首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Monoclonal anti-cryptococcal TsF (which inhibits phagocytosis by macrophages) and anti-picryl TsF use the same two circuits to block the transfer of contact sensitivity (CS). Both arm macrophages which then release a macrophage suppressor factor (MSF) when exposed to antigen. This MSF depresses the transfer of CS. The evidence suggests that a single molecular species of TsF (MW ca. 70 kDa), which bears an antigen-binding site and I-J determinant, is responsible for MSF production and inhibition of phagocytosis. Anti-cryptococcal TsF also arms the T acceptor cell which then releases nsTsF-1 after triggering with a specific antigen (SCPA). This nsTsF-1, which depresses the transfer of contact sensitivity, was authentic, as shown by its I-J positivity (in contrast to MSF) and its role in the production of nsTsF-2. As anti-picryl TsF also inhibits phagocytosis, it was concluded that anti-cryptococcal TsF, originally detected by the inhibition of phagocytosis, and anti-picryl TsF, originally detected by inhibition of CS, are functionally equivalent.  相似文献   

2.
Suppression of antibody secretion by the 2,4,6-trinitrophenol (TNP)-binding BALB/c myeloma, MOPC 315, by idiotype- and hapten-reactive suppressor T cells is mediated by secreted factors (TsF) and requires the presence of accessory cells (AC). Idiotype-specific TsF functions only in the presence of Ia+ AC and is completely idiotype specific. Moreover, no suppression is observed when myeloma targets and AC are separated by cell-impermeable membranes, indicating that the role of AC may be to bind, focus, and/or present TsF to the myeloma cells. In contrast, TNP-specific TsF inhibits myeloma function in the presence of TNP-protein and activated macrophages that are not Ia+. This form of suppression is nonspecific at the effector stage; i.e., anti-TNP TsF inhibits a non-TNP binding cell line, TEPC 15, as long as TNP-protein and activated macrophages are present. Moreover, suppression occurs even when myeloma targets and AC are separated by cell-impermeable membranes. These results are consistent with the view that hapten-reactive TsF binds to antigen on the surface of macrophages and induces these cells to secrete nonspecific immunosuppressive molecules. Thus, different types of AC may play fundamentally different roles in TsF-mediated suppression; they may either bind and present TsF to targets (as in the case of idiotype-specific TsF) or secrete nonspecific immunosuppressants as a consequence of a TsF-antigen interaction (hapten-specific TsF). Autonomous, suppressible targets provide valuable experimental systems for analyzing the cellular interactions in T cell-mediated suppression.  相似文献   

3.
We prepared soluble suppressor T cell factor (TsF1) from donor spleens harvested from mice primed with tubular antigen-derivatized lymphocytes to analyze both its functional interactions with a larger suppressor T cell network and its influence on the nephritogenic effector T cell response producing interstitial nephritis to a parenchymal antigen. Our findings indicate that TsF1 is antigen-specific, genetically restricted by I-J in its direct mediation of suppression, and capable of inhibiting the development of interstitial lesions. TsF1 also provides an inducing signal for the activation of effector Ts-2 suppressors following presentation by accessory cells. The induction of a Ts-2 effect, however, requires that the factor-presenting cell and the recipient of such cells share homology at I-J, and that the TsF1, the precursor Ts-2 cells, and the recipient of the Ts-2 effect share the same Igh-V allotype. Finally, the results of this current report clearly demonstrate a possible therapeutic role for soluble suppressor factors in the management of interstitial renal disease.  相似文献   

4.
We have analyzed the first-order suppressor factor secreted by an azobenzenearsonate (ABA)-specific T suppressor cell (Ts) hybridoma. Treatment of the factor with 5 mM dithiothreitol (DTT) yields two fragments with distinct phenotypes and functional capabilities. One fragment is bound by a monoclonal anti-I-J antibody, the other is not. Further, although neither molecular fragment by itself is sufficient to suppress an ABA response, a mixture of the two reconstitutes the suppressive activity. The I-J- portion of the first-order suppressor factor (TsF1) presumably guides the antigen specificity; activity of the ABA-specific Ts I-J- TsF1 factor can be reconstituted with an I-J+ subunit of a TsF molecule of either sheep red blood cell (SRBC) or ABA specificity. The genetic restriction for Igh-linked determinants of the ABA/SRBC hybrid TsF molecules is influenced by the I-J+ portion, regardless of the original antigen specificity of that molecule. The data support a two-subunit TsF model. Polyclonal ABA-specific TsF1 molecules appear to resemble the monoclonal factor in structure.  相似文献   

5.
Experiments described in this report will characterize a monoclonal phenyltrimethylammonium (TMA) specific, first-order T-suppressor factor (TsF1) produced by a T-cell hybridoma, 8A.3. The hybridoma expressed the Thy-1, Lyt-1, Lyt-2 antigens as well as cross-reactive idiotypic (CRI) determinants but did not express I-J encoded epitopes. It was also found to bear determinants recognized by a monoclonal antibody raised against single-chain GAT-specific TsF1. The hybridoma-derived factor was capable of suppressing primary in vitro trinitrophenol (TNP)-specific responses induced with the Brucella abortus antigen, conjugated with TMA and TNP haptens (TMA-BA-TNP). In addition, in vivo administration of 8A.3 culture supernatant resulted in the specific suppression of TMA-specific delayed-type hypersensitivity (DTH) responses. Analysis of this factor revealed it to be an induction-phase, antigen-binding, CRI+, and I-J+ single chain polypeptide. Our results represent only the second such described single chain, antigen binding, I-J+ suppressor factor derived from a monoclonal T-cell hybridoma.  相似文献   

6.
We have previously shown that phenyltrimethylammonium (TMA)-specific, first-order suppressor T cells (Ts1) and soluble factors extracted from these cells (TsF1) can suppress delayed-type hypersensitivity (DTH) responses. The TsF1, as monitored in the DTH system, was characterized and found to be a single-chain, antigen-binding, I-J+, and Id+ molecule. To monitor TsF1 in an efficient manner, an in vitro antibody system was developed. The studies show that in vitro stimulation of naive A/J spleen cells with the thymic-independent antigen, Brucella abortus, to which TMA and trinitrophenol (TNP) or fluorescein (FL) are coupled (TMA-BA-TNP or TMA-BA-FL), induces significant numbers of anti-TNP or anti-FL plaque-forming cell (PFC) responses. The addition of TMA-specific TsF1 results in the cross-suppression of 30-50% of the total anti-TNP and FL PFC responses. This activity is antigen (TMA) dependent since suppression occurs only when the TMA ligand is present in the culture media. Analysis of the TNP-specific PFC responses in nonsuppressed cultures revealed that 20-35% of the PFC bear the cross-reactive idiotype(s) (CRI) normally associated with anti-TMA antibodies. In cultures containing TMA-TsF1, CRI+PFC are suppressed by 90-100% while the CRI-PFC are suppressed only by 10-30%. Our studies further show that an induction-phase, antigen-binding, CRI+, and I-J+ single-chain factor is responsible for the observed in vitro suppression. The possibility of utilizing this assay to monitor a variety of antigen-specific suppressor factors is discussed.  相似文献   

7.
We have previously described a monoclonal antibody, B16G, which has been found to be specific for T-cell derived suppressor factors (TsF). B16G has been shown to react with T-suppressor cells, TsF in the spleens of normal or tumor-bearing mice, the TsF produced by a tumor-specific T-cell hybridoma, and with polyclonal whole human TsF isolated from tonsilar tissue. This panreactivity inherent to the B16G MAb has made it clear that it recognizes some common, shared epitope of the TsF molecule. In this study we have used B16G as a probe to isolate TsF from the spleens of MRL-lpr mice and compare the activity with these factors isolated from the spleens of an MHC compatible nonautoimmune strain, CBA. We find that equivalent quantities of functional TsF are isolable from both strains and thus, it can be concluded that the associated oligoclonal B-cell activation characteristic of MRL-lpr mice is not due to a polyclonal T-suppressor cell deficit, nor to the ability of TsC in these mice to produce soluble, functional TsFs. The molecular and biochemical characteristics of these TsFs are discussed.  相似文献   

8.
We have developed a monoclonal antibody to a T cell-derived suppressor factor (TsF) found in the serum of C57BL/6 mice hyperimmune to sheep red blood cells (SRBC). The antibody binds to the SRBC-specific TsF as well as to a TsF (TNP-TsF) from another system differing in both antigen specificity and MHC. It does not bind to unrelated proteins. The antibody inhibits the activity of the SRBC-specific TsF in vitro. By using the monoclonal anti-TsF, we can isolate sufficient quantities of TsF to demonstrate that it fulfills several properties that have been attributed to TsF, namely, MHC restriction, antigen specificity, and the requirement for a second chain. Also, the purified TsF gives a single 68,000 dalton band upon SDS-PAGE gel analysis under reducing conditions. We conclude, therefore, that we have a method of the isolation of pure TsF, as well as a probe for the genetic, biochemical, and biologic analysis of TsF.  相似文献   

9.
A monoclonal antibody (mAb), B16G, was raised from BALB/c mice immunized with affinity-purified T suppressor factors (TsF) specific for the murine mastocytoma P815. This mAb was found to bind to polyclonal TsF isolated from the spleens of tumor-bearing animals, and to the TsF released from a P815-specific T cell hybridoma. In this study, B16G was tested for its reactivity with TsF produced in the 4-hydroxy-3-nitrophenyl acetyl hapten system. The factors from three types of suppressor T cell hybridomas, each representing the immortalized analogues of the inducer T suppressor cell (Ts1), transducer suppressor cell (Ts2), and effector suppressor cell (Ts3) network populations, were tested. B16G was found to be reactive with two sources of TsF1 as assayed by enzyme-linked immunosorbent assay and delayed-type hypersensitivity bioassay. By contrast, TsF2 and TsF3 were nonreactive with B16G. These results indicate that B16G recognizes class-specific suppressor factor determinants, and that the transducer/effector factors of the network are apparently serologically distinct. Because the B16G mAb fails to recognize 4-hydroxy-3-nitro-phenyl acetyl-specific TsF3 that share idiotype-related determinants with TsF1 yet binds to TsF1 molecules that have interacted with antigen, the binding is apparently independent of the site of antigen recognition. Additionally, the results show that the tumor-specific TsF1 raised in one suppressor system share serologic determinants with anti-hapten TsF1 raised in another.  相似文献   

10.
We have previously shown that a single i.p. injection of the monovalent antigen, L-tyrosine-p-azophenyltrimethylammonium in complete Freund's adjuvant induces a Ly-1+2-, idiotype-bearing, and antigen-binding first-order T suppressor (Ts1) population. We showed that soluble factors extracted from these cells could suppress delayed-type hypersensitivity responses if administered at the induction phase of the response. In this paper we additionally characterize the suppressor factor, TsF1, with respect to its biologic, serologic, and chemical properties. The studies show that the TsF1 is neither allotype nor H-2 restricted and can induce anti-idiotypic T suppressor cells (Ts2), but it requires the presence of antigen to do so. The factor binds antigen, bears I-J encoded determinants, is resistant to reduction and alkylation, and elutes as a single chain factor after adsorption onto monoclonal anti-I-J antibody-coupled Sepharose beads in the presence of dithiothreitol (DTT). This is in marked contrast to TsF2 (derived from Id-specific Ts2-containing spleen cells), which lost its suppressive activity after reduction and alkylation, and behaves as a two chain factor after adsorption and elution from anti-I-J-coupled beads in the presence of DTT. The TsF1 is discussed with respect to the properties of it and those of TsF1 from other similar idiotype-dominated antigen systems.  相似文献   

11.
We studied the mode of action of the nonspecific T suppressor factor (nsTsF-1) made in the picryl (TNP) system when T acceptor cells armed with antigen-specific TsF are triggered by antigen in the context of I-J. This suppressor factor does not inhibit the passive transfer of contact sensitivity directly, as shown by its failure to inhibit passive transfer by immune cells deprived of I-A+ cells. Its immediate target is an immune, antigen-specific, Ly-1+2-, I-A+ T cell. This cell, which may be regarded as a T suppressor effector cell (Ts-eff-2), produces nsTsF-2 when exposed sequentially to nsTsF-1 and antigen. This nsTsF subsequently inhibits the passive transfer of contact sensitivity. The action of nsTsF-2 is MHC genetically restricted. As the nsTsF-2 bears I-A determinant(s), this raises the possibility that it may act by combining with the recognition site for I-A on the T cell that mediates contact sensitivity.  相似文献   

12.
The phenomenon of associative recognition, i.e., the recognition of antigen together with major histocompatibility complex products (MHC) was studied in a model system. T-acceptor cells armed with antigen-specific T-suppressor factor (TsF) released a nonspecific inhibitor of the transfer of contact sensitivity when exposed to antigen together with MHC. The MHC product occurred in a KCl extract of cells and behaved genetically and serologically as I-J. Cells armed with anti-picryl or anti-"oxazolone" TsF could be triggered by the corresponding "bis-picryl-L-lysine" and "bis-oxazolone-L-lysine" together with MHC. This suggested that cross-linking of antigen recognition sites on separate molecules of TsF might be required. To investigate this possibility the bifunctional "mixed" hapten "N alpha-picryl-N epsilon-oxazolone-L-lysine," which is univalent with respect to the picryl and oxazolone haptenic groups, was synthesized. This triggered cells armed with a mixture of anti-picryl and anti-oxazolone TsF but not cells armed with either TsF alone. It was concluded that both occupancy of the I-J recognition site and the cross-linking of separate molecules of TsF was required for triggering. Moreover the hapten and the KCl extract could be given sequentially and in either order. This finding suggested that the triggering of the release of nonspecific inhibitor was due to the separate recognition of I-J and antigen and not to new antigenic determinants produced by their interaction.  相似文献   

13.
The passive transfer of contact sensitivity (CS) by immune cells into normal animals requires the interaction of two distinct Ly-1+ T cells, one which is Vicia villosa lectin (VV)-nonadherent, the other which adheres to VV. Functional deletion of either cell type abrogates the adoptive transfer of CS into normal animals, whereas VV-nonadherent cells alone can transfer CS into animals pretreated with cyclophosphamide (Cy). An antigen-specific T suppressor factor, designated TNP-TsF, inhibits the transfer of CS into normal adoptive recipients. TNP-TsF mediates its suppressive activity by inducing an I-J+ subfactor (designated I-J2) from the assay population by the interaction of PC1-F (a TNP-binding subfactor of TNP-TsF) with antigen-primed Ly-2+ T cells. This I-J+ subfactor then complements TNBS-F (an antigen-nonbinding subfactor of TNP-TsF) to form an antigen-nonspecific effector molecule which suppresses DTH responses in an antigen-nonspecific fashion. We report here that TNP-TsF suppresses the adoptive transfer of CS into normal animals but not into animals pretreated with Cy. TNBS-F + I-J2, the effector complex of TNP-TsF, also suppresses the transfer of CS into normal but not Cy-treated animals. When the Ly-1 immune cells were separated into VV-adherent and -nonadherent populations, the TNBS-F + I-J2 suppressor complex suppressed the functional activity of the VV-adherent cell population, but not the VV-nonadherent cells. This suppressive activity correlates with the need for VV-adherent cells in the transfer of CS into normal but not Cy-treated recipients. When an I-J+ molecule (I-J1) from an SRBC-specific TsF was used in place of I-J2 to form a suppressor complex with TNBS-F, this TNBS-F + I-J1 TsF suppressed the transfer of CS into both normal and Cy-treated recipients. This difference in functional suppressive activity correlated with a difference in target cell specificity: TNBS-F + I-J1 suppressed the VV-nonadherent TDTH cell, whereas TNBS-F + I-J2 suppressed the VV-adherent T cell of CS. Immune cells which are transferred under conditions which do not require the VV-adherent cell for transfer are not suppressed by TNBS-F + I-J2 or TNP-TsF, but are suppressed by the TNBS-F + I-J1.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
A cloned effector-type suppressor T cell line, 3D10, which is known to suppress the antibody response against dinitrophenylated keyhole limpet hemocyanin (KLH), produced a soluble KLH-specific factor (TsF) that can replace the function of parental T cell clones. High activity of TsF was released spontaneously into the culture supernatant when cultured in interleukin 2 (IL 2)-containing medium, requiring no antigenic stimulation. The culture supernatant of 3D10 was also capable of inhibiting the KLH-induced proliferative response of primed T cells in an antigen-specific manner. The direct target of TsF was found to be Lyt-1+2- T cells undergoing an early stage of antigen-specific proliferation. TsF was antigen binding but lacked any other serologic markers such as I-J and immunoglobulin heavy chain-linked allotypic determinants on T cells. No genetic restriction was found in its action on allogeneic T cells. The production of IL 2 in proliferative T cells by antigenic stimulation was not inhibited by TsF. These results indicate that the TsF described here is the legitimate mediator produced by the effector-type suppressor T cell that suppresses the antigen-specific responses of Lyt-1+2- T cells. The m.w. of TsF was approximately 75,000.  相似文献   

15.
Ligand-receptor relationships in immune regulation   总被引:1,自引:0,他引:1  
The relationship between ligand, idiotype-bearing ligand-binding T suppressor cells (Ts), and antiidiotypic Ts is discussed. The suppressor pathway involves the activation by ligand of first-order idiotypic Ts (Ts1) which elaborate idiotype-bearing T suppressor factors (TsF). TsF readily induced second-order antiidiotypic TS2 cells. The genetic restrictions imposed on the immune system once perturbed by antigen are evaluated.  相似文献   

16.
We have studied the immunomodulatory effect of dextran on the development of delayed-type contact hypersensitivity to a hapten in mice. Administration of an optimal dose of dextran 2 hours before applying picryl chloride to abdominal skin caused a twofold rise in the level of hapten-specific DTH. A study of the kinetics of development of DTH under the influence of dextran showed that comparable levels of response could be seen 2 days earlier in treated than in untreated mice, i.e., on the third day in contrast to the fifth day after sensitization. The peak of the responses, while greater in dextran-treated mice than in normal controls, remained the same at 5 days. Adoptive transfer studies revealed that comparable levels of DTH were conferred upon recipient mice by half the number of splenic cells from dextran-treated mice than that required from normal sensitized mice. Because several suppressor mechanisms are known to down-regulate DTH, we have studied dextran's effect on the neutralization of these systems as a possible explanation for its enhancing capabilities. Detailed examination was made of dextran's effect on the two suppressor T cells, Ts1 and Ts3, that act in tandem as well as its effect on the Ts1 and macrophage that work in combination. Both systems depress the efferent limb of DTH. We have found that dextran blocks the Ts1-macrophage pathway that controls DTH. Ts1 was found to arise normally in mice pretreated with dextran. Furthermore, Ts1 from dextran-treated mice produced TsF1 normally. However, we have found that dextran interferes with the production of macrophage suppressor factor (M phi-SF). Interference was partial when dextran was introduced during the interval in which macrophages were being armed with TsF1, and it was complete when dextran was put with pre-armed macrophages before they were triggered with antigen for production of M phi-SF. On the other hand, the Ts1-Ts3 limb of suppression remained unaffected by exposure to the immunomodulator. We found Ts3 arose normally in hapten-sensitized mice that had been pretreated with dextran. In addition, Ts3 became armed with TsF1 in vitro in the presence of dextran since the cells functioned properly to suppress mature DTH effector cells. Finally, TsF3 was able to act in vitro upon DTH effector cells despite the presence of dextran.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Mice primed with picrylsulfonic acid (PSA) and then painted on the skin with picryl chloride produce antigen-specific T suppressor factor (TsF). In contrast unpainted primed mice fail to produce active TsF. This is not due to the absence of the antigen binding part of TsF but to the absence of a cofactor. This cofactor is (a) antigen nonspecific and occurs in potassium chloride extract of normal spleen cells. It also occurs in the 24 hr supernatant of normal cells modified by haptenisation with picryl or the unrelated NP antigen (4-hydroxy-3-nitrophenylacetyl), and in preparations of conventional TsF (PSA/PCl) from painted PSA-primed mice; (b) bears I-J determinants; and (c) is produced by Lyt-1+2(-)I-J+ cells. The antigen binding molecule occurs alone in the supernatant of PSA-primed mice. It lacks I-J determinants and has a molecular weight around 35,000 and 75,000. It is produced by Lyt-1(-)2+I-J+ cells and is only active when complemented by cofactor. However, the complementation is genetically restricted and the restriction maps to the I-J subregion of the MHC.  相似文献   

18.
Hybridomas produced by fusion between the BW5147 thymoma and an LDH-B-specific B10.A(2R) suppressor T cell line secrete two T suppressor factors (TsF). One factor (TsF-A) shares Mhc determinants with the A alpha A beta molecule and suppresses proliferating Th cells; the other (TsF-E) shares determinants with the E alpha E beta molecule and it inhibits the maturation of the T suppressor (Ts) cells. Here we demonstrate that the two factors can be used to alter the immune response status of cultured T lymphocytes or of an animal. When added to a culture of LDH-B-primed cells or injected into mice, the TsF-A turns responders into nonresponders, presumably by blocking the proliferation of the Th cells. The TsF-E converts nonresponder cultures or mice into responders, presumably by preventing the differentiation of Ts cells. As there are good prospects for obtaining TsF in large quantities and in a highly purified form, this manipulation of the immune response by the deployment of specific factors promises to become an efficient new method of immunotherapy.  相似文献   

19.
Ts1, or inducer suppressor T cells, share many phenotypic and functional characteristics with helper/inducer subset of T cells. In order to evaluate the relationship between these cell types, we made a series of new Ts1 hybridomas by the fusion of Ts1 cells with the functionally TCR alpha/beta-negative BW thymoma (BW 1100). Three Ts1 hybridomas (CKB-Ts1-38, CKB-Ts1-53, and CKB-Ts1-81) were established that express TCR and produce Ag-specific suppressor factors constitutively, thus making it possible to study the nature and specificity of Ag receptors, MHC restriction, and lymphokine production by the Ts1 hybridomas. Results presented in this report demonstrate that all the Ts1 hybridomas described here express CD3-associated TCR-alpha beta. These three Ts1 hybridomas recognize Ag (NP-KLH) specifically in a growth inhibition assay and this recognition is restricted by IE molecules. Two of the hybridomas also produce IL-2 or IL-2 and IL-4 upon Ag-specific activation. Thus, by these three criteria the Ts1 hybridomas appear indistinguishable from Th cells. These three Ts1 hybridomas, however, release suppressor factors (TsF1) in the supernatant that suppress both in vivo DTH and in vitro PFC responses in an Ag-specific manner. Like the TsF1 factors characterized previously, the suppression mediated by these factors are Igh restricted and lack H-2 restriction. These factors mediate suppression when given in the induction phase but not during the effector phase of the immune response. The TsF1 factors are absorbed by Ag (NP-BSA), and anti-TCR affinity columns and the suppressor activity can be recovered by elution. The data are consistent with the interpretation that Ts1 inducer-suppressor T cells are related to Th cells; the feature that distinguishes these cells is the ability to produce Ag-binding factors that specifically suppress immune responses.  相似文献   

20.
The ability of a tumor-specific T suppressor factor (TsF) isolated from a T cell hybridoma, A10, to act as an immunogen in DBA/2 mice was investigated. The TsF was affinity purified from ascites over an immunoadsorbent column containing a monoclonal antibody (B16G) that has specificity for the TsF molecule, or over columns containing membrane extracts of the P815 mastocytoma (the tumor for which A10 is specific). The specificity control was BW5147 (the fusion partner for A10) membrane extracts treated in the same way as A10. DBA/2 mice were immunized with the affinity-purified material or PBS and were subsequently challenged with either the P815 tumor or the L1210 DBA/2 thymoma. When mice were immunized with material affinity purified over B16G, eluted material from both A10 ascites and BW5147 membrane extracts enhanced resistance to both P815 and L1210 challenge, indicating that B16G was binding immunogenic material derived from both preparations, which exerted a tumor-protective effect. However, when a P815 affinity column was used, protective material was eluted only from A10 ascites, and this bestowed resistance to both P815 and L1210. When irradiated whole cells were used as immunogens, only A10 cells stimulated anti-tumor immunity, and this appeared to be directed specifically to the P815 tumor. The implications of these findings in terms of the potential for immune modulation with anti-suppressor therapy, and the specificity of the B16G monoclonal, are discussed. The demonstration of B16G binding material (TsF) in the membranes (but not the ascites) of the BW5147 line is also of significance to investigators using BW5147 fused suppressor hybridomas.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号