首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Boundary-independent polar nonsense-mediated decay   总被引:8,自引:0,他引:8       下载免费PDF全文
  相似文献   

2.
3.
M S Carter  S Li    M F Wilkinson 《The EMBO journal》1996,15(21):5965-5975
Premature termination codons (PTCs) can cause the decay of mRNAs in the nuclear fraction of mammalian cells. This enigmatic nuclear response is of interest because it suggests that translation signals do not restrict their effect to the cytoplasm, where fully assembled ribosomes reside. Here we examined the molecular mechanism for this putative nuclear response by using the T-cell receptor-beta (TCR-beta) gene, which acquires PTCs as a result of programmed rearrangements that occur during normal thymic ontogeny. We found that PTCs had little or no measurable effect on TCR-beta pre-mRNA levels, but they sharply depressed TCR-beta mature mRNA levels in the nuclear fraction of stably transfected cells. A PTC split by an intron was able to trigger the down-regulatory response, implying that PTC recognition occurs after an mRNA is at least partially spliced. However, intron deletion and addition studies demonstrated that a PTC must be followed by at least one functional (spliceable) intron to depress mRNA levels. One explanation for this downstream intron-dependence is that cytoplasmic ribosomes adjacent to nuclear pores scan mRNAs still undergoing splicing as they emerge from the nucleus. We found this explanation to be unlikely because PTCs only 8 or 10 nt upstream of a terminal intron down-regulated mRNA levels, even though this distance is too short to permit PTC recognition in the cytoplasm prior to the splicing of the downstream intron in the nucleus. Collectively, the results suggest that nonsense codon recognition may occur in the nucleus.  相似文献   

4.
The translation of human triosephosphate isomerase (TPI) mRNA normally terminates at codon 249 within exon 7, the final exon. Frameshift and nonsense mutations of the type that cause translation to terminate prematurely at or upstream of codon 189 within exon 6 reduce the level of nuclear TPI mRNA to 20 to 30% of normal by a mechanism that is not a function of the distance of the nonsense codon from either the translation initiation or termination codon. In contrast, frameshift and nonsense mutations of another type that cause translation to terminate prematurely at or downstream of codon 208, also within exon 6, have no effect on the level of nuclear TPI mRNA. In this work, quantitations of RNA that derived from TPI alleles in which nonsense codons had been generated between codons 189 and 208 revealed that the boundary between the two types of nonsense codons resides between codons 192 and 195. The analysis of TPI gene insertions and deletions indicated that the positional feature differentiating the two types of nonsense codons is the distance of the nonsense codon upstream of intron 6. For example, the movement of intron 6 to a position downstream of its normal location resulted in a concomitant downstream movement of the boundary between the two types of nonsense codons. The analysis of intron 6 mutations indicated that the intron 6 effect is stipulated by the 88 nucleotides residing between the 5' and 3' splice sites. Since the deletion of intron 6 resulted in only partial abrogation of the nonsense codon-mediated reduction in the level of TPI mRNA, other sequences within TPI pre-mRNA must function in the effect. One of these sequences may be intron 2, since the deletion of intron 2 also resulted in partial abrogation of the effect. In experiments that switched introns 2 and 6, the replacement of intron 6 with intron 2 was of no consequence to the effect of a nonsense codon within either exon 1 or exon 6. In contrast, the replacement of intron 2 with intron 6 was inconsequential to the effect of a nonsense codon in exon 6 but resulted in partial abrogation of a nonsense codon in exon 1.  相似文献   

5.
6.
7.
8.
9.
10.
11.
12.
J Zhang  X Sun  Y Qian    L E Maquat 《RNA (New York, N.Y.)》1998,4(7):801-815
Generally, mRNAs that prematurely terminate translation are abnormally low in abundance. In the case of mammalian cells, nonsense codons most often mediate a reduction in the abundance of newly synthesized, nucleus-associated mRNA by a mechanism that is not well understood. With the aim of defining cis-acting sequences that are important to the reduction process, the effects of particular beta-globin gene rearrangements on the metabolism of beta-globin mRNAs harboring one of a series of nonsense codons have been assessed. Results indicate that nonsense codons located 54 bp or more upstream of the 3'-most intron, intron 2, reduce the abundance of nucleus-associated mRNA to 10-15% of normal without altering the level of either of the two introns within pre-mRNA. The level of cytoplasmic mRNA is also reduced to 10-15% of normal, indicating that decay does not take place once the mRNA is released from an association with nuclei into the cytoplasm. A nonsense codon within exon 2 that does not reduce mRNA abundance can be converted to the type that does by (1) inserting a sufficiently large in-frame sequence immediately upstream of intron 2 or (2) deleting and reinserting intron 2 a sufficient distance downstream of its usual position. These findings indicate that only those nonsense codons located more than 54 bp upstream of the 3'-most intron reduce beta-globin mRNA abundance, which is remarkably consistent with which nonsense codons within the triosephosphate isomerase (TPI) gene reduce TPI mRNA abundance. We propose that the 3'-most exon-exon junction of beta-globin mRNA and, possibly, most mRNAs is marked by the removal of the 3'-most intron during pre-mRNA splicing and that the "mark" accompanies mRNA during transport to the cytoplasm. When cytoplasmic ribosomes terminate translation more than 54 nt upstream of the mark during or immediately after transport, the mRNA is subjected to nonsense-mediated decay. The finding that deletion of beta-globin intron 2 does not appreciably alter the effect of any nonsense codon on beta-globin mRNA abundance suggests that another cis-acting sequence functions in nonsense-mediated decay comparably to intron 2, at least in the absence of intron 2, possibly as a fail-safe mechanism. The analysis of deletions and insertions indicates that this sequence resides within the coding region and can be functionally substituted by intron 2.  相似文献   

13.
14.
Mammalian cells have established mechanisms to reduce the abundance of mRNAs that harbor a nonsense codon and prematurely terminate translation. In the case of the human triosephosphate isomerase (TPI gene), nonsense codons located less than 50 to 55 bp upstream of intron 6, the 3′-most intron, fail to mediate mRNA decay. With the aim of understanding the feature(s) of TPI intron 6 that confer function in positioning the boundary between nonsense codons that do and do not mediate decay, the effects of deleting or duplicating introns have been assessed. The results demonstrate that TPI intron 6 functions to position the boundary because it is the 3′-most intron. Since decay takes place after pre-mRNA splicing, it is conceivable that removal of the 3′-most intron from pre-mRNA “marks” the 3′-most exon-exon junction of product mRNA so that only nonsense codons located more than 50 to 55 nucleotides upstream of the “mark” mediate mRNA decay. Decay may be elicited by the failure of translating ribosomes to translate sufficiently close to the mark or, more likely, the scanning or looping out of some component(s) of the translation termination complex to the mark. In support of scanning, a nonsense codon does not elicit decay if some of the introns that normally reside downstream of the nonsense codon are deleted so the nonsense codon is located (i) too far away from a downstream intron, suggesting that all exon-exon junctions may be marked, and (ii) too far away from a downstream failsafe sequence that appears to function on behalf of intron 6, i.e., when intron 6 fails to leave a mark. Notably, the proposed scanning complex may have a greater unwinding capability than the complex that scans for a translation initiation codon since a hairpin structure strong enough to block translation initiation when inserted into the 5′ untranslated region does not block nonsense-mediated decay when inserted into exon 6 between a nonsense codon residing in exon 6 and intron 6.  相似文献   

15.
16.
17.
Nonsense-mediated decay of mutant waxy mRNA in rice   总被引:13,自引:0,他引:13  
  相似文献   

18.
M A Thompson  J W Hawkins  J Piatigorsky 《Gene》1987,56(2-3):173-184
The chicken alpha A-crystallin gene and 2.6 kb of its 5' flanking sequence have been isolated and characterized by electron microscopy and sequencing. The structural gene is 4.5 kb long and contains two introns, each approx. 1 kb in length. The first intron divides codons 63 and 64, and the second intron divides codons 104 and 105, as in rodents. There is little indication that the insert exon of rodents (an alternatively spliced sequence) is present in complete form in the chicken alpha A-crystallin gene; small stretches of similarity to this sequence were found throughout the gene. The 5' flanking sequence of the chicken alpha A-crystallin gene shows considerable sequence similarity with other mammalian alpha B-crystallin genes. In addition, one consensus sequence (GCAGCATGCCCTCCTAG) present in the 5' flanking region of the chicken alpha A-crystallin gene was found in the 5' flanking region of most reported crystallin genes.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号