首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Parasitoid sex ratios are influenced by mating systems, whether complete inbreeding, partial inbreeding, complete inbreeding avoidance, or production of all-male broods by unmated females. Population genetic theory demonstrates that inbreeding is possible in haplodiploids because the purging of deleterious and lethal mutations through haploid males reduces inbreeding depression. However, this purging does not act quickly for deleterious mutations or female-limited traits (e.g., fecundity, host searching, sex ratio). The relationship between sex ratio, inbreeding, and inbreeding depression has not been explored in depth in parasitoids. The gregarious egg parasitoid, Trichogramma pretiosum Riley, collected from Riverside, CA (USA) produced a female-biased sex ratio of 0.24 (proportion of males). Six generations of sibling mating in the laboratory uncovered considerable inbreeding depression (∼ 20%) in fecundity and sex ratio. A population genetic study (based upon allozymes) showed the population was inbred (F it = 0.246), which corresponds to 56.6% sib-mating. However, average relatedness among females emerging from the same host egg was only 0.646, which is less than expected (0.75) if ovipositing females mate randomly. This lower relatedness could arise from inbreeding avoidance, multiple mating by females, or superparasitism. A review of the literature in general shows relatively low inbreeding depression in haplodiploid species, but indicates that inbreeding depression can be as high as that found in Drosophila. Finally, mating systems and inbreeding depression are thought to evolve in concert (in plants), but similar dynamic models of the joint evolution of sex ratio, mating systems, and inbreeding depression have not been developed for parasitoid wasps. Received: November 13, 1998 /Accepted: January 8, 1999  相似文献   

2.
Summary Existing genetic models of the evolution of sibmating behaviour in diploids incorporate inbreeding depression in terms of reduced fecundity of consanguineous mating pairs rather than reduced survival or fecundity of the progeny of such matings. Here we derive a model to correct this deficiency and extend the model to haplodiploids where differential effects of inbreeding in males and females is a crucial consideration. Our analyses indicate that sibmating can readily evolve in both diploids and haplodiploids in which male mating costs and inbreeding depression are reasonably low, provided there is some mechanism to permit sibmating such as siblings being reared in nests or other forms of aggregation. Our analyses also indicate that once sibmating invades, it typically will go to fixation, although sib-/randommating polymorphisms can persist in both diploids and haplodiploids if male mating costs are close to zero and inbreeding depression reduces survival by around one-third. The conditions favouring sibmating are slightly more restrictive in haplodiploids than in diploids. In light of this we may ask why we see intense sibmating in many haplodiploids such as parasitic wasps, fig wasps, ants, bark beetles and mites, and only rarely in diploid animals. The common factor could be certain kinds of aggregation behaviour that are a prerequisite for sibmating in the absence of kin recognition. Another possibility is that inbreeding depression is likely to be more severe in diploids than in haplodiploids because deleterious recessives are purged from haplodiploid populations when expressed by haploid males. Thus, lower levels of inbreeding depression might be one important reason why sibmating appears to arise more frequently in haplodiploids than diploids. Phylogenetic analysis of groups, such as bark beetles and mites, exhibiting both diploid and haplodiploid populations may be useful in elucidating the relative importance of gregarious behaviour and haplodiploidy in facilitating sibmating systems.  相似文献   

3.
The two principal theories of the causal mechanism for inbreeding depression are the partial dominance hypothesis and the overdominance hypothesis. According to the first hypothesis, inbreeding increases the frequency of homozygous combinations of deleterious recessive alleles thereby decreasing fitness, whereas the overdominance hypothesis posits that inbreeding increases homozygosity and thus reduces the frequency of the superior heterozygotes. These two hypotheses make different predictions on the effect of crossing inbred lines: the overdominance hypothesis predicts that trait means will be restored to the outbred means, whereas the partial dominance hypothesis predicts that trait means will exceed those of the outbred population. I tested these predictions using seven inbred lines of the sand cricket, Gryllus firmus. Fourteen generations of brother-sister mating resulted in an inbreeding depression of 20-34% in four traits: nymphal weights at ages 14 days, 21 days, 28 days, and early fecundity. An incomplete diallel cross of these lines showed genetic variation among lines and an increase in all trait means above the outbred means, with three being significantly higher. These results provide support for the partial dominance hypothesis and are inconsistent with the overdominance hypothesis.  相似文献   

4.
The magnitude of inbreeding depression is often larger in traits closely related to fitness, such as survival and fecundity, compared to morphological traits. Reproductive behaviour is also closely associated with fitness, and therefore expected to show strong inbreeding depression. Despite this, little is known about how reproductive behaviour is affected by inbreeding. Here we show that one generation of full‐sib mating results in a decrease in male reproductive performance in the least killifish (Heterandria formosa). Inbred males performed less gonopodial thrusts and thrust attempts than outbred males (δ = 0.38). We show that this behaviour is closely linked with fitness as gonopodial performance correlates with paternity success. Other traits that show inbreeding depression are offspring viability (δ = 0.06) and maturation time of males (δ = 0.19) and females (δ = 0.14). Outbred matings produced a female biased sex ratio whereas inbred matings produced an even sex ratio.  相似文献   

5.
N S H Tien  M W Sabelis  M Egas 《Heredity》2015,114(3):327-332
Compared with diploid species, haplodiploids suffer less inbreeding depression because male haploidy imposes purifying selection on recessive deleterious alleles. However, alleles of genes only expressed in the diploid females are protected in heterozygous individuals. This leads to the prediction that haplodiploids suffer more from inbreeding effects on life-history traits controlled by genes with female-limited expression. To test this, we used a wild population of the haplodiploid mite Tetranychus urticae. First, negative effects of inbreeding were investigated by comparing maturation rate, juvenile survival, oviposition rate and longevity between lines created by three generations of either outbreeding or mother–son inbreeding. Second, purging through inbreeding was investigated by comparing the intensity of inbreeding depression between outbred families with known inbreeding/outbreeding mating histories. Negative effects of inbreeding and evidence for purging were found for the female trait oviposition rate, but not for juvenile survival and longevity. Both male and female maturation rate were negatively affected by inbreeding, most likely due to maternal effects because inbred offspring of outbred mothers was not affected. These results support the hypothesis that, in haplodiploids inbreeding effects and genetic variation due to deleterious recessive alleles may depend on gender.  相似文献   

6.
Inbreeding can profoundly affect the interactions of plants with herbivores as well as with the natural enemies of the herbivores. We studied how plant inbreeding affects herbivore oviposition preference, and whether inbreeding of both plants and herbivores alters the probability of predation or parasitism of herbivore eggs. In a laboratory preference test with the specialist herbivore moth Abrostola asclepiadis and inbred and outbred Vincetoxicum hirundinaria plants, we discovered that herbivores preferred to oviposit on outbred plants. A field experiment with inbred and outbred plants that bore inbred or outbred herbivore eggs revealed that the eggs of the outbred herbivores were more likely to be lost by predation, parasitism or plant hypersensitive responses than inbred eggs. This difference did not lead to differences in the realized fecundity as the number of hatched larvae did not differ between inbred and outbred herbivores. Thus, the strength of inbreeding depression in herbivores decreases when their natural enemies are involved. Plant inbreeding did not alter the attraction of natural enemies of the eggs. We conclude that inbreeding can significantly alter the interactions of plants and herbivores at different life-history stages, and that some of these alterations are mediated by the natural enemies of the herbivores.  相似文献   

7.
The degree to which, and rapidity with which, inbreeding depression can be purged from a population has important implications for conservation biology, captive breeding practices, and invasive species biology. The degree and rate of purging also informs us regarding the genetic mechanisms underlying inbreeding depression. We examine the evolution of mean survival and inbreeding depression in survival following serial inbreeding in a seed-feeding beetle, Stator limbatus, which shows substantial inbreeding depression at all stages of development. We created two replicate serially inbred populations perpetuated by full-sib matings and paired with outbred controls. The genetic load for the probability that an egg produces an adult was purged at approximately 0.45-0.50 lethal equivalents/generation, a reduction of more than half after only three generations of sib-mating. After serial inbreeding we outcrossed all beetles then measured (1) larval survival of outcrossed beetles and (2) inbreeding depression. Survival of outcrossed beetles evolved to be higher in the serially inbred populations for all periods of development. Inbreeding depression and the genetic load were significantly lower in the serially inbred than control populations. Inbreeding depression affecting larval survival of S. limbatus is largely due to recessive deleterious alleles of large effect that can be rapidly purged from a population by serial sib-mating. However, the effectiveness of purging varied among the periods of egg/larval survival and likely varies among other unstudied fitness components. This study presents novel results showing rapid and extensive purging of the genetic load, specifically a reduction of as much as 72% in only three generations of sib-mating. However, the high rate of extinction of inbred lines, despite the lines being reared in a benign laboratory environment, indicates that intentional purging of the genetic load of captive endangered species will not be practical due to high rates of subpopulation extinction.  相似文献   

8.
In gynodioecious species, sex expression is generally determined through cytoplasmic male sterility genes interacting with nuclear restorers of the male function. With dominant restorers, there may be an excess of females in the progeny of self-fertilized compared with cross-fertilized hermaphrodites. Moreover, the effect of inbreeding on late stages of the life cycle remains poorly explored. Here, we used hermaphrodites of the gynodioecious Silene vulgaris originating from three populations located in different valleys in the Alps to investigate the effects of two generations of self- and cross-fertilization on sex ratio and gender variation. We detected an increase in females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for female and male fertility. Male fertility correlated positively with sex ratio differences between outbred and inbred progeny, suggesting that dominant restorers are likely to influence male fertility qualitatively and quantitatively in S. vulgaris. We argue that the excess of females in the progeny of selfed compared with outcrossed hermaphrodites and inbreeding depression for gamete production may contribute to the maintenance of females in gynodioecious populations of S. vulgaris because purging of the genetic load is less likely to occur.  相似文献   

9.
Nuclear and cytoplasmic genomes can coevolve antagonistically or harmoniously to affect fitness. One commonly used test for nuclear-cytoplasmic coadaptation relies on the breakup of coadapted gene complexes by introgression, potentially resulting in an increased frequency of nuclear alleles in deleterious interaction with an alien cytoplasm. We investigated the phenotypic effect of such genes on female reproduction in outbred and inbred introgressed lines of the haplodiploid mite Tetranychus urticae. Introgression changed female lifetime fecundity and increased male production, in ways suggesting a control of fecundity by nuclear genes. Conversely introgression reduced the fertilization rate, possibly due to sperm-egg incompatibility or maternal effects. The intensity of inbreeding depression expressed as a reduction in fecundity was more severe in introgressed females than in nonintrogressed ones, giving evidence for recessive interacting alleles contributing to residual nucleo-cytoplasmic incompatibility. Overall, our data suggest recessive negative interactions between nuclear and cytoplasmic genes. This study is the first report of a contribution of nuclear polymorphism within a population to deleterious interactions with an alien cytoplasmic genome.  相似文献   

10.
Sex ratio has been studied from many theoretical and empirical perspectives, but a general assumption in sex ratio research is that changes in sex ratio occur because of selection on sex ratio itself. I carried out a quantitative genetic experiment—a diallel cross among three strains—on a parasitic wasp, Muscidifurax raptor (Hymenoptera: Pteromalidae), to measure genetic variation for sex ratio. I also tested whether sex ratio may change as a consequence of selection on other life-history traits by estimating genetic covariances between sex ratio, fecundity, longevity, and development time. Most of the variation among strains could be accounted for by a maternal effect, likely caused by a microsporidian parasite that was transmitted through the West Germany (WG) strain. Genetic variation was small by comparison, but almost all traits were affected by dominance. The only significant additive genetic effect was for fecundity early in life. Upon crossing, all traits displayed heterosis: more female-biased sex ratio, greater fecundity, longer life, and faster development time. All life-history traits were correlated phenotypically, but the correlations were mainly the result of decreased performance in crosses with the WG strain that carried the microsporidian parasite. Dominance genetic correlations were also found between sex ratio, fecundity, and longevity. How the correlation between sex ratio and other life-history traits would affect sex ratio evolution depends upon the frequencies of sex-ratio genotypes within a population as well as the signs of the correlations, because sex ratio is under frequency-dependent selection whereas other traits are generally under directional selection. Although the results from crosses among laboratory populations should be approached with caution, the inbreeding depression (the difference between inbred and outcrossed progeny) found in M. raptor implies that the evolution of a female-biased sex ratio could be affected by selection for inbreeding avoidance.  相似文献   

11.
Severe inbreeding depression is routinely observed in outcrossing species. If inbreeding load is due largely to deleterious alleles of large effect, such as recessive lethals or steriles, then most of it is expected to be purged during brief periods of inbreeding. In contrast, if inbreeding depression is due to the cumulative effects of many deleterious alleles of small effect, then it will be maintained in the face of periodic inbreeding. Whether or not inbreeding depression can be purged with inbreeding in the short term has important implications for the evolution of mating systems and the probability that a small population will go extinct. In this paper I evaluate the extent to which the tremendous inbreeding load in a primarily outcrossing population of the wildflower, Mimulus guttatus, is due to alleles of large effect. To do this, I first constructed a large outbred “ancestral” population by randomly mating plants collected as seeds from a natural population. From this population I formed 1200 lines that were maintained by self-fertilization and single seedling descent: after five generations of selling, 335 lines had survived the inbreeding process. Selection during the line formation is expected to have largely purged alleles of large effect from the collection of highly inbred lines. Because alleles with minor effects on fitness should have been effectively neutral, the inbreeding depression due to this class of genes should have been unchanged. The inbred lines were intercrossed to form a large, outcrossed “purged” population. Finally, I estimated the fitness of outbred and selfed progeny from the ancestral and purged populations to determine the contribution of major deleterious alleles on inbreeding depression. I found that although the average fitness of the outcrossed progeny nearly doubled following purging, the limited decline in inbreeding depression and limited increase in inbred fitness indicates that alleles of large effect are not the principle cause of inbreeding depression in this population. In aggregate, the data suggest that lethals and steriles make a minority contribution to inbreeding depression and that the increased outbred fitness is due primarily to adaptation to greenhouse conditions.  相似文献   

12.
Inbreeding depression of an aspect of fitness is observed in many insects, but the traits that are of importance for inbreeding depression of fitness remain poorly understood. Here the magnitude of inbreeding depression of fitness-related traits in the development and adult stages was measured in a captive population of the adzuki bean beetle, Callosobruchus chinensis (Coleoptera: Bruchidae). Beetles produced by full-sib matings had 8% lower survival in the development stage than did beetles produced by unrelated matings. Although inbred and outbred offspring did not differ in body size after emergence, inbred offspring took 2–3% longer to develop to emergence. This indicates inbreeding depression of growth rate. At the adult stage, inbreeding had no significant effect on longevity, however lifetime offspring production was reduced by 11%. Thus, the magnitude of inbreeding depression was relatively large for offspring production. This suggests inbreeding depression of fitness manifests, to a particularly significant extent, in reduced productivity. This study shows the C. chinensis population, which has been in captivity for more than 100 generations, harbors genetic loads.  相似文献   

13.
Perspective: purging the genetic load: a review of the experimental evidence   总被引:11,自引:0,他引:11  
Inbreeding depression, the reduction in fitness that accompanies inbreeding, is one of the most important topics of research in evolutionary and conservation genetics. In the recent literature, much attention has been paid to the possibility of purging the genetic load. If inbreeding depression is due to deleterious alleles, whose effect on fitness are negative when in a homozygous state, then successive generations of inbreeding may result in a rebound in fitness due to the selective decrease in frequency of deleterious alleles. Here we examine the experimental evidence for purging of the genetic load by collating empirical tests of rebounds in fitness-related traits with inbreeding in animals and plants. We gathered data from 28 studies including five mammal, three insect, one mollusc, and 13 plant species. We tested for purging by examining three measures of fitness-component variation with serial generations of inbreeding: (1) changes in inbreeding depression, (2) changes in fitness components of inbred lines relative to the original outbred line, and (3) purged population (outcrossed inbred lines) trait means as a function of ancestral outbred trait means. Frequent and substantial purging was found using all three measures, but was particularly pronounced when tracking changes in inbreeding depression. Despite this, we found little correspondence between the three measures of purging within individual studies, indicating that the manner in which a researcher chooses to estimate purging will affect interpretation of the results obtained. The discrepancy suggests an alternative hypothesis: rebounds in fitness with inbreeding may have resulted from adaptation to laboratory conditions and not to purging when using outcrossed inbred lines. However, the pronounced reduction in inbreeding depression for a number of studies provides evidence for purging, as the measure is likely less affected by selection for laboratory conditions. Unlike other taxon-specific reviews on this topic, our results provide support for the purging hypothesis, but firm predictions about the situations in which purging is likely or the magnitude of fitness rebound possible when populations are inbred remain difficult. Further research is required to resolve the discrepancy between the results obtained using different experimental approaches.  相似文献   

14.
Theory suggests that intraspecific competition associated with direct competition between inbred and outbred individuals should be an important determinant of the severity of inbreeding depression. The reason is that, if outbred individuals are stronger competitors than inbred ones, direct competition should have a disproportionate effect on the fitness of inbred individuals. However, an individual's competitive ability is not only determined by its inbreeding status but also by competitive asymmetries that are independent of an individual's inbreeding status. When this is the case, such competitive asymmetries may shape the outcome of direct competition between inbred and outbred individuals. Here, we investigate the interface between age‐based competitive asymmetries within broods and direct competition between inbred and outbred offspring in the burying beetle Nicrophorus vespilloides. We found that inbred offspring had lower survival than outbred ones confirming that there was inbreeding depression. Furthermore, seniors (older larvae) grew to a larger size and had higher survival than juniors (younger larvae), confirming that there were age‐based competitive asymmetries. Nevertheless, there was no evidence that direct competition between inbred and outbred larvae exacerbated inbreeding depression, no evidence that inbreeding depression was more severe in juniors and no evidence that inbred juniors suffered disproportionately due to competition from outbred seniors. Our results suggest that direct competition between inbred and outbred individuals does not necessarily exacerbate inbreeding depression and that inbred individuals are not always more sensitive to poor and stressful conditions than outbred ones.  相似文献   

15.
Induction of heat shock proteins (Hsp) is a well-known mechanism through which cells cope with stressful conditions. Hsp are induced by a variety of extrinsic stressors. However, recently intrinsic stressors (aging and inbreeding) have been shown to affect expression of Hsp. Increased homozygosity due to inbreeding may disrupt cellular homeostasis by causing increased expression of recessive deleterious mutations and breakdown of epistatic interactions. We investigated the effect of inbreeding and the rate of inbreeding on the expression of Hsp70, larval heat resistance and fecundity. In Drosophila melanogaster we found that inbred lines (F approximately 0.67) had significantly up-regulated expression of Hsp70, and reduced heat resistance and fecundity as compared with outbred control lines. A significant negative correlation was observed between Hsp70 expression and resistance to an extreme heat stress in inbred lines. We interpreted this as an increased requirement for Hsp70 in the lines suffering most from inbreeding depression. Inbreeding depression for fecundity was reduced with a slower rate of inbreeding compared with a fast rate of inbreeding. Thus, the effectiveness of purging seems to be improved with a slower rate of inbreeding.  相似文献   

16.
Inbreeding is typically detrimental to fitness. However, some animal populations are reported to inbreed without incurring inbreeding depression, ostensibly due to past "purging" of deleterious alleles. Challenging this is the position that purging can, at best, only adapt a population to a particular environment; novel selective regimes will always uncover additional inbreeding load. We consider this in a prominent test case: the eusocial naked mole-rat (Heterocephalus glaber), one of the most inbred of all free-living mammals. We investigated factors affecting mortality in a population of naked mole-rats struck by a spontaneous, lethal coronavirus outbreak. In a multivariate model, inbreeding coefficient strongly predicted mortality, with closely inbred mole-rats (F> or = 0.25) over 300% more likely to die than their outbred counterparts. We demonstrate that, contrary to common assertions, strong inbreeding depression is evident in this species. Our results suggest that loss of genetic diversity through inbreeding may render populations vulnerable to local extinction from emerging infectious diseases even when other inbreeding depression symptoms are absent.  相似文献   

17.
对叶榕传粉小蜂性比率的调节和稳定   总被引:5,自引:0,他引:5  
彭艳琼  杨大荣  王秋艳 《生态学报》2005,25(6):1347-1351
传粉榕小蜂呈现偏雌的性比率,单双倍体性别决定系统、局域配偶竞争和近交效应被认为是调节偏雌性比率的3个主要机制。通过研究影响对叶榕传粉小蜂性比率的因素,结果表明传粉榕小蜂的偏雌性比率随局域配偶竞争强度的降低而增加;受母代雌蜂交配次数的影响,随着母代雌蜂交配次数的增加,子代的偏雌性比率逐渐降低,这一结果首次揭示了传粉榕小蜂的交配制次数对性比率的影响,并在个体水平上定量了性比率变异与雌蜂交配频次的关系。传粉小蜂的性比率与共生的非传粉小蜂的关系,非传粉小蜂的介入直接减少了传粉小蜂的数量,甚至对传粉小蜂的种群有显著影响,结果发现非传粉小蜂对传粉小蜂雌雄性的分配比率没有显著影响,传粉榕小蜂仍能正常地进行繁殖。传粉与非传粉者小蜂之间作用关系的确定,可为进一步理解两者的稳定共生的机制提供科学证据。  相似文献   

18.
Inbreeding effects and incompatibility relationships were examined in strains of the egg parasitoid Trichogramma nr brassicae (Hymenoptera: Trichogrammatidae) from southeastern Australia. Crosses between strains provided weak evidence of incompatibility in a few cases. However sex ratio in crosses within strains tended to be more female-biased than in crosses between strains. Inbreeding was imposed for four generations (F>0.59) of sib mating. The fitness of inbred strains was compared to that of outbred strains generated by crossing the inbred strains. No effects of inbreeding were found for any of the four female traits examined (fecundity, body length, head width and hind tibia length), indicating that T. nr. brassicae is not subjected to inbreeding depression. Inbreeding effects were also not found for male mating success as expected for the haploid sex. There were differences among strains for all traits apart from fecundity, indicating heritable variation. Strain differences for fitness measures were uncorrelated with wasp size. The potential use of inbreeding in the quality control of Trichogramma for mass-release is discussed. Inbreeding may be a useful tool in minimising the effects of laboratory adaptation, thereby extending the useful life of a strain.  相似文献   

19.
Many species have fragmented distribution with small isolated populations suffering inbreeding depression and/or reduced ability to evolve. Without gene flow from another population within the species (genetic rescue), these populations are likely to be extirpated. However, there have been only ~ 20 published cases of such outcrossing for conservation purposes, probably a very low proportion of populations that would potentially benefit. As one impediment to genetic rescues is the lack of an overview of the magnitude and consistency of genetic rescue effects in wild species, I carried out a meta‐analysis. Outcrossing of inbred populations resulted in beneficial effects in 92.9% of 156 cases screened as having a low risk of outbreeding depression. The median increase in composite fitness (combined fecundity and survival) following outcrossing was 148% in stressful environments and 45% in benign ones. Fitness benefits also increased significantly with maternal ΔF (reduction in inbreeding coefficient due to gene flow) and for naturally outbreeding versus inbreeding species. However, benefits did not differ significantly among invertebrates, vertebrates and plants. Evolutionary potential for fitness characters in inbred populations also benefited from gene flow. There are no scientific impediments to the widespread use of outcrossing to genetically rescue inbred populations of naturally outbreeding species, provided potential crosses have a low risk of outbreeding depression. I provide revised guidelines for the management of genetic rescue attempts.  相似文献   

20.
Inbreeding generally reduces male mating activity such that inbred males are less successful in male-male competition. Inbred males can also have smaller accessory glands, transfer less sperm and produce sperm that are less motile, less viable or have a greater frequency of abnormalities, all of which can reduce the fertilization success and fitness of inbred males relative to outbred males. However, few studies have examined how male inbreeding status affects the fitness of females with whom they mate. In this study, we examine the effect of male inbreeding status (inbreeding coefficient f = 0.25 vs. f = 0) on the fecundity, adult longevity and the fate of eggs produced by outbred females in the seed-feeding beetle, Callosobruchus maculatus. Females mated to inbred males were less likely to lay eggs. Of those that laid eggs, females mated to inbred males laid 6-12% fewer eggs. Females mated to inbred males lived on average 5.4% longer than did females mated to outbred males, but this effect disappeared when lifetime fecundity was used as a covariate in the analysis. There was no effect of male inbreeding status on the proportion of a female's eggs that developed or hatched, and no evidence that inbred males produced smaller nuptial gifts. However, ejaculates of inbred males contained 17-33% fewer sperm, on average, than did ejaculates of outbred males. Our study demonstrates that mating with inbred males has significant direct consequences for the fitness of female C. maculatus, likely mediated by effects of inbreeding status on the number of sperm in male ejaculates. Direct effects of male inbreeding status on female fitness should be more widely considered in theoretical models and empirical studies of mate choice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号