首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
We have analyzed the mechanism by which Sop4, a novel ER membrane protein, regulates quality control and intracellular transport of Pma1–7, a mutant plasma membrane ATPase. At the restrictive temperature, newly synthesized Pma1–7 is targeted for vacuolar degradation instead of being correctly delivered to the cell surface. Loss of Sop4 at least partially corrects vacuolar mislocalization, allowing Pma1–7 routing to the plasma membrane. Ste2–3 is a mutant pheromone receptor which, like Pma1–7, is defective in targeting to the cell surface, resulting in a mating defect. sop4Δ suppresses the mating defect of ste2–3 cells as well as the growth defect of pma1–7 . Visualization of newly synthesized Pma1–7 in sop4Δ cells by indirect immunofluorescence reveals delayed export from the ER. Similarly, ER export of wild-type Pma1 is delayed in the absence of Sop4 although intracellular transport of Gas1 and CPY is unaffected. These observations suggest a model in which a selective increase in ER residence time for Pma1–7 may allow it to achieve a more favorable conformation for subsequent delivery to the plasma membrane. In support of this model, newly synthesized Pma1–7 is also routed to the plasma membrane upon release from a general block of ER-to-Golgi transport in sec13–1 cells.  相似文献   

3.
Pma1-7 is a mutant plasma membrane ATPase that is impaired in targeting to the cell surface at 37 degrees C and is delivered instead to the endosomal/vacuolar pathway for degradation. We have proposed that Pma1-7 is a substrate for a Golgibased quality control mechanism. By contrast with wild-type Pma1, Pma1-7 is ubiquitinated. Ubiquitination and endosomal targeting of Pma1-7 is dependent on the Rsp5-Bul1-Bul2 ubiquitin ligase protein complex but not the transmembrane ubiquitin ligase Tul1. Analysis of Pma1-7 ubiquitination in mutants blocked in protein transport at various steps of the secretory pathway suggests that ubiquitination occurs after ER exit but before endosomal entry. In the absence of ubiquitination in rsp5-1 cells, Pma1-7 is delivered to the cell surface and remains stable. Nevertheless, Pma1-7 remains impaired in association with detergent-insoluble glycolipid-enriched complexes in rsp5-1 cells, suggesting that ubiquitination is not the cause of Pma1-7 exclusion from rafts. In vps1 cells in which protein transport into the endosomal pathway is blocked, Pma1-7 is routed to the cell surface. On arrival at the plasma membrane in vps1 cells, Pma1-7 remains stable and its ubiquitination disappears, suggesting deubiquitination activity at the cell surface. We suggest that Pma1-7 sorting and fate are regulated by ubiquitination.  相似文献   

4.
The crystal structures of the Ca(2+)- and H(+)-ATPases shed light into the membrane embedded domains involved in binding and ion translocation. Consistent with site-directed mutagenesis, these structures provided additional evidence that membrane-spanning segments M4, M5, M6 and M8 are the core through which cations are pumped. In the present study, we have used alanine/serine scanning mutagenesis to study the structure-function relationships within M6 (Leu-721-Pro-742) of the yeast plasma membrane ATPase. Of the 22 mutants expressed and analyzed in secretory vesicles, alanine substitutions at two well conserved residues (Asp-730 and Asp-739) led to a complete block in biogenesis; in the mammalian P-ATPases, residues corresponding to Asp-730 are part of the cation-binding domain. Two other mutants (V723A and I736A) displayed a dramatic 20-fold increase in the IC(50) for inorganic orthovanadate compared to the wild-type control, accompanied by a significant reduction in the K(m) for Mg-ATP, and an alkaline shift in the pH optimum for ATP hydrolysis. This behavior is apparently due to a shift in equilibrium from the E(2) conformation of the ATPase towards the E(1) conformation. By contrast, the most striking mutants lying toward the extracellular side in a helical structure (L721A, I722A, F724A, I725A, I727A and F728A) were expressed in secretory vesicles but had a severe reduction of ATPase activity. Moreover, all of these mutants but one (F728A) were unable to support yeast growth when the wild-type chromosomal PMA1 gene was replaced by the mutant allele. Surprisingly, in contrast to M8 where mutations S800A and E803Q (Guerra et al., Biochim. Biophys. Acta 1768: 2383-2392, 2007) led to a dramatic increase in the apparent stoichiometry of H(+) transport, three substitutions (A726S, A732S and T733A) in M6 showed a reduction in the apparent coupling ratio. Taken together, these results suggest that M6 residues play an important role in protein stability and function, and probably are responsible for cation binding and stoichiometry of ion transport as suggested by homology modeling.  相似文献   

5.
The plasma membrane of the yeast Saccharomyces cerevisiae is devoid of lipid-synthesizing enzymes, but contains all classes of bilayer-forming lipids. As the lipid composition of the plasma membrane does not match any of the intracellular membranes, specific trafficking of lipids from internal membranes, especially the endoplasmic reticulum and the Golgi, to the cell periphery is required. Although the secretory pathway is an obvious route to translocate glycerophospholipids, sphingolipids and sterols to the plasma membrane, experimental evidence for the role of this pathway in lipid transport is rare. Addressing this issue in a systematic way, we labeled temperature-sensitive secretory yeast mutants (sec mutants) with appropriate lipid precursors, isolated the plasma membranes at high purity and quantified labeled lipids of this compartment. Shifting sec mutants to the restrictive temperature reduced transport of both proteins and lipids to the plasma membrane, indicating that the latter compounds are also trafficked to the cell periphery through the protein secretory pathway. However, efficient sec blocks did not abrogate protein and lipid transport, suggesting that parallel pathway(s) for the translocation of membrane components to the plasma membrane of yeast must exist.  相似文献   

6.
7.
Sambade M  Alba M  Smardon AM  West RW  Kane PM 《Genetics》2005,170(4):1539-1551
V-ATPases acidify multiple organelles, and yeast mutants lacking V-ATPase activity exhibit a distinctive set of growth defects. To better understand the requirements for organelle acidification and the basis of these growth phenotypes, approximately 4700 yeast deletion mutants were screened for growth defects at pH 7.5 in 60 mm CaCl(2). In addition to 13 of 16 mutants lacking known V-ATPase subunits or assembly factors, 50 additional mutants were identified. Sixteen of these also grew poorly in nonfermentable carbon sources, like the known V-ATPase mutants, and were analyzed further. The cwh36Delta mutant exhibited the strongest phenotype; this mutation proved to disrupt a previously uncharacterized V-ATPase subunit. A small subset of the mutations implicated in vacuolar protein sorting, vps34Delta, vps15Delta, vps45Delta, and vps16Delta, caused both Vma- growth phenotypes and lower V-ATPase activity in isolated vacuoles, as did the shp1Delta mutation, implicated in both protein sorting and regulation of the Glc7p protein phosphatase. These proteins may regulate V-ATPase targeting and/or activity. Eight mutants showed a Vma- growth phenotype but no apparent defect in vacuolar acidification. Like V-ATPase-deficient mutants, most of these mutants rely on calcineurin for growth, particularly at high pH. A requirement for constitutive calcineurin activation may be the predominant physiological basis of the Vma- growth phenotype.  相似文献   

8.
9.
Four proteases have been used to assess the topology of the H+-ATPase from Saccharomyces cerevisiae reconstituted into phosphatidylserine vesicles. Limited proteolysis by trypsin and alpha-chymotrypsin inactivates the enzyme and produces stable, membrane-bound fragments. Sequence analyses of these peptides have located the peptide bonds hydrolyzed. The labile bonds are on opposite sides of a central hydrophilic domain containing consensus sequences for the site of phosphorylation and fluorescein isothiocyanate binding of several related ATPases. Limited proteolysis of the ATPase by elastase cuts approximately 50 amino acids from the C terminus, leaving the remaining membrane-bound fragments active. Proteolysis by carboxypeptidase Y in the presence and absence of detergent suggests that the C terminus is on the inside of the vesicle in this reconstitution. A model for the transmembrane arrangement of the polypeptide is proposed. In this model, the C terminus is on the inside of the vesicle, the N terminus is on the outside, the ATP binding region is on the outside, and the polypeptide passes through the membrane a minimum of five times.  相似文献   

10.
Misfolded proteins are usually arrested in the endoplasmic reticulum (ER) and degraded by the ER-associated degradation (ERAD) machinery. Several mutant alleles of PMA1, the gene coding for the plasma membrane H(+)-ATPase, render misfolded proteins that are retained in the ER and degraded by ERAD. A subset of misfolded PMA1 mutants exhibit a dominant negative effect on yeast growth since, when coexpressed with the wild-type allele, both proteins are retained in the ER. We have used a pma1-D378T dominant negative mutant to identify new genes involved in ERAD. A genetic screen was performed for isolation of multicopy suppressors of a GAL1-pma1-D378T allele. ATG19, a member of the cytoplasm to vacuole targeting (Cvt) pathway, was found to suppress the growth arrest phenotype caused by the expression of pma1-D378T. ATG19 accelerates the degradation of pma1-D378T thus allowing the co-retained wild-type Pma1 to reach the plasma membrane. ATG19 was also able to suppress other dominant lethal PMA1 mutations. The degradation of the mutant ATPase occurs in the proteasome and requires intact both ERAD and Cvt/autophagy pathways. We propose the cooperation of both pathways for an efficient degradation of misfolded Pma1.  相似文献   

11.
Cryptococcus neoformans is a facultative intracellular pathogen, which can replicate in the acidic environment inside phagolysosomes. Deletion of the enzyme inositol-phosphosphingolipid-phospholipase-C (Isc1) makes C. neoformans hypersensitive to acidic pH likely by inhibiting the function of the proton pump, plasma membrane ATPase (Pma1). In this work, we examined the role of Isc1 on Pma1 transport and oligomerization. Our studies showed that Isc1 deletion did not affect Pma1 synthesis or transport, but significantly inhibited Pma1 oligomerization. Interestingly, Pma1 oligomerization could be restored by supplementing the medium with phytoceramide. These results offer insight into the mechanism of intracellular survival of C. neoformans.  相似文献   

12.
We have analyzed the ability of A165V, V169I/D170N, and P536L mutations to suppress pma1 dominant lethal alleles and found that the P536L mutation is able to suppress the dominant lethality of the pma1-R271T, -D378N, -D378E, and -K474R mutant alleles. Genetic and biochemical analyses of site-directed mutants at Pro-536 suggest that this amino acid may not be essential for function but is important for biogenesis of the ATPase. Proteins encoded by dominant lethal pma1 alleles are retained in the endoplasmic reticulum, thus interfering with transport of wild-type Pma1. Immunofluorescence studies of yeast conditionally expressing revertant alleles show that the mutant enzymes are correctly located at the plasma membrane and do not disturb targeting of the wild-type enzyme. We propose that changes in Pro-536 may influence the folding of the protein encoded by a dominant negative allele so that it is no longer recognized and retained as a misfolded protein by the endoplasmic reticulum.  相似文献   

13.
Yeast cell surface growth is accomplished by constitutive secretion and plasma membrane assembly, culminating in the fusion of vesicles with the bud membrane. Coordination of secretion and membrane assembly has been investigated by examining the biogenesis of plasma membrane ATPase (PM ATPase) in secretion-defective (sec) strains of Saccharomyces cerevisiae. PM ATPase is synthesized as a approximately 106-kD polypeptide that is not detectably modified by asparagine-linked glycosylation or proteolysis during transit to the plasma membrane. Export of the PM ATPase requires the secretory pathway. In sec1, a mutant defective in the last step of secretion, large amounts of Golgi-derived vesicles are accumulated. Biochemical characterization of this organelle has demonstrated that PM ATPase and the secretory enzyme, acid phosphatase, are transported in a single vesicle species.  相似文献   

14.
Photoaffinity labeling of the active site of the yeast plasma membrane H(+)-ATPase has been studied with 2-azido-AMP and 2-azido-ATP. The ATPase activity of the enzyme decreases as the time of photolysis of the photoactive nucleotides in the presence of the enzyme increases. The covalent incorporation of [alpha-32P]2-azido-AMP into the enzyme and the inhibition of ATPase activity have comparable time courses. ATP protects the ATPase from incorporation of and photoinactivation by 2-azido-ATP or 2-azido-AMP. In the dark, 2-azido-ATP inhibits the ATPase at concentrations comparable to the apparent Michaelis constant for MgATP. After photolysis and proteolysis of the protein, three overlapping peptides labeled by the nucleotide analogues were purified by reversed-phase high performance liquid chromatography and sequenced. The peptides are derived from a region of the ATPase that is highly conserved in related cation pumps forming a phosphorylated intermediate during the catalytic cycle. Labeling with both nucleotide analogues occurs in peptides containing residues from aspartate 560 to lysine 566. The amino acids in this region conform to a consensus sequence for ATP binding derived from phosphofructokinase.  相似文献   

15.
Inhibition of yeast plasma membrane ATPase by vanadate occurs only if either Mg2+ or MgATP2- is bound to the enzyme. The dissociation constant of the complex of vanadate and inhibitory sites is 0.14-0.20 microM in the presence of optimal concentrations of Mg2+ and of the order of 1 microM if the enzyme is saturated with MgATP2-. The dissociation constants of Mg2+ and MgATP2- for the sites involved are 0.4 and 0.62-0.73 mM, respectively, at pH 7. KCl does not increase the affinity of vanadate to the inhibitory sites as was found with (Na+ + K+)-ATPase. On the other hand, the effect of Mg2+ upon vanadate binding is similar to that upon (Na+ + K+)-ATPase, and the corresponding affinity constants of Mg2+ and vanadate for the two enzymes are of the same order of magnitude.  相似文献   

16.
Plasma membrane ghosts were isolated from Candida albicans ATCC 10261 yeast cells following stabilisation of spheroplasts with concanavalin A, osmotic lysis and Percoll density gradient centrifugation. Removal of extrinsic proteins with NaCl and methyl alpha-mannoside gave increased ATPase and chitin synthase specific activities in the resultant plasma membrane fraction. Sonication of this fraction yielded unilamellar plasma membrane vesicles which exhibited ATPase and chitin synthase specific activities of 4.5-fold and 3.0-fold, respectively, over those of the plasma membrane ghosts. ATPase activity in the membrane ghosts was optimal at pH 6.4, showed high substrate specificity (for Mg X ATP) and was inhibited 80% by sodium vanadate but less than 4% by oligomycin and azide. The effects of a range of other inhibitors were also characterised. Temperature effects of ATPase activity were marked, with a maximum at 35 degrees C. Breaks in the Arrhenius plot, at 12.2 degrees C and 28.9 degrees C, coincided with endothermic heat flow peaks detected by differential scanning calorimetry. ATPase was solubilised from the plasma membranes with Zwittergent in the presence of glycerol and phenylmethylsulphonyl fluoride and partially purified by glycerol density gradient centrifugation. The solubilised enzyme hydrolysed Mg X ATP at Vmax = 20 mumol X min-1 X mg-1 in the presence of phospholipids, with optimal activity at pH 6.0--6.5.  相似文献   

17.
The yeast plasma membrane proton-pumping ATPase forms a phosphorylated intermediate during the hydrolysis of ATP. The fraction of enzyme phosphorylated during steady-state ATP hydrolysis was studied as a function of substrate concentration (MgATP), Mg2+ concentration, and pH. The dependence of the fraction of enzyme phosphorylated on the concentration of MgATP is sigmoidal, and the isotherms can be fit with parameters and mechanisms similar to those used to describe ATP hydrolysis. The isotherm is significantly more sigmoidal at pH 5.5 than at pH 6.0, with the limiting percentage (100.mol of phosphate/mol of enzyme) of enzyme phosphorylated being 70% and 6%, respectively, at the two pH values. The maxima in the steady-state rate of ATP hydrolysis occur at higher concentrations of Mg2+ and higher pH than the maxima in the fraction of enzyme phosphorylated. This suggests that the rate-determining step for ATP hydrolysis is different from that for enzyme phosphorylation and the hydrolysis of phosphoenzyme is enhanced by Mg2+ and high pH. The rate of phosphoenzyme formation was investigated with the quenched-flow method, but only a lower bound of 140 s-1 could be obtained for the rate constant at MgATP concentrations greater than 2.5 mM. Since the turnover number for ATP hydrolysis under similar conditions is 14 s-1, the rate-determining step in ATP hydrolysis occurs after enzyme phosphorylation.  相似文献   

18.
Plasma membrane H+-ATPase isoforms with increased H+/ATP ratios represent a desirable asset in yeast metabolic engineering. In vivo proton coupling of two previously reported Pma1p isoforms (Ser800Ala, Glu803Gln) with increased in vitro H+/ATP stoichiometries was analysed by measuring biomass yields of anaerobic maltose-limited chemostat cultures expressing only the different PMA1 alleles. In vivo H+/ATP stoichiometries of wildtype Pma1p and the two isoforms did not differ significantly.  相似文献   

19.
Defective plasma membrane assembly in yeast secretory mutants.   总被引:9,自引:2,他引:9       下载免费PDF全文
Yeast mutants that are conditionally blocked at distinctive steps in secretion and export of cell surface proteins have been used to monitor assembly of integral plasma membrane proteins. Mutants blocked in transport from the endoplasmic reticulum (sec18), from the Golgi body (sec7 and sec14), and in transport of secretory vesicles (sec1) show dramatically reduced assembly of galactose and arginine permease activities. Simultaneous induction of galactose permease and alpha-galactosidase (a secreted glycoprotein) in sec mutant cells at the nonpermissive temperature (37 degrees C) shows that both activities accumulate and can be exported coordinately when cells are returned to the permissive temperature (24 degrees C) in the presence or absence of cycloheximide. Plasma membrane fractions isolated from sec mutant cells radiolabeled at 37 degrees C have been analyzed by two-dimensional sodium dodecyl sulfate-gel electrophoresis. Although most of the major protein species seen in plasma membranes from wild-type cells are not efficiently localized in sec18 or sec7, several of these proteins appear in plasma membranes from sec1 cells. These results may be explained by contamination of plasma membrane fractions with precursor vesicles that accumulate in sec1 cells. Alternatively, some proteins may branch off during transport along the secretory pathway and be inserted into the plasma membrane by a different mechanism.  相似文献   

20.
The yeast plasma membrane ATPase gene PMA1 was cloned into Escherichia coli using the high expression tac and T7 promoters. The gene product is toxic to the bacterial cell leading to very low expression levels and arrested growth of the host cell within minutes of induction. The expressed protein is immunologically cross-reactive with the yeast ATPase, comigrates with the original protein in sodium dodecyl sulfate-polyacrylamide gels, and is isolated in the E. coli membrane fraction. The partially purified protein exhibits ATPase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号