首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A hyperthermophilic archaeon strain, KOD1, was isolated from a solfatara at a wharf on Kodakara Island, Kagoshima, Japan. The growth temperature of the strain ranged from 65 to 100 degrees C, and the optimal temperature was 95 degrees C. The anaerobic strain was an S0-dependent heterotroph. Cells were irregular cocci and were highly motile with several polar flagella. The membrane lipid was of the ether type, and the GC content of the DNA was estimated to be 38 mol%. The 16S rRNA sequence was 95% homologous to that of Pyrococcus abyssi. The optimum growth pH and NaCl concentration of the strain KOD1 were 7.0 and 3%, respectively. Therefore, strain KOD1 was identified as a Pyrococcus sp. Strain KOD1 produced at least three extracellular proteases. One of the most thermostable proteases was purified 21-fold, and the molecular size was determined to be 44 kDa by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and 45 kDa by gel filtration chromatography. The specific activity of the purified protease was 2,160 U/mg of protein. The enzyme exhibited its maximum activity at approximately pH 7.0 and at a temperature of 110 degrees with azocasein as a substrate. The enzyme activity was completely retained after heat treatment at 90 degrees C for 2 h, and the half-life of enzymatic activity at 100 degrees C was 60 min. The proteolytic activity was significantly inhibited by p-chloromercuribenzoic acid or E-64 but not by EDTA or phenylmethylsulfonyl fluoride. Proteolytic activity was enhanced threefold in the presence of 8 mM cysteine. These experimental results indicated that the enzyme was a thermostable thiol protease.  相似文献   

2.
A novel thermophilic anaerobic, rod-shaped, non-spore forming, gram positive bacterium was isolated from an oil field in Turkey, that produces cyclodextrin glycosyltransferase (CGTase) from starch. According to the some morphological, biochemical and 16S rRNA analysis, the strain belongs to the genus Thermoanaerobacter. The strain mainly utilizes starch and derivatives, glucose and fructose as carbon source between 45 and 75 °C, optimally at 65 °C. Optimum pH for growth is 7.5. 16S RNA studies indicate that the bacterium has a similarity of 98.3% to homoacetogenic Thermoanaerobacter kivui and the main fermentation product is acetic acid as in the case with homoacetogenic bacteria. The main difference between the bacterium and T. kivui concerns the utilization of starch. Based on the phylogenetic and biochemical analysis, it is proposed that the species are a new member of the genus Thermoanaerobacter. The strain has CGTase activity optimum at 80 °C and pH 7.0–8.0.  相似文献   

3.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70 degrees C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

4.
A native-feather-degrading thermophilic anaerobe was isolated from a geothermal hot stream in Indonesia. Isolate AW-1, identified as a member of the species Fervidobacterium islandicum, was shown to degrade native feathers (0.8%, w/v) completely at 70 degrees C and pH 7 with a maximum specific growth rate (0.14 h(-1)) in Thermotoga- Fervidobacterium(TF) medium. After 24 h of culture, feather degradation led to an increase in free amino acids such as histidine, cysteine and lysine. Moreover, nutritionally essential amino acids such as tryptophan and methionine, which are rare in feather keratin, were also produced as microbial metabolites. A homomultimeric membrane-bound keratinolytic protease (>200 kDa; 97 kDa subunits) was purified from a cell extract of F. islandicum AW-1. The enzyme exhibited activity toward casein and soluble keratin optimally at 100 degrees C and pH 9, and had a half-life of 90 min at 100 degrees C. The enzyme showed higher specific activity for the keratinous substrates than other proteases and catalyzed the cleavage of peptide bonds more rapidly following the reduction of disulfide bridges in feather keratin by 10 mM dithiothreitol. Therefore, the enzyme from F. islandicum AW-1 is a novel, thermostable keratinolytic serine protease.  相似文献   

5.
Three thermostable proteases, designated S, N, and B, are extracellular enzymes produced by Bacillus stearothermophilus strain TLS33. They were purified by lysine affinity chromatography, strong anion exchange Q HyperD chromatography, and Ultrogel AcA44 gel filtration. The molecular masses of the enzymes determined by SDS-PAGE and zymography were approximately 36, 53, and 71 kDa, respectively. Thermostable protease S bound strongly to the lysine affinity column and could be purified by this single step. The optimum pH values of proteases S, N, and B were shown to be 8.5, 7.5, and 7.0, respectively. The maximum activities for the enzymes were at 70, 85, and 90 degrees C, respectively. Proteases S, N, and B at pH 7.0 in the presence of 5 mM CaCl(2) retained half their activities after 30 min at 72, 78, and 90 degrees C, respectively. All three thermostable proteases were strongly inhibited by the metal chelators EDTA and 1,10-phenanthroline, and the proteolytic activities were restored by addition of ZnCl(2). They can thus be classified as Zn(2+) metalloproteases. The cleavage specificities of proteases S, N, and B on a 30-residue synthetic peptide from pro-BPN' subtilisin were Tyr-Ile, Phe-Lys, and Gly-Phe, respectively.  相似文献   

6.
AIMS: To characterize a new feather-degrading bacterium. METHODS AND RESULTS: The strain kr10 producing a high keratinolytic activity when cultured on native feather broth was identified as Microbacterium sp., based on phenotypical characteristics and 16S rDNA sequence. The bacterium presented optimum growth and feather-degrading activity at pH 7.0 and 30 degrees C. Complete feather degradation was achieved during cultivation. The keratinase was partially purified by gel filtration chromatography. It was optimally active at pH 7.0 and 55 degrees C. The enzyme was inhibited by 1,10-phenanthroline, EDTA, p-chloromercuribenzoic acid, 2-mercaptoethanol and metal ions like Hg(2+), Cu(2+) and Zn(2+). SIGNIFICANCE AND IMPACT OF THE STUDY: A new Microbacterium sp. strain was characterized presenting high feather-degrading activity, which appears to be associated to a metalloprotease-type keratinase. This micro-organism has enormous potential for use in biotechnological processes involving keratin hydrolysis.  相似文献   

7.
Three strains of anaerobic thermophilic bacteria capable of growing on agarose as a source of energy and carbon were isolated from hot springs near Lake Baikal (Barguzin National Park) and the caldera Uzon (Kamchatka). Cells of all the three strains were spore bacilli with peritrichous flagellation. These isolates grew at a temperature of 55–60°C and pH 6.5–7.0 and fermented a wide range of organic substrates. Analysis of the 16S rRNA sequences allowed us to ascribe the strains B5 and K14 to the genus Thermoanaerobacter and the strain K67 to the genus Caldoanaerobacter. According to the results of DNA-DNA hybridization, B5 was determined as belonging to the species Thermoanaerobacter wiegelii. Agarase was isolated by preparative PAGE and subsequent gel chromatography from the culture liquid of strain B5 grown on the medium containing 0.5% agarose and 0.3% galactose. The molecular weight of this enzyme amounted to 67 kDa and pI, to 4.2. The T. wiegelii B5 agarase was active in the pH range of 3.5 to 7.0 (optimum, 5.2) and temperature range of 50 to 80°C (optimum, 70°C). The preincubation of this enzyme at 90° C for 60 min did not reduce the agarase activity. This activity increased in the presence of metal ions; the maximal effect was observed in the presence of 5 mM Mg2+ and 25 mM Co2+.  相似文献   

8.
The extremely thermophilic anaerobic archaeon strain B1001 was isolated from a hot-spring environment in Japan. The cells were irregular cocci, 0.5 to 1.0 micrometers in diameter. The new isolate grew at temperatures between 60 and 95 degrees C (optimum, 85 degrees C), from pH 5.0 to 9.0 (optimum, pH 7.0), and from 1.0 to 6.0% NaCl (optimum, 2.0%). The G+C content of the genomic DNA was 43.0 mol%. The 16S rRNA gene sequencing of strain B1001 indicated that it belongs to the genus Thermococcus. During growth on starch, the strain produced a thermostable cyclomaltodextrin glucanotransferase (CGTase). The enzyme was purified 1,750-fold, and the molecular mass was determined to be 83 kDa by sodium dodecyl sulfate (SDS)-polyacrylamide gel electrophoresis. Incubation at 120 degrees C with SDS and 2-mercaptoethanol was required for complete unfolding. The optimum temperatures for starch-degrading activity and cyclodextrin synthesis activity were 110 and 90 to 100 degrees C, respectively. The optimum pH for enzyme activity was pH 5.0 to 5.5. At pH 5.0, the half-life of the enzyme was 40 min at 110 degrees C. The enzyme formed mainly alpha-cyclodextrin with small amounts of beta- and gamma-cyclodextrins from starch. This is the first report on the presence of the extremely thermostable CGTase from hyperthermophilic archaea.  相似文献   

9.
B Bckle  B Galunsky    R Müller 《Applied microbiology》1995,61(10):3705-3710
A serine protease from the keratin-degrading Streptomyces pactum DSM 40530 was purified by casein agarose affinity chromatography. The enzyme had a molecular weight of 30,000 and an isoelectric point of 8.5. The proteinase was optimally active in the pH range from 7 to 10 and at temperatures from 40 to 75 degrees C. The enzyme was specific for arginine and lysine at the P1 site and for phenylalanine and arginine at the P1' site. It showed a high stereoselectivity and secondary specificity with different synthetic substrates. The keratinolytic activity of the purified proteinase was examined by incubation with the insoluble substrates keratin azure, feather meal, and native and autoclaved chicken feather downs. The S. pactum proteinase was significantly more active than the various commercially available proteinases. After incubation with the purified proteinase, a rapid disintegration of whole feathers was observed. But even after several days of incubation with repeated addition of enzymes, less than 10% of the native keratin substrate was solubilized. In the presence of dithiothreitol, degradation was more than 70%.  相似文献   

10.
A novel rod-shaped hyperthermophilic archaeum has been isolated from a boiling marine water hole at Maronti Beach, Ischia, Italy. It grew optimally at 100 degrees C and pH 7.0 by aerobic respiration as well as by dissimilatory nitrate reduction, forming dinitrogen as a final product. Organic and inorganic compounds served as substrates during aerobic and anaerobic respiration. Growth was inhibited by elemental sulfur. The cell wall was composed of a surface layer of hexameric protein complexes arranged on a p6 lattice. The core lipids consisted mainly of glycerol diphytanyl glycerol tetraethers with various degrees of cyclization. The G+C content was 52 mol%. The new isolate resembled members of the genera Thermoproteus and Pyrobaculum by its ability to form characteristic terminal spherical bodies ("golf clubs"). On the basis of its 16S rRNA sequence, the new isolate exhibited a close relationship to the genus Pyrobaculum. It is described as a new species, which we name Pyrobaculum aerophilum (type strain: IM2; DSM 7523).  相似文献   

11.
A novel, facultatively aerobic, heterotrophic hyperthermophilic archaeon was isolated from a terrestrial hot spring in the Philippines. Cells of the new isolate, strain VA1, were rod-shaped with a length of 1.5 to 10 microm and a width of 0.5 to 1.0 microm. Isolate VA1 grew optimally at 90 to 95 degrees C and pH 7.0 in atmospheric air. Oxygen served as a final electron acceptor under aerobic growth conditions, and vigorous shaking of the medium significantly enhanced growth. Elemental sulfur inhibited cell growth under aerobic growth conditions, whereas thiosulfate stimulated cell growth. Under anaerobic growth conditions, nitrate served as a final electron acceptor, but nitrite or sulfur-containing compounds such as elemental sulfur, thiosulfate, sulfate and sulfite could not act as final electron acceptors. The G+C content of the genomic DNA was 51 mol%. Phylogenetic analysis based on 16S rRNA sequences indicated that strain VA1 exhibited close relationships to species of the genus Pyrobaculum. A DNA-DNA hybridization study revealed a low level of similarity (< or = 18%) between strain VA1 and previously described members of the genus Pyrobaculum. Physiological characteristics also indicated that strain VA1 was distinct from these Pyrobaculum species. Our results indicate that isolate VA1 represents a novel species, named Pyrobaculum calidifontis.  相似文献   

12.
一个产木质素酶的嗜碱细菌新种   总被引:5,自引:0,他引:5  
从内蒙古盐碱湖分离到一株产木质素酶的嗜盐碱菌F10。其形态为杆状或短杆状 ,革兰氏染色阳性 ,最适生长pH为 9 5 ,最适生长温度为 37℃。通过生理生化特征、胞壁氨基酸成分、基于 16SrDNA序列的系统发育学分析和DNA DNA杂交同源性比较发现菌株F10是双芽孢杆菌 (Amphibacillus)属中一个与其它成员不同的新种 ,命名为好纪双芽孢杆菌Amphibacillushaojiensissp .nov .  相似文献   

13.
A Gram-negative, aerobic, motile and rod-shaped haloalkaliphilic bacterial strain 5AGT (DSM 15293 and ATCC BAA-966) was isolated from water with algal mat of a mineral pool in Malvizza site (Campania-Italy) and was subjected to a polyphasic study. The isolate grew at temperature of 10.0-43.0 degrees C with an optimum at 37.0 degrees C. Strain 5AGT grew optimally in the presence of 10% NaCl and grew also in the absence of salt. The isolate grew in the pH range 7.0-10.0 with an optimum at pH 9.0. It accumulated glycine-betaine, ectoine, and glutamate, as osmoprotectants. Strain 5AGT was also characterized chemotaxonomically by having ubiquinone-8 (Q8) as the predominant isoprenoid quinone, phosphoethanolamine (PEA), phosphatidylglycerol (PG) and diphosphatidylglycerol (DPG), as major polar lipids and aiC16:0 and C18:1cis as the major fatty acids. The DNA G+C content was 63.7mol%. Phylogenetic analyses based on 16S rRNA gene sequence showed that the isolate belonged to the genus Halomonas. The DNA-DNA hybridization of the type strain 5AGT with the most related Halomonas campisalis showed a re-association value of 35.0%.On the basis of phenotypic properties and phylogeny, strain 5AGT should be placed in the genus Halomonas as a member of a novel species for which we propose the name Halomonas campaniensis sp. nov.  相似文献   

14.
Two thermophilic non-sporeforming sulfate-reducing bacteria (SRB) were isolated from microbial mats collected from an Icelandic hot spring. Strain JSP was a gram negative rod, with an average cell size of 2.8 x 0.5 microm. No flagella were found. Growth occurred between 55 and 74 degrees C with an optimum between 70 and 74 degrees C at pH 7.0. The G+C content was 40 mol%. Strain R1Ha3 was a gram negative vibrio-shaped rod with an average cell size of 1.7 x 0.4 microm. Motility was observed mediated by one polar flagellum. The growth optimum at pH 7.0 was 65 degrees C, and growth occurred between 45 and 70 degrees C. The G+C content was 38 mol%. In the presence of sulfate, both strains used lactate, pyruvate and H2 as electron donors. In addition, strain R1Ha3 used formate. Pyruvate was the only substrate supporting fermentative growth of both strains. Growth occurred with sulfate as well as thiosulfate as electron acceptors. Furthermore, strain R1Ha3 reduced nitrate and strain JSP reduced sulfite. Neither of the strains were able to oxidize lactate completely to CO2 and neither of the strains contained desulfoviridin. 16S rDNA sequencing placed strain JSP in the genus Thermodesulfobacterium and strain R1Ha3 in the genus Thermodesulfovibrio. Based on the DNA-DNA hybridization studies and differences in morphology and physiology to their closest relatives the two new isolates were considered as new species. Strain JSP is named Thermodesulfobacterium hveragerdense and strain R1Ha3 Thermodesulfovibrio islandicus.  相似文献   

15.
A Gram-positive spore-forming thermophilic strict anaerobic bacterium, designated FH1, was isolated from enrichments at 65 degrees C with dextran as sole carbon and energy source. A sequence analysis of the 16S rRNA gene revealed 99.2% identity of FH1 to Thermoanaerobacterium thermosaccharolyticum. Furthermore, the substrate spectra of both organisms were similar. It was therefore concluded that FH1 represents a new strain within the species T. thermosaccharolyticum. The optimal growth temperature of strain FH1 was 68 degrees C. The isolated organism produced a thermostable and thermoactive dextranase with a native molecular mass of approximately 200,000 Da. The enzyme was concentrated from the cell-free culture supernatant by ammonium sulfate precipitation. The resulting crude dextranase exhibited optimal activity from 65 to 70 degrees C and a pH optimum of 5.5.  相似文献   

16.
Abstract A Gram-negative sporulating thermophilic anaerobe, designated AB11Ad, was isolated from the heated waters of the Great Artesian Basin of Australia. It grew on a variety of carbohydrates including glucose, starch, and dextran and produced a thermostable and thermoactive extracellular endo-dextranase. The enzyme was produced more actively under pH controlled continuous culture conditions than under batch conditions. Ammonium sulfate precipitated crude dextranase exhibited a temperature optimum of 70 °C and a pH optimum between 5 and 6. The half life was ~ 6.5 h at 75 °C and 2 h at 80 °C at pH 5.0 and in the absence of added dextran. 16S rRNA sequence analysis indicated that isolate AB1 lAd was a member of the genus Thermoanaerobacter .  相似文献   

17.
Streptomyces strain K1-02, which was identified as a strain of Streptomyces albidoflavus, secreted at least six extracellular proteases when it was cultured on feather meal-based medium. The major keratinolytic serine proteinase was purified to homogeneity by a two-step procedure. This enzyme had a molecular weight of 18,000 and was optimally active at pH values ranging from 6 to 9.5 and at temperatures ranging from 40 to 70°C. Its sensitivity to protease inhibitors, its specificity on synthetic substrates, and its remarkably high level of NH2-terminal sequence homology with Streptomyces griseus protease B (SGPB) showed that the new enzyme, designated SAKase, was homologous to SGPB. We tested the activity of SAKase with soluble and fibrous substrates (elastin, keratin, and type I collagen) and found that it was very specific for keratinous substrates compared to SGPB and proteinase K.  相似文献   

18.
Metabolic and phylogenetic diversity of cultivated anaerobic microorganisms from acidic continental hot springs and deep-sea hydrothermal vents was studied by molecular and microbiological methods. Anaerobic organotrophic enrichment cultures growing at pH 3.5–4.0 and 60 or 85°C with organic energy sources were obtained from samples of acidic hot springs of Kamchatka Peninsula (Pauzhetka, Moutnovski Volcano, Uzon Caldera) and Kunashir Island (South Kurils) as well as from the samples of chimneys of East Pacific Rise (13°N). The analyses of clone libraries obtained from terrestrial enrichment cultures growing at 60°C revealed the presence of archaea of genus Thermoplasma and bacteria of genus Thermoanaerobacter. Bacterial isolates from these enrichments were shown to belong to genera Thermoanaerobacter and Thermoanaerobacterium, being acidotolerant with the pH optimum for growth at 5.5–6.0 and the pH minimum at 3.0. At 85°C, domination of thermoacidophilic archaea of genus Acidilobus in terrestrial enrichments was found by both molecular and microbiological methods. Five isolates belonging to this genus possessed some phenotypic features that were new for this genus, such as flagellation or the ability to grow on monosaccharides or disaccharides. Analyses of clone libraries from the deep-sea thermoacidophilic enrichment cultures showed that the representatives of the genus Thermococcus were present at both 60 and 85°C. From the 60°C deep-sea enrichment, a strain belonging to Thermoanaerobacter siderophilus was isolated. It grew optimally at pH 6.0 with the minimum pH for growth at 3.0 and with salinity optimum at 0–2.5% NaCl and the maximum at 7%, thus differing significantly from the type strain. These data show that fermentative degradation of organic matter may occur at low pH and wide temperature range in both terrestrial and deep-sea habitats and can be performed by acidophilic or acidotolerant thermophilic prokaryotes.  相似文献   

19.
A psychrotolerant, obligate anaerobic, acetogenic bacterium designated strain SyrA5 was isolated from black anoxic sediment of a brackish fjord. Cells were Gram-positive, non-sporeforming rods. The isolate utilized H(2)/CO(2), CO, fructose, glucose, ethanol, ethylene glycol, glycerol, pyruvate, lactate, betaine and the methyl-groups of several methoxylated benzoic derivatives such as syringate, trimethoxybenzoate and vallinate. The optimum temperature for growth was 29 degrees C, whilst slow growth occurred at 2 degrees C. The strain grew optimally with NaCl concentrations below 2.7% (w/v), but growth occurred up to 4.3% (w/v) NaCl. Growth was observed in the range from pH 5.9 to 8.5, optimum at pH 8. The G+C content was 44.1 mol%. Based upon 16S rRNA gene sequence analysis and DNA-DNA reassociation studies, the organism was classified in the genus Acetobacterium. Strain SyrA5 shared a 16S rRNA sequence similarity with A. carbinolicum of 100%, a fthfs gene (which codes for the N5,N10 tetrahydrofolate synthetase) sequence identity of 98.5-98.7% (amino acid sequence similarities were 99.4-100%) and a RNA-DNA hybridization homology of 64-68%. Despite a number of phenotypic differences between strain SyrA5 and A. carbinolicum we propose including strain SyrA5 as a subspecies of A. carbinolicum for which we propose the name Acetobacterium carbinolicum subspecies kysingense. The type strain is SyrA5 (=DSM 16427(T), ATCC BAA-990).  相似文献   

20.
A new helical, alkaliphilic, gram-negative, chemoorganotrophic bacterium designated strain Z4T was isolated from Haoji soda lake in Inner Mongolia Autonomous Region, China. The isolate grows at salinities between 0.2% and 5.0% (w/v) NaCl and pH range 7.0-11.0, with an optimum at 2.0% (w/v) NaCl and pH 9.5. Its growth temperature ranges from 8 degrees to 49 degrees C with an optimum at 37 degrees C. The G+C content of the DNA is 46.8 mol%. The major isoprenoid quinone is ubiquinone 8 (Q-8). Phylogenetic analyses based on 16S rDNA sequence comparison indicates that strain Z4T is a member of the genus Marinospirillum. Phenotypic features and DNA-DNA homology of less than 20% with the described species of Marinospirillum support the view that strain Z4T represents a new species of the genus Marinospirillum. Strain Z4T (= AS 1.2746) is proposed as the type strain of a new species, named Marinospirillum alkaliphilum sp. nov.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号