首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 480 毫秒
1.
High molecular weight DNA from fixed cytogenetic preparations.   总被引:2,自引:0,他引:2       下载免费PDF全文
Cell pellets that have been stored in routine clinical cytogenetic fixative were studied for the presence of intact DNA. A method for the isolation of high molecular weight DNA from fixed cytogenetic preparations of human leukocytes, bone marrow, and cell hybrid cultures is presented. DNA preparations from fixed pellets were cleaved with restriction enzymes, transferred to nitrocellulose filters after agarose gel electrophoresis, and hybridized to radiolabeled probes to demonstrate that fixed cell pellets could yield DNA of sufficient quality for Southern blot hybridization analysis. This protocol may be useful for molecular analysis of DNA from fixed cell pellets of patients who are unavailable for additional sampling.  相似文献   

2.
Addison CJ  Chu SH  Reusch RN 《BioTechniques》2004,37(3):376-8, 380, 382
Transformation of Escherichia coli plays an important role in recombinant DNA technology. Most current transformation protocols require that the cells be treated to attain a particular physiological state known as "competence," and this makes transformation procedures lengthy and arduous. Here we describe a protocol for transforming log-phase E. coli using dimethyl sulfoxide (DMSO) solutions of poly-(R)-3-hydroxybutyrate (PHB) to facilitate the transfer of plasmid DNA into cells, and certain reagents and temperature shocks to promote DNA uptake. The protocol was optimized using factorial design techniques across variables that included PHB molecular weight and concentration, DMSO concentration, monovalent and divalent salts, glucose, cold and heat shocks, cell density, and pH. Using 10 ng DNA, the optimized protocol produces approximately 1000 colony-forming units (CFUs) from 100 microL early log-phase cell culture or approximately 300 CFU from a 21-24 h single colony, sufficient for many applications. The total volume of the transformation reaction mixture is only 150 microL suggesting that the procedure may be adapted for use in microplates or automated transformation technologies.  相似文献   

3.
4.
5.
Molecular genetic analysis of isolated single cells and other minute DNA samples is limited because there is insufficient DNA to perform more than one independent PCR amplification. One solution to this problem is to first amplify the entire genome, thus providing enough DNA for numerous subsequent PCRs. In this study we have investigated four different methods of whole genome amplification performed on single cells, and have identified a protocol that generates sufficient quantities of DNA for comparative genomic hybridisation (CGH) as well as more than 90 independent amplification reactions. Thus, numerous specific loci and the copy number of every chromosome can be assessed in a single cell. We report here the first reliable application of CGH to single cells from human preimplantation embryos (blastomeres) and to single fibroblasts, buccal cells and amniocytes.  相似文献   

6.
刘山林  邱娜  张纾意  赵竹楠  周欣 《生物多样性》2022,30(10):22441-4522
在分子生物学、细胞生物学、微生物学、遗传学等学科的推动下, 生物多样性研究从仅关注宏观表型的博物学, 迅速演化为涵盖生态系统、物种和遗传多样性等多个维度的综合性生命科学。组学技术, 尤其是DNA测序技术的更新和发展, 使获取DNA序列所需的成本大幅下降, 促进了近年来其在生物多样性研究中取得的一系列令人瞩目成就。本文将从物种水平的遗传多样性和群落水平的物种多样性两个层面总结和介绍与DNA相关的组学技术在生物多样性研究中的一些创新和应用。其中, 物种水平主要是总结单一个体的基因组和单物种多个体在时空多个维度上的群体遗传研究; 而群落水平的物种多样性层面主要总结现有的分子鉴定技术(metabarcoding, eDNA, iDNA等), 以及上述新技术在群落多样性评估、旗舰保护物种监测以及物种间相互作用关系等研究中的应用。  相似文献   

7.
In primary or cultured cells, in situ hybridization (ISH) or immunocytochemistry (ICC) is often performed on tissue that has been fixed by paraformaldehyde or Carnoy's. Recently we reported an optimized HOPE (HEPES-glutamic acid buffer-mediated organic solvent protection effect) fixation protocol for ISH targeting mRNA in lung tissues. We have now examined whether HOPE fixation could also be used on in vitro cultured cells for targeting mRNA by ISH or proteins by ICC on cytospin preparations. Using the myeloid stem cell line KG-1a as a model system, we showed that HOPE fixation can be applied for ISH and ICC on cultured cells. HOPE can be used with cells and tissues and with a broad spectrum of immunohistocytochemical and molecular techniques.  相似文献   

8.
Multiple displacement amplification (MDA) is a recently described method of whole-genome amplification (WGA) that has proven efficient in the amplification of small amounts of DNA, including DNA from single cells. Compared with PCR-based WGA methods, MDA generates DNA with a higher molecular weight and shows better genome coverage. This protocol was developed for preimplantation genetic diagnosis, and details a method for performing single-cell MDA using the phi29 DNA polymerase. It can also be useful for the amplification of other minute quantities of DNA, such as from forensic material or microdissected tissue. The protocol includes the collection and lysis of single cells, and all materials and steps involved in the MDA reaction. The whole procedure takes 3 h and generates 1-2 microg of DNA from a single cell, which is suitable for multiple downstream applications, such as sequencing, short tandem repeat analysis or array comparative genomic hybridization.  相似文献   

9.
Mussel micronucleus cytome assay   总被引:1,自引:0,他引:1  
The micronucleus (MN) assay is one of the most widely used genotoxicity biomarkers in aquatic organisms, providing an efficient measure of chromosomal DNA damage occurring as a result of either chromosome breakage or chromosome mis-segregation during mitosis. The MN assay is today applied in laboratory and field studies using hemocytes and gill cells from bivalves, mainly from the genera Mytilus. These represent 'sentinel' organisms because of their ability to survive under polluted conditions and to accumulate both organic and inorganic pollutants. Because the mussel MN assay also includes scoring of different cell types, including necrotic and apoptotic cells and other nuclear anomalies, it is in effect an MN cytome assay. The mussel MN cytome (MUMNcyt) assay protocol we describe here reports the recommended experimental design, sample size, cell preparation, cell fixation and staining methods. The protocol also includes criteria and photomicrographs for identifying different cell types and scoring criteria for micronuclei (MNi) and nuclear buds. The complete procedure requires approximately 10 h for each experimental point/sampling station (ten animals).  相似文献   

10.
11.
Chromatin immunoprecipitation (ChIP) is a powerful tool for the characterization of covalent histone modifications and DNA-histone interactions in vivo. The procedure includes DNA-histone cross-linking in chromatin, shearing DNA into smaller fragments, immunoprecipitation with antibodies against the histone modifications of interest, followed by PCR identification of associated DNA sequences. In this protocol, we describe a simplified and optimized version of ChIP assay by reducing the number of experimental steps and isolation solutions and shortening preparation times. We include a nuclear isolation step before chromatin shearing, which provides a good yield of high-quality DNA resulting in at least 15 mug of DNA from each immunoprecipitated sample (from 0.2 to 0.4 g of starting tissue material) sufficient to test > or =25 genes of interest. This simpler and cost-efficient protocol has been applied for histone-modification studies of various Arabidopsis thaliana tissues and is easy to adapt for other systems as well.  相似文献   

12.
Polymer-oligonucleotide conjugates were synthesized from the amphiphilic block copolymer poly(tert-butylacrylamide-b-(N-acryloylmorpholine-co-N-acryloxysuccinimide)) using an original solid-phase DNA synthesis strategy. This method provided conjugates highly functionalized with oligonucleotides throughout the polymer chain. After purification, block copolymer-oligonucleotide conjugates were spotted on a multidetection microarray system developed by Apibio using a standard nanodroplet piezo inkjet spotting technique to develop the oligosorbent assay (OLISA). Two genotyping models (HLA-DQB1 and platelet glycoproteins [GPs]), which are particularly difficult to study with standard systems, were evaluated. For both models, block copolymer-oligonucleotide conjugates used as capture probes amplified the responses of in vitro diagnostic assays. The detection limit reached by using conjugates was estimated at 15 pM for a 219-bp DNA target (HLA-DQB1 model). Moreover, single nucleotide polymorphism was detected in the platelet GPs genotyping model. The use of polymer conjugates led to a significant improvement in both sensitivity and specificity of standard hybridization assays even when applied to complex biological models.  相似文献   

13.
No valid method is currently available to analyze the entire genome of sperm, including aneuploidies and structural chromosomal alterations. Here we describe the optimization and application of array-Comparative Genomic Hybridization (aCGH) on single human sperm. The aCGH procedure involves screening of the entire chromosome complement by DNA microarray allowing having a molecular karyotype, and it is currently used in research and in diagnostic clinical practice (prenatal diagnosis, pre-implantation genetic diagnosis), but it has never been applied on sperm. DNA from single human sperm isolated by micromanipulator was extracted, decondensed and amplified by whole-genome amplification (WGA) and then labeled, hybridized to BAC array, and scanned by microarray scanner. Application of this protocol to 129 single sperm from normozoospermic donors identified 7.8% of sperm with different genetic anomalies, including aneuploidies and gains and losses in different chromosomes (unbalanced sperm). On the contrary, of 130 single sperm from men affected by Hodgkin lymphoma at the end of three months of chemotherapy cycles 23.8% were unbalanced. Validation of the method also included analysis of 43 sperm from a man with a balanced translocation [46,XY,t(2;12)(p11.2;q24.31)], which showed gains and losses corresponding to the regions involved in the translocation in 18.6% of sperm and alterations in other chromosomes in 16.3% of sperm. Future application of this method might give important information on the biology and pathophysiology of spermatogenesis and sperm chromosome aberrations in normal subjects and in patients at higher risk of producing unbalanced sperm, such as infertile men, carriers of karyotype anomalies, men with advanced age, subjects treated with chemotherapy, and partners of couples with repeated miscarriage and repeated failure during assisted reproduction techniques.  相似文献   

14.
M Ulvsb?ck  N K Spurr  A Lundwall 《Genomics》1991,11(4):920-924
The gene for beta-microseminoprotein MSMB has been studied by DNA hybridization and molecular cloning techniques. Comparative analysis of restriction endonuclease digests of the cloned gene and of leukocyte DNA strongly suggested that the gene is present in a single copy in the haploid human genome. By Southern blot analysis of DNA from somatic cell hybrids, the gene was assigned to chromosome 10. The coding nucleotides of the human gene are separated into four exons by relatively large introns. A related gene might be present in other mammals, birds, and amphibians as revealed by DNA hybridization under conditions of low stringency.  相似文献   

15.
Immunofluorescence microscopy is a valuable tool for analyzing protein expression and localization at a subcellular level thus providing information regarding protein function, interaction partners and its role in cellular processes. When performing sample fixation, parameters such as difference in accessibility of proteins present in various cellular compartments as well as the chemical composition of the protein to be studied, needs to be taken into account. However, in systematic and proteome-wide efforts, a need exists for standard fixation protocol(s) that works well for the majority of all proteins independent of subcellular localization. Here, we report on a study with the goal to find a standardized protocol based on the analysis of 18 human proteins localized in 11 different organelles and subcellular structures. Six fixation protocols were tested based on either dehydration by alcohols (methanol, ethanol or iso-propanol) or cross-linking by paraformaldehyde followed by detergent permeabilization (Triton X-100 or saponin) in three human cell lines. Our results show that cross-linking is essential for proteome-wide localization studies and that cross-linking using paraformaldehyde followed by Triton X-100 permeabilization successfully can be used as a single fixation protocol for systematic studies.  相似文献   

16.
Molecular methods are increasingly being used in the study of harmful microalgae; however, DNA extraction techniques have imposed limitations on the species and questions studied, with research primarily restricted to cultured specimens. Here we describe a simple method that merges two existing techniques for DNA extraction from live and preserved single dinoflagellate cells. DNA was successfully isolated from live single cells of Gambierdiscus toxicus Adachi et Fukuyo, 1979 and cells preserved using formalin/methanol fixation. This method supplements existing techniques and expands the scope of genetics studies conducted on dinoflagellates to include routine molecular analysis of single cells isolated from field samples.  相似文献   

17.
The development of the polymerase chain reaction (PCR), which routinely can amplify specific target sequences more than one billion-fold, has made it possible to produce readily detectable amounts of DNA from a few copies of very rare sequences. We have begun a study of mitochondrial myopathies with the purpose of developing a diagnostic test using PCR to amplify appropriate mitochondrial DNA (mtDNA) target sequences from small amounts of sample. We have developed a 15-min procedure for recovering mtDNA which can be amplified by PCR to detectable levels, from as little as 30 μl of blood or 5 μl of amniotic fluid. We have microscopically selected HL60 cells, and have found that 28 cycles of PCR allows the detection of mitochondrial targets from a single cell. Using micromanipulation techniques, we utilized this approach to analyze mtDNA from a single cell isolated from an 8-cell stage mouse blastocyst. Finally, a single cell cultured from a patient with Leber's hereditary optic neuropathy, a mitochondrial myopathy, provided sufficient mtDNA for detection of the single base substitution that leads to loss of a restriction endonuclease recognition site for SfaNI and generation of a site for MaeIII.  相似文献   

18.
The gene for β-microseminoprotein MSMB has been studied by DNA hybridization and molecular cloning techniques. Comparative analysis of restriction endonuclease digests of the cloned gene and of leukocyte DNA strongly suggested that the gene is present in a single copy in the haploid human genome. By Southern blot analysis of DNA from somatic cell hybrids, the gene was assigned to chromosome 10. The coding nucleotides of the human gene are separated into four exons by relatively large introns. A related gene might be present in other mammals, birds, and amphibians as revealed by DNA hybridization under conditions of low stringency.  相似文献   

19.
We present a protocol for reliably detecting DNA copy number aberrations in a single human cell. Multiple displacement-amplified DNAs of a cell are hybridized to a 3,000-bacterial artificial chromosome (BAC) array and to an Affymetrix 250,000 (250K)-SNP array. Subsequent copy number calling is based on the integration of BAC probe-specific copy number probabilities that are estimated by comparing probe intensities with a single-cell whole-genome amplification (WGA) reference model for diploid chromosomes, as well as SNP copy number and loss-of-heterozygosity states estimated by hidden Markov models (HMM). All methods for detecting DNA copy number aberrations in single human cells have difficulty in confidently discriminating WGA artifacts from true genetic variants. Furthermore, some methods lack thorough validation for segmental DNA imbalance detection. Our protocol minimizes false-positive variant calling and enables uniparental isodisomy detection in single cells. Additionally, it provides quality assessment, allowing the exclusion of uninterpretable single-cell WGA samples. The protocol takes 5-7 d.  相似文献   

20.
DNA is the most accessible biologic material for obtaining information from the human genome because of its molecular stability and its presence in every nucleated cell. Currently, single nucleotide polymorphism genotyping and DNA methylation are the main DNA-based approaches to deriving genomic and epigenomic disease biomarkers. Upon the discontinuation of the Schleicher & Schuell IsoCode product (Dassel, Germany), which was a treated paper system to elute DNA from several biologic sources for polymerase chain reaction (PCR) analysis, a high-yielding DNA elution method was imperative. We describe here an improved procedure of the not fully validated Whatman pH-based elution protocol. Our DNA elution procedure from buccal cells collected in Whatman FTA cards (Whatman Inc., Florham Park, NJ) yielded approximately 4 microg of DNA from a 6-mm FTA card punch and was successfully applied for HLA-DQB1 genotyping. The genotypes showed complete concordance with data obtained from blood of the same subjects. The achieved high DNA yield from buccal cells suggests a potential cost-effective tool for genomic and epigenomic disease biomarkers development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号