PhaCCs for 3HHx monomers. We found that substitutions with uncharged residues were beneficial, as they resulted in enhanced PHA production and/or 3HHx incorporation. Further analysis led to postulations that the size and geometry of the substrate-binding pocket are determinants of PHA accumulation, 3HHx fraction, and chain length specificity. In vitro activities for polymerization of 3HV and 3HHx monomers were consistent with in vivo substrate specificities. Ultimately, the preference shown by wild-type and mutant synthases for either SCL (C4 and C5) or MCL (C6) substrates substantiates the fundamental classification of PHA synthases.  相似文献   

18.
Ecological deterioration and human health concerns arising from the usage of non-biodegradable plastics have prompted mankind to search for greener alternatives which are biodegradable, biocompatible and easily produced from renewable sources. Polyhydroxyalkanoates (PHA), among other biopolymers, are emerging as a viable replacement for fossil fuel-based synthetic plastics. A PHA-producing strain, identified as Cupriavidus sp. (designated Cupriavidus sp. USMAA2-4) was isolated from a soil sample from western peninsular Malaysia. Heterologous expression of the PHA synthase gene (phaC USMAA2-4) in mutant C. necator PHB4 complemented its PHA-producing ability. More than 60 wt% of P(3HB) was synthesized from various plant oils. The highest P(3HB) production of 2.38 g/l at 68 wt% was attained when crude palm kernel oil was fed as the sole carbon source. The 3HV molar fraction in poly(3-hydroxybutyrate-co-3-hydroxyvalerate) [P(3HB-co-3HV)] was significantly affected by the type of the precursor used and their respective feeding time. The 3HV molar fraction ranged from 4 to 31 mol% when sodium propionate/valerate was fed at different cultivation times. In addition, with the supplementation of 4HB-monomer precursors, approximately 67 wt% P(3HB-co-4HB) with 4–5 mol% of 4-hydroxybutyrate monomer was synthesized, regardless of the precursor feeding time used. Variation in the molar fraction of the second monomer along with its biodegradability and biocompatibility characteristics promotes the potential of these copolymers as replacements for traditional commodity plastics.  相似文献   

19.
Summary Terpolyesters of 3-hydroxybutyrate (3HB), 4-hydroxybutyrate (4HB) and 3-hydroxyvarelate (3HV) were produced byPseudomonas acidovorans in nitrogen-free culture solutions of 1,4-butanediol and pentanol. When 1,4-butanediol was used as the sole carbon source, a polyester with an unusually high 4HB fraction of 99 mol% was produced.  相似文献   

20.
The biosynthesis of polyhydroxyalkanoates (PHAs) was studied, for the first time, in the thermophilic bacterium Thermus thermophilus. Using sodium gluconate (1.5% w/v) or sodium octanoate (10 mM) as sole carbon sources, PHAs were accumulated to approximately 35 or 40% of the cellular dry weight, respectively. Gas chromatographic analysis of PHA isolated from gluconate-grown cells showed that the polyester (Mw: 480,000 g.mol–1) was mainly composed of 3-hydroxydecanoate (3HD) with a molar fraction of 64%. In addition, 3-hydroxyoctanoate (3HO), 3-hydroxyvalerate (3HV) and 3-hydroxybutyrate (3HB) occurred as constituents. In contrast, the polyester (Mw: 391,000 g mol–1) from octanoate-grown cells was composed of 24.5 mol% 3HB, 5.4 mol% 3HO, 12.3 mol% 3-hydroxynonanoate (3HN), 14.6 mol% 3HD, 35.4 mol% 3-hydroxyundecanoate (3HUD) and 7.8 mol% 3-hydroxydodecanoate (3HDD). Activities of PHA synthase, a -ketothiolase and an NADPH-dependent reductase were detected in the soluble cytosolic fraction obtained from gluconate-grown cells of T. thermophilus. The soluble PHA synthase was purified 4271-fold with 8.5% recovery from gluconate-grown cells, presenting a Km of 0.25 mM for 3HB-CoA. The optimal temperature of PHA synthase activity was about 70°C and acts optimally at pH near 7.3. PHA synthase activity was inhibited 50% with 25 M CoA and lost all of its activity when it was treated with alkaline phosphatase. PHA synthase, in contrary to other reported PHA synthases did not exhibit a lag phase on its kinetics, when low concentration of the enzyme was used. Incubation of PHA synthase with 1 mM N-ethyl-maleimide inhibits the enzyme 56%, indicating that cysteine might be involved in the catalytic site of the enzyme. Acetyl phosphate (10 mM) activated both the native and the dephosphorylated enzyme. A major protein (55 kDa) was detected by SDS-PAGE. When a partially purified preparation was analyzed on native PAGE the major band exhibiting PHA synthase activity was eluted from the gel and analyzed further on SDS-PAGE, presenting the first purification of a PHA synthase from a thermophilic microorganism.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号