首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
To identify the amyloid beta peptide (Abeta) 1-42-degrading enzyme whose activity is inhibited by thiorphan and phosphoramidon in vivo, we searched for neprilysin (NEP) homologues and cloned neprilysin-like peptidase (NEPLP) alpha, NEPLP beta, and NEPLP gamma cDNAs. We expressed NEP, phosphate-regulating gene with homologies to endopeptidases on the X chromosome (PEX), NEPLPs, and damage-induced neuronal endopeptidase (DINE) in 293 cells as 95- to 125-kDa proteins and found that the enzymatic activities of PEX, NEPLP alpha, and NEPLP beta, as well as those of NEP and DINE, were sensitive to thiorphan and phosphoramidon. Among the peptidases tested, NEP degraded both synthetic and cell-secreted Abeta1-40 and Abeta1-42 most rapidly and efficiently. PEX degraded cold Abeta1-40 and NEPLP alpha degraded both cold Abeta1-40 and Abeta1-42, although the rates and the extents of the digestion were slower and less efficient than those exhibited by NEP. These data suggest that, among the endopeptidases whose activities are sensitive to thiorphan and phosphoramidon, NEP is the most potent Abeta-degrading enzyme in vivo. Therefore, manipulating the activity of NEP would be a useful approach in regulating Abeta levels in the brain.  相似文献   

3.
We studied the effects of the neutral endopeptidase (NEP) inhibitor thiorphan (1.7 mg/kg iv) and the angiotensin-converting enzyme (ACE) inhibitor captopril (5.7 mg/kg iv) on airway responses to rapid intravenous infusions of neurokinin A (NKA) and neurokinin B (NKB) in anesthetized, mechanically ventilated guinea pigs. The dose of NKA required to decrease pulmonary conductance to 50% of its base-line value (ED50GL) was fivefold less (P less than 0.0001) in animals treated with thiorphan compared with controls. NKA1-8, a product resulting from cleavage of NKA by NEP, had no bronchoconstrictor activity. Similar results were obtained by using NKB as the bronchoconstricting agent. Captopril had no significant effect on airway responses to NKA or NKB. In contrast, both thiorphan and captopril decrease the ED50GL for substance P (SP). We also compared the relative bronchoconstrictor potency of NKA, NKB, and SP. In control animals, the rank order of ED50GL values was NKA much less than NKB = SP. NKA also caused a more prolonged bronchoconstriction than SP or NKB. Thiorphan had no effect on the rank order of bronchoconstrictor potency, but in animals treated with captopril, the rank order of ED50GL values was altered to NKA less than SP less than NKB. These results suggest that degradation of NKA and NKB by NEP but not by ACE is an important determinant of the bronchoconstriction induced by these peptides. The degradation by ACE of SP but not NKA or NKB influences the observed relative potency of the three tachykinins as bronchoactive agents.  相似文献   

4.
M. Benuck  M.J. Berg  N. Marks 《Life sciences》1981,28(23):2643-2650
Peptidyl dipeptidase activity distinct from the angiotensin converting enzyme (EC 3.4.15.1) was isolated from membrane fractions of rabbit kidney and lung. The enzyme cleaved Leu-enkephalin at the Gly-Phe bond, releasing Tyr-Gly-Gly and Phe-Leu, and also acted on bradykinin releasing the terminal dipeptide Phe-Arg. In contrast to the converting enzyme, however, this peptidyl dipeptidase did not act on angiotensin I, or on hippuryl His-Leu, nor was it inhibited by captopril (SQ 14225) or by SQ 20881. Kinetic studies indicated a Km for the kidney enzyme of 80 μM with Leu-enkephalin as a substrate. Our findings indicate that more than one enzyme is present in membrane preparations of lung and kidney inactivating enkephalin, and suggest a role for these enzymes in the peripheral actions of opiate and related peptides.  相似文献   

5.
Cultured bovine pulmonary artery endothelial cells contain a second peptidyl dipeptidase, distinct from angiotensin-converting enzyme, present in an inactive form associated with a non-dialyzable inhibitor. Partial purification by glycine affinity chromatography separates enzyme from inhibitor to yield a preparation which hydrolyzes angiotensin-1, bradykinin, substance P, atriopeptin-2, enkephalin and Hip-His-Leu. This enzyme is resistant to inhibition by lisinopril, captopril, thiorphan, phosphoramidon, soybean trypsin inhibitor, PMSF and aminopeptidase and carboxypeptidase inhibitors, but is inhibited by EDTA.  相似文献   

6.
A new hexapeptide CMC-Ala-Gly-Gly-Trp-Phe-Arg was used as a substrate for assay of endothelin-converting (ECE; EC 3.4.24.71) and angiotensin-converting (ACE; EC 3.4.15.1) enzymes and of neutral endopeptidase (NEP; EC 3.4.24.11). The specific inhibitors lisinopril (for ACE) and thiorphan (for NEP) were used for discrimination between activities of these enzymes.  相似文献   

7.
A peptidyl dipeptidase-4 (bacterial PDP-4) was purified to near homogeneity from a supernatant of Pseudomonas maltophilia extracellular medium. Bacterial PDP-4 is a single-polypeptide-chain enzyme, 82 kDa, with an alkaline isoelectric point. Peptides susceptible to hydrolysis by bacterial PDP-4 include angiotensin 1, bradykinin, enkephalins, atriopeptin 2, and smaller synthetic peptides. N-acylated tripeptides are hydrolyzed, but free tripeptides are not. A free carboxy terminus is required for hydrolysis. Peptides with ultimate and penultimate Pro residues are not hydrolyzed. The enzyme does not require an anion for activity. Bacterial PDP-4 was inhibited by EDTA and the dipeptide Phe-Arg. Thiorphan was an inhibitor only at levels well above those required for inhibition of neutral metalloendopeptidase (NEP), an enzyme for which thiorphan is specific. A second NEP and thermolysin inhibitor, phosphoramidon, did not inhibit bacterial PDP-4. The potent angiotensin-converting enzyme inhibitor lisinopril was not inhibitory. Bacterial PDP-4 is distinguished from a similar enzyme from Escherichia coli, which is not susceptible to EDTA inhibition, and one from Corynebacterium equi, which hydrolyzes free tripeptides. These data indicate that the bacterial PDP-4 catalytic site is unlike those of other enzymes that function either wholly or in part as peptidyl dipeptidases.  相似文献   

8.
Neprilysin (neutral endopeptidase, enkephalinase, CALLA, CD10, NEP) is a regulatory Zn metallopeptidase expressed in the brush border membranes of the kidney and has been found in porcine chondrocytes and rat articular cartilage as well as other cell types and tissues. Although its function in cartilage is not currently known, previous observations of high levels of NEP enzymatic activity in the synovial fluid of arthritic patients and on the chondrocyte membranes of human osteoarthritic cartilage have led to the hypothesis that NEP is involved in the inflammation or degradation pathways in articular cartilage. Our study localized endogenous NEP to the membranes of mature bovine articular chondrocytes in a tissue explant model and demonstrated that the addition of soluble recombinant NEP (sNEP) to the culture medium of bovine cartilage explants leads to the degradation of aggrecan through the action of aggrecanase. A 6-day exposure to sNEP was necessary to initiate the degradation, suggesting that the chondrocytes were responding in a delayed manner to an altered composition of regulatory peptides. This NEP-induced degradation was completely inhibited by the NEP inhibitors thiorphan and phosphoramidon. These results suggest that NEP is present as a transmembrane enzyme on articular chondrocytes where it can cleave regulatory peptides and lead to the induction of aggrecanase.  相似文献   

9.
The closely related metalloendopeptidases EC (EP24.15; thimet oligopeptidase) and 24.16 (EP24.16; neurolysin) cleave a number of vasoactive peptides such as bradykinin and neurotensin in vitro. We have previously shown that hypotensive responses to bradykinin are potentiated by an inhibitor of EP24.15 and EP24.16 (26), suggesting a role for one or both enzymes in bradykinin metabolism in vivo. In this study, we have used selective inhibitors that can distinguish between EP24.15 and EP24.16 to determine their activity in cultured endothelial cells (the transformed human umbilical vein endothelial hybrid cell line EA.hy926 or ovine aortic endothelial cells). Endopeptidase activity was assessed using a specific quenched fluorescent substrate [7-methoxycoumarin-4-acetyl-Pro-Leu-Gly-d-Lys(2,4-dinitrophenyl)], as well as the peptide substrates bradykinin and neurotensin (assessed by high-performance liquid chromatography with mass spectroscopic detection). Our results indicate that both peptidases are present in endothelial cells; however, EP24.16 contributes significantly more to substrate cleavage by both cytosolic and membrane preparations, as well as intact cells, than EP24.15. These findings, when coupled with previous observations in vivo, suggest that EP24.16 activity in vascular endothelial cells may play an important role in the degradation of bradykinin and/or other peptides in the circulation.  相似文献   

10.
Abstract Zinc metallopeptidases of bacterial pathogens are widely distributed virulence factors and represent promising pharmacological targets. In this work, we have characterized Zmp1, a zinc metallopeptidase identified as a virulence factor of Mycobacterium tuberculosis and belonging to the neprilysin (NEP; M13) family, whose X-ray structure has been recently solved. Interestingly, this enzyme shows an optimum activity toward a fluorogenic substrate at moderately acidic pH values (i.e., 6.3), which corresponds to those reported for the Mtb phagosome where this enzyme should exert its pathological activity. Substrate specificity of Zmp1 was investigated by screening a peptide library. Several sequences derived from biologically relevant proteins were identified as possible substrates, including the neuropeptides bradykinin, neurotensin, and neuropeptide FF. Further, subsequences of other small bioactive peptides were found among most frequently cleaved sites, e.g., apelin-13 and substance P. We determined the specific cleavage site within neuropeptides by mass spectrometry, observing that hydrophobic amino acids, mainly phenylalanine and isoleucine, are overrepresented at position P1'. In addition, the enzymatic mechanism of Zmp1 toward these neuropeptides has been characterized, displaying some differences with respect to the synthetic fluorogenic substrate and indicating that the enzyme adapts its enzymatic action to different substrates.  相似文献   

11.
Inhibition of intrarenal neutral endopeptidase 24:11 (NEP) increases the natriuretic response to infused atrial natriuretic peptide (ANP). In various models of canine heart failure, angiotensin and kinins have been shown to modulate ANP and (or) NEP activity. In the present study, we examined possible modulators of NEP activity in normal dogs by infusing various agents into the left renal artery (or by denervating the left kidney) and comparing the response of this kidney with that of the contralateral one following the combined intravenous infusion of Squibb 28603 (a potent NEP inhibitor) and ANP (75 ng.kg-1.min-1). Four dogs received angiotensin (1.5 ng.kg-1.min-1) into the left renal artery, 8 dogs received saralasin (5 micrograms/min), 5 dogs received noradrenaline (2 micrograms/min), and 6 dogs received bradykinin (3 micrograms/min). Five dogs underwent left renal denervation. Angiotensin inhibited sodium excretion following the NEP inhibitor alone and after the NEP inhibitor plus ANP. Saralasin augmented the natriuretic response. None of the other protocols influenced sodium excretion. We conclude that angiotensin may modulate either the enzymatic degradation of ANP or influence its renal tubular effects.  相似文献   

12.
Increased expression of renal neutral endopeptidase in severe heart failure   总被引:4,自引:0,他引:4  
The enzyme neutral endopeptidase (NEP; EC 3.4.24.11) cleaves several vasoactive peptides such as the atrial natriuretic peptide (ANP). ANP is a hormone of cardiac origin with diuretic and natriuretic actions. Despite elevated circulating levels of ANP, congestive heart failure (CHF) is characterized by progressive sodium and water retention. In order to elucidate the loss of natriuretic and diuretic properties of ANP in CHF we analyzed activity, protein concentrations, mRNA and immunostaining of NEP in kidneys of different models of severe CHF in the rat.CHF was induced by either aortocaval shunt, aortic banding or myocardial infarction in the rat. All models were defined by increased left ventricular end-diastolic pressure and decreased contractility. The diminished effectiveness of ANP was reflected by reduced cGMP/ANP ratio in animals with shunt or infarction.Renal NEP activity was increased in rats with aortocaval shunt (203 +/- 7%, p < 0.001), aortic banding (184 +/- 11%, p < 0.001) and infarction (149 +/- 10%, p < 0.005). Western blot analysis revealed a significant increase in renal NEP protein content in two models of CHF (shunt: 214 +/- 57%, p < 0.05; infarction: 310 +/- 53 %, p < 0.01). The elevated protein expression was paralleled by a threefold increase in renal NEP-mRNA level in the infarction model.The increased renal NEP protein expression and activity may lead to enhanced degradation of ANP and may contribute to the decreased renal response to ANP in heart failure. Thus, the capacity to counteract sodium and water retention, would be diminished. The increased renal NEP activity may therefore be a hitherto unknown factor in the progression of CHF.  相似文献   

13.
As intact macrophages inactivated bradykinin, the subcellular localization of the bradykinin-inactivating activity was studied using guinea-pig macrophages. The bradykinin-inactivating activity was found to be present in membrane and cytosol fractions but not in granular and nuclear fractions. The bradykinin-inactivating activity of the membrane fraction was inhibited by captopril, a specific inhibitor of angiotensin I-converting enzyme, whereas that of the cytosol fraction was hardly inhibited by various proteinase inhibitors used. Angiotensin I-converting enzyme activity was located predominantly in the membrane fraction and its activity was inhibited by captopril. Angiotensin I-converting enzyme activity measured with a synthetic substrate was competitively inhibited by bradykinin, suggesting that bradykinin is a possible substrate for macrophage angiotensin I-converting enzyme. When macrophages were modified chemically by diazotized sulfanilic acid, a poorly permeant reagent, both the bradykinin-inactivating activity and the angiotensin I-converting enzyme activity of macrophages decreased significantly without any inhibition of the cytosol bradykinin-inactivating activity. These findings seem to suggest that the angiotensin I-converting enzyme would be responsible for the inactivation of bradykinin in intact macrophages.  相似文献   

14.
We examined the substrate specificity of the carboxydipeptidase activity of neprilysin (NEP) using fluorescence resonance energy transfer (FRET) peptides containing ortho-aminobenzoyl (Abz) and 2,4-dinitrophenyl (Dnp) as a donor/acceptor pair. Two peptide series with general sequences Abz-RXFK(Dnp)-OH and Abz-XRFK(Dnp)-OH (X denotes the position of the altered amino acid) were synthesized to study P1 (cleavage at the X-F bond) and P2 (cleavage at R-F bond) specificity, respectively. In these peptides a Phe residue was fixed in P1' to fulfill the well-known NEP S1' site requirement for a hydrophobic amino acid. In addition, we explored NEP capability to hydrolyze bradykinin (RPPGFSPFR) and its fluorescent derivative Abz-RPPGFSPFRQ-EDDnp (EDDnp=2,4-dinitrophenyl ethylenediamine). The enzyme acts upon bradykinin mainly as a carboxydipeptidase, preferentially cleaving Pro-Phe over the Gly-Phe bond in a 9:1 ratio, whereas Abz-RPPGFSPFRQ-EDDnp was hydrolyzed at the same bonds but at an inverted proportion of 1:9. The results show very efficient interaction of the substrates' C-terminal free carboxyl group with site S2' of NEP, confirming the enzyme's preference to act as carboxydipeptidase at substrates with a free carboxyl-terminus. Using data gathered from our study, we developed sensitive and selective NEP substrates that permit continuous measurement of the enzyme activity, even in crude tissue extracts.  相似文献   

15.
Recent reports presented contradictory results regarding the catabolism of mature atrial (ANP) and brain (BNP) natriuretic peptides in circulation. Especially the role of neutral endopeptidase (NEP) in BNP degradation was conversely discussed. Our present in vitro-studies characterize the NEP-dependent metabolism of ANP and BNP in different tissues via HPLC-analysis using NEP-deficient mice and specific NEP inhibitors. Our results show a strong tissue-dependent degradation pattern of both peptides, which are not only due to the different NEP activities in these tissues. Whereas NEP rapidly degraded ANP, it had no influence in BNP-metabolism. Additional experiments with purified NEP confirmed this result. Moreover, we describe a degradation of ANP and BNP in NEP-deficient- and NEP-inhibited membranes. Consequently, we postulate the existence of at least one further natriuretic peptide (NP) degrading enzyme, which has not been characterized yet. Thus, the commonly accepted model of the natriuretic peptide system with NEP as the central degrading peptidase has to be partly revised. Moreover, the NEP-independent BNP degradation provides an effective means for achieving a beneficial BNP increase in cardiovascular pathology by inhibiting the assumed novel NP-degrading peptidase(s).  相似文献   

16.
The follicular fluid of porcine ovaries contains a metalloenzyme capable of hydrolyzing the synthetic substrate, benzyloxycarbonyl-Val-Lys-Met-MCA. This enzyme was purified by ammonium sulfate fractionation followed by column chromatography on DEAE-cellulose, CM-cellulose, Zn(2+)-chelating Cellulofine, and Diol-300 gel-filtration columns. The molecular weight of the purified enzyme was estimated to be 170,000 by SDS-PAGE and 400,000 by gel-filtration analysis, suggesting that the native enzyme is a dimer of the 170-kDa subunit polypeptide. The enzyme activity was drastically enhanced by the presence of chloride ion, and strongly inhibited by captopril and bradykinin potentiator B. A 9-residue peptide containing a processing site of human amyloid precursor protein was degraded by its dipeptidyl carboxypeptidase activity. Furthermore, the purified protein was recognized by specific antibody raised against human angiotensin-converting enzyme. The enzyme rapidly degraded bradykinin in vitro. These results indicate that benzyloxycarbonyl-Val-Lys-Met-MCA-hydrolyzing enzyme is a porcine angiotensin-converting enzyme, and that the enzyme may play a role in bradykinin turnover within the follicles of porcine ovaries.  相似文献   

17.
Angiotensin-converting enzyme (ACE) plays a major role in the metabolism of bradykinin, angiotensin, and neuropeptides, which are all implicated in inflammatory airway diseases. The activity of ACE, which is localized on the luminal surface of endothelial cells (EC), has been well documented in pulmonary EC; however, few data exist regarding the relative activity of ACE in the airway vasculature. Therefore, we measured ACE activity in cultured EC from the sheep bronchial artery and bronchial mucosa (microvascular) and compared it with pulmonary artery EC. The baseline level of total ACE activity (cellular plus secreted) was significantly greater in bronchial microvascular EC (1.24 +/- 0.24 mU/106 cells) compared with bronchial artery EC (0.59 +/- 0.15 mU/106 cells; P < 0.05) and comparable to pulmonary artery EC (1.12 +/- 0.14 mU/106 cells; P > 0.05). Measured ACE activity secreted into culture medium for each cell type was 64-74% of total activity and did not differ among the three EC types (P = 0.17). Hydrocortisone (10 microg/ml; 48-72 h) treatment resulted in a significant increase in ACE activity in bronchial EC. Likewise, TNF-alpha (0.1 ng/ml) treatment markedly increased ACE activity in all cell lysates (P < 0.05). We confirmed the importance of ACE activity in vivo since, at the highest dose of bradykinin studied (10-8 M), bronchial artery pressure at constant flow showed a greater decrease after captopril treatment (36% before vs. 60% after; P = 0.05). These results demonstrate high ACE expression of the bronchial microvasculature and suggest an important regulatory role for ACE in the metabolism of kinin peptides known to contribute to airway pathology.  相似文献   

18.
Skidgel RA  Erdös EG 《Peptides》2004,25(3):521-525
Our investigations started when synthetic bradykinin became available and we could characterize two enzymes that cleaved it: kininase I or plasma carboxypeptidase N and kininase II, a peptidyl dipeptide hydrolase that we later found to be identical with the angiotensin I converting enzyme (ACE). When we noticed that ACE can cleave peptides without a free C-terminal carboxyl group (e.g., with a C-terminal nitrobenzylamine), we investigated inactivation of substance P, which has a C-terminal Met(11)-NH(2). The studies were extended to the hydrolysis of the neuropeptide, neurotensin and to compare hydrolysis of the same peptides by neprilysin (neutral endopeptidase 24.11, CD10, NEP). Our publication in 1984 dealt with ACE and NEP purified to homogeneity from human kidney. NEP cleaved substance P (SP) at Gln(6)-Phe(7), Phe(7)[see text]-Phe(8), and Gly(9)-Leu(10) and neurotensin (NT) at Pro(10)-Tyr(11) and Tyr(11)-Ile(12). Purified ACE also rapidly inactivated SP as measured in bioassay. HPLC analysis showed that ACE cleaved SP at Phe(8)-Gly(9) and Gly(9)-Leu(10) to release C-terminal tri- and dipeptide (ratio = 4:1). The hydrolysis was Cl(-) dependent and inhibited by captopril. ACE released only dipeptide from SP free acid. ACE hydrolyzed NT at Tyr(11)-Ile(12) to release Ile(12)-Leu(13). Then peptide substrates were used to inhibit ACE hydrolyzing Fa-Phe-Gly-Gly and NEP cleaving Leu(5)-enkephalin. The K(i) values in microM were as follows: for ACE, bradykinin = 0.4, angiotensin I = 4, SP = 25, SP free acid = 2, NT = 14, and Met(5)-enkephalin = 450, and for NEP, bradykinin = 162, angiotensin I = 36, SP = 190, NT = 39, Met(5)-enkephalin = 22. These studies showed that ACE and NEP, two enzymes widely distributed in the body, are involved in the metabolism of SP and NT. Below we briefly survey how NEP and ACE in two decades have gained the reputation as very important factors in health and disease. This is due to the discovery of more endogenous substrates of the enzymes and to the very broad and beneficial therapeutic applications of ACE inhibitors.  相似文献   

19.
Neprilysin (NEP, neutral endopeptidase, EC3.4.24.11), a zinc metallopeptidase expressed on the surface of endothelial cells, influences vascular homeostasis primarily through regulated inactivation of natriuretic peptides and bradykinin. Earlier in vivo studies reporting on the anti-atherosclerotic effects of NEP inhibition and on the atheroprotective effects of flow-associated laminar shear stress (LSS) have lead us to hypothesize that the latter hemodynamic stimulus may serve to down-regulate NEP levels within the vascular endothelium. To address this hypothesis, we have undertaken an investigation of the effects of LSS on NEP expression in vitro in bovine aortic endothelial cells (BAECs), coupled with an examination of the signalling mechanism putatively mediating these effects. BAECs were exposed to physiological levels of LSS (10 dynes/cm2, 24 h) and harvested for analysis of NEP expression using real-time PCR, Western blotting, and immunocytochemistry. Relative to unsheared controls, NEP mRNA and protein were substantially down-regulated by LSS (≥50%), events which could be prevented by treatment of BAECs with either N-acetylcysteine, superoxide dismutase, or catalase, implicating reactive oxygen species (ROS) involvement. Employing pharmacological and molecular inhibition strategies, the signal transduction pathway mediating shear-dependent NEP suppression was also examined, and roles implicated for Gβγ, Rac1, and NADPH oxidase activation in these events. Treatment of static BAECs with angiotensin-II, a potent stimulus for NADPH oxidase activation, mimicked the suppressive effects of shear on NEP expression, further supporting a role for NADPH oxidase-dependent ROS production. Interestingly, inhibition of receptor tyrosine kinase signalling had no effect. In conclusion, we confirm for the first time that NEP expression is down-regulated in vascular endothelial cells by physiological laminar shear, possibly via a mechanotransduction mechanism involving NADPH oxidase-induced ROS production.  相似文献   

20.
Increased arterial endothelial cell permeability (ECP) is considered an initial step in atherosclerosis. Atrial natriuretic peptide (ANP) which is rapidly degraded by neprilysin (NEP) may reduce injury-induced endothelial cell leakiness. Omapatrilat represents a first in class of pharmacological agents which inhibits both NEP and angiotensin converting enzyme (ACE). We hypothesized that ANP prevents thrombin-induced increases of ECP in human aortic ECs (HAECs) and that omapatrilat would reduce aortic leakiness and atherogenesis and enhance ANP mediated vasorelaxation of isolated aortas. Thrombin induced ECP determined by I125 albumin flux was assessed in HAECs with and without ANP pretreatment. Next we examined the effects of chronic oral administration of omapatrilat (12 mg/kg/day, n = 13) or placebo (n = 13) for 8 weeks on aortic leakiness, atherogenesis and ANP-mediated vasorelaxation in isolated aortas in a rabbit model of atherosclerosis produced by high cholesterol diet. In HAECs, thrombin-induced increases in ECP were prevented by ANP. Omapatrilat reduced the area of increased aortic leakiness determined by Evans-blue dye and area of atheroma formation assessed by Oil-Red staining compared to placebo. In isolated arterial rings, omapatrilat enhanced vasorelaxation to ANP compared to placebo with and without the endothelium. ANP prevents thrombin-induced increases in ECP in HAECs. Chronic oral administration of omapatrilat reduces aortic leakiness and atheroma formation with enhanced endothelial independent vasorelaxation to ANP. These studies support the therapeutic potential of dual inhibition of NEP and ACE in the prevention of increased arterial ECP and atherogenesis which may be linked to the ANP/cGMP system.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号