首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
Effects of orexin A on secretion of thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) in rats were studied. Orexin A (50 microg/kg) was injected iv, and the rats were serially decapitated. The effects of orexin A on TRH release from the rat hypothalamus in vitro and on TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormone were measured by individual radioimmunoassays. TSH was determined by the enzyme-immunoassay method. The hypothalamic TRH contents increased significantly after orexin A injection, whereas its plasma concentrations tended to decrease, but not significantly. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 15 min after injection. The plasma thyroid hormone levels showed no changes. TRH release from the rat hypothalamus in vitro was inhibited significantly in a dose-related manner with the addition of orexin A. TSH release from the anterior pituitary in vitro was not affected with the addition of orexin A. The findings suggest that orexin A acts on the hypothalamus to inhibit TRH release.  相似文献   

2.
Regulation of thyrotropin (TSH) release by thyrotropin releasing hormone (TRH) in the anterior pituitary gland (AP) of pregnant rats was studied. The pregnant (day 7, 14, and 21) and diestrous rats were decapitated. AP was divided into 2 halves, and then incubated with Locke's solution at 37 degrees C for 30 min following a preincubation. After replacing with media, APs were incubated with Locke's solution containing 0, or 10 nM TRH for 30 min. Both basal and TRH-stimulated media were collected at the end of incubation. Medial basal hypothalamus (MBH) was incubated with Locke's medium at 37 degrees C for 30 min. Concentrations of TSH in medium and plasma samples as well as the cyclic 3':5' adenosine monophosphate (cAMP) content in APs and the levels of TRH in MBH medium were measured by radioimmunoassay. The levels of plasma TSH were higher in pregnant rats of day 21 than in diestrous rats. The spontaneous release of TSH in vitro was unaltered by pregnancy. TRH increased the release of TSH by AP, which was higher in pregnant than in diestrous rats. Maternal serum concentration of total T3 was decreased during the pregnancy. The basal release of hypothalamic TRH in vitro was greater in late pregnant rats than in diestrous rats. After TRH stimulation, the increase of the content of pituitary cAMP was greater in late pregnant rats than in diestrus animals. These results suggest that the greater secretion of TSH in pregnant rats is in part due to an increase of spontaneous release of TRH by MBH and a decrease of plasma thyroid hormones. Moreover, the higher level of plasma TSH in rats during late pregnancy is associated with the greater response of pituitary cAMP and TSH to TRH.  相似文献   

3.
The hypothalamic peptide hormone TRH is also found in other tissues, including the thyroid. While TRH may be regulated by T3 in the hypothalamus, other regulators of TRH have not been identified and the regulation of TRH in nonhypothalamic tissues is unknown. We recently demonstrated the biosynthesis of TRH in the CA77 neoplastic thyroidal C cell line. We studied the regulation of TRH by dexamethasone in this cell line because glucocorticoids have been postulated to inhibit TSH secretion by decreasing TRH in the hypothalamus. Furthermore, TRH in the thyroid inhibits thyroid hormone release. Thus by regulating thyroidal TRH, glucocorticoids could also directly affect thyroid hormone secretion. Treatment of CA77 cells for 4 days with dexamethasone produced dose-dependent increases in both TRH mRNA and cellular and secreted TRH. Increases in TRH mRNA and peptide levels could be seen with 10(-9) M dexamethasone. A 4.8-fold increase in TRH mRNA and a 4-fold increase in secreted peptide were seen with 10(-7) M dexamethasone. Dexamethasone treatment did not increase beta-actin mRNA levels or cell growth. These results suggest that glucocorticoids may be physiological regulators of TRH in normal C cells. In addition to their inhibitory effects on TSH, glucocorticoids may decrease thyroid hormone levels by increasing thyroidal TRH. Since the glucocorticoid effects on C cell TRH are the converse of what is expected for hypothalamic TRH, glucocorticoid effects in these two tissues may be mediated by different regulators.  相似文献   

4.
The role of thyrotropin-releasing hormone (TRH) in the secretion of TSH from the anterior pituitary was investigated in rats by active and passive immunization with TRH. The plasma TSH response to propylthiouracil (PTU) in TRH-bovine serum albumin (BSA)-immunized rats was significantly lower than that of BSA-immunized or non-immunized rats. Similarly, the increased plasma TSH level following PTU treatment was significantly suppressed after iv injection of antiserum to TRH. However, the decline in plasma TSH levels was not complete. The results of the present study indicate, at least in part, the physiological significance of endogenous TRH in the regulation of pituitary TSH secretion.  相似文献   

5.
The thyroid physiology of athymic nude rats, rnu/rnu, is characterized and established here as an animal model to study transplanted thyroid tumors. Male rats were catheterized 5 days before experiments were started. The mean thyroid-stimulating-hormone (TSH) plasma concentrations were 2.9 +/- 0.6 ng/ml during infusion of 0.25 ml/h of 0.9% NaCl (n = 12). T3 plasma concentrations were 2.6 +/- 0.4 ng/ml. T4 plasma levels were 22.0 +/- 5.6 micrograms/dl. A bolus of 0.1 mg thyrotropin-releasing hormone (TRH) significantly increased TSH plasma concentrations (P less than or equal to 0.001; from 2.9 +/- 0.6 to 7.8 +/- 1.1 ng/ml, n = 12). No pulsatile TSH secretion was observed in a 2-hour period with blood samples taken every 10 minutes (n = 12) and hourly sampling disclosed no circadian variation of TSH during a 24-hour period (n = 4). Successful xenografting was possible in 12 of 15 cases using a follicular thyroid carcinoma cell line (FTC 133). Measurement of human thyroglobulin (hTg) by a hTg IRMA revealed high levels in rats with functional FTC tumors, whereas no hTg was detected in untransplanted rats or animals with nonfunctional transplants.  相似文献   

6.
The hypothalamic content and concentration of thyrotropin-releasing hormone (TRH) were determined by radioimmunoassay in normal, thyroidectomized, hypophysectomized and cold-exposed rats with or without thyroxine. In normal animals, the single administration of thyroxine (1,5 and 20 microgram/100 g B.W.) altered neither the content nor the concentration of TRH in the hypothalamus. However, seven days' administration of this hormone resulted in the dose-dependent increase in the hypothalamic TRH levels. In thyroidectomized rats the hypothalamic TRH levels were slightly reduced in spite of the marked increase of plasma TSH levels and decrease of pituitary TSH levels. In the animals given thyroxine (10 microgram/100 g B.W.) for 7 days in addition to thyroidectomy, however, the TRH levels exceeded that in the animals which underwent throidectomy alone. The hypothalamic TRH levels were markedly reduced in hypophysectomized rats. Conversely, in hypophysectomized rats given 7 days' thyroxine (1 and 5 microgram/100 g B.W.), the levels were increased dose-dependently. In cold-exposed rats, the plasma TSH levels roughly doubled, but the TRH levels remained unchanged. These findings strongly suggest that the feedback site of thyroxine extends not only to the pituitary gland but also to the hypothalamus, and that thyroxine has an increasing effect of the hypothalamic TRH level, though the mechanism(s) remain to be clarified.  相似文献   

7.
The effects of histamine (HA) and related compounds on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) secretion in rats were studied. Histidine (1.0 g/kg), HA (5.0 mg/kg) or histamine antagonists mepyramine (MP) (100 mg/kg) or famotidine (FA) (5.0 mg/kg) were injected intraperitoneally, and the rats were decapitated at various intervals after the injection. The hypothalamic immunoreactive TRH (ir-TRH) content increased significantly after histidine or HA injection, decreased significantly after FA injection, but was not changed by MP. The plasma ir-TRH concentration did not change significantly after injection of these drugs. The plasma TSH levels decreased significantly in a dose-related manner after histidine or HA injection and increased significantly in a dose-related manner after FA injection. The plasma thyroid hormone levels showed no changes. In the FA-pretreated group, the inhibitory effect of histidine or HA on TSH levels was prevented, but not in the MP-pretreated group. The plasma ir-TRH and TSH responses to cold were inhibited by histidine or HA and enhanced by FA. The plasma TSH response to TRH was inhibited by histidine or HA and enhanced by FA. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after histidine, HA, MP or FA was not different from that of the control. These findings suggest that histamine may act both on the hypothalamus and the pituitary to inhibit TRH and TSH release, and that its effects may be mediated via H2-receptor.  相似文献   

8.
The effects of alpha-neoendorphin, kyotorphin, melatonin or diphenylhydantoin (DPH) on thyrotropin-releasing hormone (TRH) and thyrotropin (TSH) release in rats were studied. alpha-neoendorphin (1.0 mg/kg), kyotorphin (1.0 mg/kg), melatonin (2.5 mg/kg) or DPH (75 mg/kg) was injected iv or ip, and the rats were serially decapitated. TRH, TSH and thyroid hormone were determined by radioimmunoassay. The hypothalamic immunoreactive (ir-TRH) contents decreased significantly after melatonin injection, but not after alpha-neoendorphin, kyotorphin or DPH. The plasma ir-TRH concentrations decreased significantly after DPH injection, but not after alpha-neoendorphin, kyotorphin or melatonin. The plasma TSH levels decreased significantly in a dose-related manner with a nadir at 10 min. after melatonin, at 30 min. after DPH and at 40 min. after alpha-neoendorphin or kyotorphin injection. The plasma thyroid hormone levels did not change significantly after these drugs injection. The plasma ir-TRH and TSH responses to cold were inhibited by these drugs, but the plasma TSH response to TRH was not influenced. In the L-DOPA- or 5-hydroxy-tryptophan (5-HTP)-pretreated group, the inhibitory effect of alpha-neoendorphin or kyotorphin on TSH levels was prevented, but not in the haloperidol- or para-chloprophenylalanine (PCPA)- pretreated group. In the haloperidol- or PCPA-pretreated group, the inhibitory effect of melatonin on TSH levels was prevented, but not in the L-DOPA- or 5-HTP-pretreated group. These drugs alone did not affect plasma TSH levels in terms of the dose used. The inactivation of TRH immunoreactivity by hypothalamus or plasma in vitro after these drugs injection did not differ from that of the control.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
The role of substance P (SP) in the control of thyroid stimulating hormone (TSH) release and the influence of gonadal steroid were investigated. Intravenous administration of SP failed to alter plasma levels of TSH in ovariectomized (OVX) rats, whereas SP induced a significant increase in plasma TSH in estradiol benzoate-primed (Eb-primed) OVX rats (P less than 0.001). Further, intravenously administered SP did not affect the plasma TSH concentration in normal male rats, but significantly increased it in Eb-primed castrated male rats (P less than 0.01). These data suggest possible roles for SP at the level of the hypothalamus and/or the pituitary gland in stimulating TSH secretion under the influence of estrogen.  相似文献   

10.
Effects of nociceptin on thyrotropin (TSH) and thyrotropin-releasing hormone (TRH) secretion in rats were studied. Nociceptin (150 microgram/kg) was injected intravenously and rats were serially decapitated after the injection. The effects of nociceptin on TRH release from the hypothalamus and TSH release from the anterior pituitary in vitro were also investigated. TRH and thyroid hormones were measured by individual radioimmunoassays. TSH was determined by enzyme immunoassay. TRH contents in the hypothalamus decreased significantly after nociceptin injection, whereas plasma TRH concentrations showed no changes. Plasma TSH concentrations increased significantly in a dose-related manner. The TRH release from the hypothalamus was enhanced significantly in a dose-related manner with the addition of nociceptin. The TSH release from the anterior pituitary in vitro was not affected by the addition of nociceptin. The plasma thyroxine and 3,3',5-triiodothyronine levels did not change significantly after nociceptin administration. The inactivation of TRH by plasma or hypothalamus in vitro after nociceptin injection did not differ from that of controls. The findings suggest that nociceptin acts on the hypothalamus to stimulate TRH and TSH secretion.  相似文献   

11.
Thyroid function and vitamin A deficiency.   总被引:1,自引:0,他引:1  
Rats, when vitamin A deficient, had increased plasma T3, T4 and free thyroxine indexes. Pituitary TSH and hypothalamic TRH content were increased in vitamin A deficient animals compared to pair-fed controls. The plasma TSH response to TRH was normal in the vitamin A deficient rats. Basal prolactin, LH and FSH levels did not differ significantly in the two groups. Both groups had significant increases in LH and FSH after LRH. Vitamin A deficiency produces biochemical hyperthyroidism. Our data are consistent with an abnormality in thyroid hormone feedback on the hypothalamic pituitary axis.  相似文献   

12.
Serum thyroid hormone and TSH concentrations were measured before and after the administration of TRH (10 micrograms/kg body weight) and bovine TSH (10 IU) in 14 children with chronic lymphocytic thyroiditis. The TRH test showed that the responsiveness of TSH was positively correlated with the basal TSH (P less than 0.001) and inversely with the increase in serum thyroid hormones, for delta T3 (P less than 0.05) and for delta T4 (P less than 0.001). Overall, the patients had significantly lower mean values for basal T4, but not for T3. The TSH test revealed that the delta T3 was positively correlated with delta T4 (P less than 0.05). delta T3 after TSH administration was positively correlated with it after TRH (P less than 0.05). The patients were divided into three groups on the basis of their peak TSH values after TRH administration. In Group 1 (peak value below 40 microU/ml; N = 5); T3 increased significantly after TRH and TSH administrations (P less than 0.05 and P less than 0.025, respectively). In addition, delta T4 was significant after TSH administration. In Group 2 (peak TSH above 40 and less than 100 microU/ml; N = 6); only delta T3 after TRH was significant (P less than 0.05). In Group 3 (peak TSH above 100 microU/ml; N = 3); the response of thyroid hormones was blunted. Thus, the thyroid hormone responses to endogenous TSH coincided with that to exogenous TSH, and the exaggerated TSH response to TRH indicates decreased thyroid reserve.  相似文献   

13.
Significant increases (P less than 0.001) in plasma insulin and triglyceride concentrations and in blood pressure were seen when SHR and WKY rats ate a fructose-enriched diet for 14 days. However, all of the changes were significantly accentuated (P less than 0.02-0.001) in SHR rats. Specifically the increment in plasma insulin concentration following the fructose-enriched diet was 42 +/- 4 microU/ml in SHR as compared to 25 +/- 4 microU/ml in WKY rats (P less than 0.001). Plasma triglyceride concentrations also increased to a greater degree in response to fructose in SHR rats (260 +/- 24 vs. 136 +/- 20 mg/dl, P less than 0.001). Finally, the fructose-induced increase in blood pressure of 29 +/- 4 mm of Hg in SHR rats was greater (P less than 0.02) than that seen in WKY rats (19 +/- 2 mm of Hg). There was no change in plasma glucose concentration in response to the fructose diet. WKY rats gained more weight than did the SHR rats. Thus, although plasma triglyceride and insulin concentration and blood pressure increased when either WKY or SHR rats consumed a fructose enriched diet, the magnitude of these changes was greater in SHR rats.  相似文献   

14.
Shortly after administration of 6-methoxy-1,2,3,4-tetrahydro-beta-carboline (6-MeOTHBC) and yohimbine to normal or hypothyroid rats [the latter exhibiting chronically elevated levels of serotonin (5-HT) neuronal activity in the hypothalamus] there was a highly significant increase in hypothalamic noradrenaline (NA) activity and in ACTH release concomittant with a reduction in hypothalamic 5-HT activity (P less than 0.01) and in growth hormone (GH) (P less than 0.01) and in thyroid stimulating hormone (TSH) (P less than 0.01) release from the pituitary. Both compounds caused an increase in hypothalamic dopamine (DA) metabolism and in pituitary prolactin (PRL) release in normal rats (P less than 0.01) but only yohimbine exerted this action in hypothyroid rats. Lower doses of 6-MeOTHBC exerted a relatively specific effect in hypothyroid rats, reducing (P less than 0.01) 5-HT neuronal activity in parallel with pituitary TSH secretion (P less than 0.05). While gross effects of 6-MeOTHBC and yohimbine were similar with respect to their effects on NA and 5-HT status in the hypothalamus, there were quantitative differences. 6-MeOTHBC always caused a greater decrease in 5-HT turnover and a lesser increase in NA turnover than did yohimbine. On the basis of these studies we suggest that the effect of tetrahydro-beta-carboline-related alkaloids on pituitary hormone release may be due to their influence on hypothalamic monoamine status and the subsequent alteration of the hypothalamic-pituitary control system.  相似文献   

15.
Anterior pituitaries of normal adult male rats were subjected to synthetic thyrotropin-releasing hormone (TRH) treatment in an acute incubation system which employed pretreatment of the glands with plasma obtained from the donor animals. Following a 60-min preincubation period in a 1:1 mixture of Krebs-Ringer bicarbonate buffer (KRB) and plasma, media and hemipituitary prolactin (PRL) concentrations were significantly (p less than 0.01) increased after a 40-min treatment with 500 pg TRH. The TRH effect was absent among hemipituitaries preincubated in KRB alone. Plasma obtained from older donors was more potent than was plasma from younger rats in this effect. TSH secretion was markedly increased by 500 pg TRH, whether or not plasma preincubation was employed. A dose response of PRL release to concentrations of TRH from 100 pg to 6.0 ng was observed. Crude extracts of median eminence also effected enhanced PRL release using the plasma preincubation technique. The results suggest that plasma preincubation of explanted pituitaries increases PRL cell sensitivity to TRH, perhaps by enzymatic inactivation of endogenous TRH bound to cellular membrane receptors.  相似文献   

16.
17.
M Bansinath  S Das  H N Bhargava 《Peptides》1987,8(2):227-230
The effect of thyrotropin releasing hormone (TRH) on colonic temperature and systolic blood pressure of age-matched spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) rats was determined. Administration of TRH produced dose-dependent increases in body temperature and systolic blood pressure. TRH-induced changes in both responses were of greater magnitude in SHR rats compared to WKY rats. The results provide the first evidence that SHR rats exhibit supersensitivity to non-neuroendocrinological effects of TRH and that TRH may play a role in the pathophysiology of elevated blood pressure.  相似文献   

18.
19.
Prolactin (PRL) and thyroid stimulating hormone (TSH) plasma concentrations were measured during the latter part of the dark period in early and mid-late pregnancy in the rat. On Days 4-5 and 7-8 of pregnancy, plasma PRL concentrations surged between 22:00 and 06:00 hr and TSH values increased between 22:00 and 02:00 hr. While the TSH pattern was maintained during the second-half of pregnancy, surges in PRL release ceased and PRL levels remained at less than 10 ng/ml. The effects of thyrotropin releasing hormone (TRH) administration on PRL and TSH secretion were then measured to determine whether the second-half of pregnancy is associated with a decrease in sensitivity to an agent that can stimulate PRL release. Injection (iv) of cannulated pregnant rats with a low dosage (20 ng) of TRH stimulated a twofold increase in plasma TSH during both early (Days 5-9) and later (Days 14-18) pregnancy but did not change plasma PRL levels. Treatment with a high dosage (2 micrograms) of TRH induced a sixfold rise in plasma TSH during both phases of gestation. The higher dose of TRH also stimulated elevations in plasma PRL during early and mid-late pregnancy; however, both the absolute increase in the amount of PRL in plasma and the percentage increase over baseline levels were greater from Days 5-9 than from Days 14-16 of gestation. These data indicate that the neuroendocrine sensitivity to factors that stimulate PRL secretion changes as pregnancy progresses, and suggest that nocturnal secretion of PRL and TSH during pregnancy may be regulated, in part, by a common trophic factor.  相似文献   

20.
Effects of anti-thyrotropin-releasing hormone (TRH) anti-serum treatment during the neonatal period on the development of rat thyroid function were studied. On postnatal days 2 and 4, rats were administered anti-TRH anti-serum ip, and they were serially decapitated at the 4th, 8th and 12th week after birth. TRH, thyrotropin (TSH), thyroxine (T4) and 3,3',5-triiodothyronine (T3) were measured by radioimmunoassay. Immunoreactive TRH (ir-TRH) in the hypothalamus did not change significantly after anti-TRH anti-serum treatment, and plasma ir-TRH tended to decrease. The plasma ir-TRH and TSH responses to cold were significantly inhibited. The plasma TSH response to TRH was also significantly inhibited. The plasma basal TSH levels were significantly lower than in controls. The plasma T4 and T3 levels were found to be lower than those in the controls. Findings suggested that treatment with anti-TRH anti-serum during the neonatal period disturbed the development of rat thyroid function, inhibiting TRH release and altering thyrotroph sensitivity to TRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号