首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mouse Td ho (Tattered-Hokkaido) was described as being allelic with Td in our previous study. Both allelic genes, which are located at the same position on the centromere of the X Chromosome (Chr), generate similar phenotypes such as male embryonic lethality, and in heterozygous females, hyperkeratotic skin, skeletal abnormalities, and growth retardation. The emopamil binding protein gene (Ebp) emerged as a candidate for mouse Td ho mutation, since the Td gene was recently determined to result from a point mutation of Ebp. In this study, Ebp cDNA of Td ho was demonstrated to possess double point mutations that cause two amino acid changes from Leu to Pro at position 132 and from Ser to Cys at 133 in EBP protein. EBP participates in cholesterol biosynthesis, and cholest-8(9)-en-3β-ol was found to be increased in the plasma of Td ho adult females but not in that of normal mice. From these results, a loss of function was expected for the EBP protein encoded by Td ho . Both the phenotypes and genes responsible for Td ho as well as Td are quite similar to those of human X-linked chondrodysplasia punctata (CDPX2). Received: 9 January 2001 / Accepted: 1 April 2001  相似文献   

2.
3.
Nearly all F1 male mice with Dh/+ genotype between DDD female and DH–Dh/+ male die within a few days after birth; however, this is not observed in the reciprocal cross. The F1 Dh/+ males usually exhibit growth retardation prior to death. To identify the putative genetic locus or loci in DDD genome that cause the abnormalities in the presence of the Dh, a linkage analysis was carried out in backcross progeny of a cross of (DDD female × DH–+/+ male) F1 female × DH–Dh/+ male. Appearance of growth retardation was examined from the day of birth, and both growth-retarded and normally weaned Dh/+ males were genotyped for microsatellite marker loci spanning autosomes and the X Chromosome (Chr). Significant evidence for linkage was identified on the distal edge of the X Chr, near the microsatellite marker of DXMit135. Furthermore, among mice from DDD female × reciprocal F1 Dh/+ male produced between DH–Dh/+ and progenitor strains (C57BL/6J, C3H/HeJ and BALB/cA), only the progeny from ♀DDD ×♂(♀DH–Dh/+×♂C3H/HeJ) F1 Dh/+ male did not show any lethality and/or growth retardation. Thus, the lethality in F1 Dh/+ males accompanied by growth retardation is caused by the interactions between the Dh gene, X Chr, and Y Chr. Based on the CAG repeat sequence length polymorphism among Mus musculus musculus Sry gene, C3H/HeJ was different from C57BL/6J, BALB/cA, and DH. These data suggest that there are at least two functional types of Y Chr in Mus musculus musculus. Received: 22 January 1999 / Accepted: 5 April 1999  相似文献   

4.
X-linked mutant alleles associated with prenatal male lethality are difficult to analyze because only heterozygous females are readily available for study. Genomic analysis of the mutant allele is facilitated by the construction of somatic cell hybrids because this enables the segregation of the X Chromosomes (Chrs) that carry the mutant and wild-type alleles. We describe here a method that ensures that the X Chr carrying the mutant allele is retained in somatic cell hybrids in an active selectable state. This is achieved by mating heterozygous females to males that carry a mutation at the hypoxanthine phosphoribosyl transferase (Hprt) locus. The resultant F1 females are compound heterozygotes, and when cells from these females are fused to HPRT− Chinese hamster cells and subjected to selection in HAT medium, the only survivors are those hybrid cells that retain an active X Chr carrying the mutant allele together with the wild-type Hprt allele. We use hybrids constructed by this method to demonstrate that there are no gross deletions or genomic rearrangements present in three mottled alleles associated with prenatal male lethality. Received: 8 January 1996 / Accepted: 29 February 1996  相似文献   

5.
Hybrid sterility is a common postzygotic reproductive isolation mechanism that appears in the early stages of speciation of various organisms. Mus musculus musculus and Mus musculus domesticus represent two recently separated mouse subspecies particularly suitable for genetic studies of hybrid sterility. Here we show that the introgression of Chr X of M. m. musculus origin (PWD/Ph inbred strain, henceforth PWD) into the genetic background of the C57BL/6J (henceforth B6) inbred strain (predominantly of M. m. domesticus origin) causes male sterility. The X-linked hybrid sterility is associated with reduced testes weight, lower sperm count, and morphological abnormalities of sperm heads. The analysis of recombinant Chr Xs in sterile and fertile males as well as quantitative trait locus (QTL) analysis of several fertility parameters revealed an oligogenic nature of the X-linked hybrid sterility. The Hstx1 locus responsible for male sterility was mapped near DXMit119 in the central part of Chr X. To ensure full sterility, the PWD allele of Hstx1 has to be supported with the PWD allelic form of loci in at least one proximal and/or one distal region of Chr X. Mapping and cloning of Hstx1 and other genes responsible for sterility of B6–XPWDYB6 males could help to elucidate the special role of Chr X in hybrid sterility and consequently in speciation.  相似文献   

6.
We report here a novel X-linked mutant, named faint lined (Fnl), which was discovered in the litter of an irradiated 3H1 male (Dr Bruce Cattanach, personal communication). The mutation is associated with fine dorsal striping in affected heterozygous females and prenatal lethality in males. Approximately 50% of Fnl/+ females die in utero and surviving animals have a reduced weight at birth and weaning. Histological studies failed to reveal the underlying basis of the phenotype or any gross structural abnormalities in internal organs (Fnl/+ x Mus spretus) F1 affected females were backcrossed to 3H1 males and haplotype analysis positioned Fnl in the proximal region of the mouse X chromosome distal to Ant2 and proximal to Hprt. Therefore, Fnl lies within a defined conserved segment and its human homologue can be predicted to lie in the ANT2-HPRT region in Xq25. Further genetic resolution of co-segregating markers flanking Fnl established that Fnl lies in a 7.6 +/- 2.6 cM interval between DXMit50 and DXMit82.  相似文献   

7.
It was determined if the sensitivity inmacular mutant mouse to copper-induced toxicity was affected by sex or age. The sensitivity in 6–8-d-old or 3–4-wk-oldmacular mutant mouse to copper-induced toxicity was not affected by sex. However, 8–9-wk-old mutant females were more sensitive to copper-induced toxicity than mutant males. Furthermore, 6–8-d-old or 3–4-wk-old mutant males were more sensitive to copper-induced toxicity than 8–9-wk-old mutant males. However, age-related differences in sensitivity to copper-induced toxicity did not occur significantly in mutant females. On the other hand, in the case of normal mice, the sensitivity in 6–8-d-old or 3–4-wk-old mice to copper-induced toxicity was not also affected by sex. In contrast to mutant, however, 8–9-wk-old normal males were more sensitive to copper-induced toxicity than 8–9-wk-old normal females. Adult males were also more sensitive to copper-induced toxicity than 6–8-d-old or 3–4-wk-old males. However, age-related differences in sensitivity to copper-induced toxicity did not occur significantly in normal females. These results indicate that sex- and age-related differences in the copper-induced toxicity exist inmacular mutant mice.  相似文献   

8.
The Drosophila melanogaster gene suppressor of position-effect variegation 3-9 [Su(var)3-9] encodes a component of heterochromatin with a chromodomain and a SET domain. Here, we describe the cloning of a mouse homolog called Suv39h1 and describe the genomic organization, pattern of expression, and genetic map position. The genomic locus is approximately 10 kb and consists of five exons. The first two exons, 1a and 1b, are alternative first exons and are followed by three common exons. Two mRNAs, encompassing exon 1a or 1b, encode protein isoforms with distinct amino termini, but which are otherwise identical, including the chromodomain and SET domain. Interestingly, only one of the isoforms contains a putative nuclear localization signal. Consistent with other genes encoding proteins associated with chromatin structure, Suv39h1 is expressed in a widespread manner. Interspecific backcross mapping localized Suv39h1 near tattered (Td) and scurfy (sf) on the proximal X Chromosome (Chr). However, analysis of Td/Y and sf/Y mutant stocks indicated that Suv39h1 is not responsible for either mutant phenotype. Received: 27 August 1999 / Accepted: 24 November 1999  相似文献   

9.
An autosomal recessive deafness mutant was discovered in our colony of Zucker (ZUC) rats. These mutants behave like shaker-waltzer deafness mutants, and their inner ear pathology classifies them among neuroepithelial degeneration type of deafness mutants. To determine whether this rat deafness mutation (−) defines a unique locus or one that has been previously described, we mapped its chromosomal location. F2 progeny of (Pbrc:ZUC × BN/Crl) A/a B/b H/h+/− F1 rats were scored for coat color and behavioral phenotypes. Segregation analysis indicated that the deafness locus might be loosely linked with B on rat Chromosome (Chr) 5 (RNO5). Therefore, 40 −/− rats were scored for BN and ZUC alleles at four additional loci, D5Mit11, D5Mit13, Oprd1, and Gnb1, known to map to RNO5 or its homolog, mouse Chr 4 (MMU4). Linkage analysis established the gene order (cM distance) as D5Mit11–(19.3)–B–(17.9)–D5Mit13–(19.2)–Oprd1–(21.5) − (1.2) Gnb1, placing the deafness locus on distal RNO5. The position of the deafness locus on RNO5 is similar to that ofjerker (je) on MMU4; the phenotypes and patterns of inheritance of the deafness mutation and je are also similar. It seems likely that the mutation affects the rat homolog of je. The rat deafness locus should, therefore, be named jerker and assigned the gene symbol Je. Received: 13 June 1995 / Accepted: 4 January 1996  相似文献   

10.
We have performed a high-resolution linkage analysis for the conserved segment on distal mouse Chromosome (Chr) 8 that is homologous to human Chr 16q. The interspecific backcross used involved M. m. molossinus and an M. m. domesticus line congenic for an M. spretus segment from Chr 8 flanked by phenotypic markers Os (oligosyndactyly) and e, a coat colormarker. From a total of 682 N2 progeny, the 191 animals revealing a recombination event between these phenotypic markers were typed for 23 internal loci. The following locus order with distances in cM was obtained: (centromere)–Os–4.1–Mmp2–0.2–Ces1,Es1, Es22–1.2–Mt1,D8Mit15–2.2–Got2, D8Mit11–3.7–Es30–0.3–Es2, Es7–0.9–Ctra1,Lcat–0.3–Cdh1, Cadp, Nmor1, D8Mit12–0.2–Mov34–2.5–Hp,Tat–0.2–Zfp4–1.6–Zfp1,Ctrb–10.9–e. In a separate interspecific cross involving 62 meioses, Dpep1 was mapped together with Aprt and Cdh3 at 12.9 cM distal to Hp, Tat, to the vicinity of e. Our data give locus order for markers not previously resolved, add Mmp2 and Dpep1 as new markers on mouse Chr 8, and indicate that Ctra1 is the mouse homolog for human CTRL. Comparison of the order of 17 mouse loci with that of their human homologs reveals that locus order is well conserved and that the conserved segment in the human apparently spans the whole long arm of Chr 16. Received: 30 July 1996 / Accepted: 15 November 1996  相似文献   

11.
Rett syndrome (RTT) is a regressive developmental disorder characterized by motor and breathing abnormalities, anxiety, cognitive dysfunction and seizures. Approximately 95% of RTT cases are caused by more than 200 different mutations in the X‐linked gene encoding methyl‐CpG‐binding protein 2 (MeCP2). While numerous transgenic mice have been created modeling common mutations in MeCP2, the behavioral phenotype of many of these male and, especially, female mutant mice has not been well characterized. Thorough phenotyping of additional RTT mouse models will provide valuable insight into the effects of Mecp2 mutations on behavior and aid in the selection of appropriate models, ages, sexes and outcome measures for preclinical trials. In this study, we characterize the phenotype of male and female mice containing the early truncating MeCP2 R168X nonsense point mutation, one of the most common in RTT individuals, and compare the phenotypes to Mecp2 null mutants. Mecp2R168X mutants mirror many clinical features of RTT. Mecp2R168X/y males exhibit impaired motor and cognitive function and reduced anxiety. The behavioral phenotype is less severe and with later onset in Mecp2R168X/+ females. Seizures were noted in 3.7% of Mecp2R168X mutant females. The phenotype in Mecp2R168X/y mutant males is remarkably similar to our previous characterizations of Mecp2 null males, whereas Mecp2R168X/+ females exhibit a number of phenotypic differences from females heterozygous for a null Mecp2 mutation. This study describes a number of highly robust behavioral paradigms that can be used in preclinical drug trials and underscores the importance of including Mecp2 mutant females in preclinical studies .  相似文献   

12.
The inheritance of adiposity and related traits has been investigated in the obese, diabetes-prone KK/HlLt (KK) and the lean, normoglycemic C57BL/6J (B6) mouse strains, their F1 hybrids, and a large intercross generation. Adiposity index (AI) was defined as the sum of four fat depot weights divided by body weight. Both male and female KK mice were obese, but AI values averaged twofold higher in females than in males. In contrast, B6 females were slightly more lean than males. A genome-wide search revealed several qualitative trait loci (QTLs) affecting AI. The proximal region of Chromosome (Chr) 9 has a large effect on AI, with a much stronger effect in females (lod = 6.3) than in males (lod = 2.7). The data for females fit a model in which a dominant allele from KK increases AI by 30%, with the lod score peak falling between markers D9Mit66 and D9Mit328. This QTL has large effects on inguinal and mesenteric fat pad weights, with smaller effects on gonadal and retroperitoneal fat pads. The region of Chr 9 containing this QTL has extensive homology to human Chr 11q. An X-linked QTL affecting AI was evident in males (lod = 3.77), but not females (lod = 0.7). Exclusion of mesenteric fat from male AI resulted in an increased lod score (lod = 5.0) at 8 cM distal to DXMit166. A suggestive AI QTL (lod = 4.2), differentially affecting males, was localized to Chr 18 near the glucocorticoid receptor locus. A region of Chr 7 had a strong effect on body weight (lod = 6.9), a significant effect on inguinal fat% (lod = 4.4), and a suggestive effect on AI in females (lod = 4.1). Plasma leptin levels were associated with genotypes on Chr 9 (lod = 5.9) and Chr 7 (lod = 4.2). A region of Chr 1 had a suggestive effect on fasted blood glucose (lod = 3.6). Received: 23 March 1999 / Accepted: 2 June 1999  相似文献   

13.
The resistance to killing by free radicals of two mutants ofPhaffia rhodozyma was determined. Mutant 5–7 did not produce astaxanthin but produced β-carotene, while mutant 3–4 did not produce any carotenoid pigments. The resistance of mutant 5–7 was the same as that of the wild type but mutant 3–4 was rapidly killed. Carotenoid pigments increased the resistance to killing by free radicals. We investigated the effects of free radicals, generated by H2O2 and Fe2+ added to the medium, on wild-type cells and mutants ofP. rhodozyma. Unpigmented mutants of basidiomycetous yeasts (Rhodotorula spp. and others) are more susceptible to killing by UV-irradiation than the pigmented, wild-type strains. Therefore, we investigated the effect of free radicals on a similar basidiomycetous yeast,P. rhodozyma, a species of economic importance, in the biological production of astaxanthin.  相似文献   

14.
The genes for insulin-like growth factor 1 receptor (IGF1R), aggrecan (AGC1), β2-microglobulin (B2M), and an H6-related gene have been mapped to a single chicken microchromosome by genetic linkage analysis. In addition, a second H6-related gene was mapped to chicken macrochromosome 3. The Igf1r and Agc1 loci are syntenic on mouse Chr 7, together with Hmx3, an H6-like locus. This suggests that the H6-related locus, which maps to the chicken microchromosome in this study, is the homolog of mouse Hmx3. The IGF1R, AGC1, and B2M loci are located on human Chr 15, probably in the same order as found for this chicken microchromosome. This conserved segment, however, is not entirely conserved in the mouse and is split between Chr 7 (Igf1r-Agc) and 2 (B2m). This comparison also predicts that the HMX3 locus may map to the short arm of human Chr 15. The conserved segment defined by the IGF1R–AGC1–HMX3—B2M loci is approximately 21–35 Mb in length and probably covers the entire chicken microchromosome. These results suggest that a segment of human Chr 15 has been conserved as a chicken microchromosome. The significance of this result is discussed with reference to the evolution of the avian and mammalian genomes. Received: 7 December 1996 / Accepted: 7 February 1997  相似文献   

15.
A combination of FISH and RH mapping was used to study the evolution of sex chromosome genes in the pig. In total, 19 genes were identified, including 3 PAR genes (STS, KAL, PRK). The gene order of the porcine X Chromosome (Chr) closely resembled the human X Chr (PRK/STS/KAL–AMELX–EIF2s3X/ZFX–USP9X–DBX–SMCX), suggesting that the porcine X has undergone very little rearrangement during evolution. For the porcine Y Chr, two linkage groups of 10 NRY genes were found, and the following order was established: Ypter–(AMELY–EIF2S3Y/ZFY–USP9Y–DBY/UTY)–(TSPY–SMCY–UBE1Y–SRY)–CEN. This gene order showed greater conservation with the murine Y than with the human Y Chr. In addition, all porcine Y Chr genes mapped to Yp, which is similar to the mouse and included EIF2s3Y and UBE1Y, which are not present in humans. Interestingly, complete conservation of X/Y homologous gene order was found between the pig X and Y Chrs, indicating that the porcine Y Chr has not undergone extensive reorganisation with respect to the X. This suggests that the order of the X/Y homologous genes of the porcine X and Y Chrs may closely resemble the ancestral gene order of the eutherian sex chromosomes.  相似文献   

16.
17.
The RN locus in pigs has a major effect on the amount of stored glycogen in white muscle and affects meat quality. The fully dominant RN allele, associated with high glycogen content, occurs in the Hampshire breed. We have mapped the RN locus using a large half-sib family comprising one heterozygous RN /rn + Hampshire boar mated to homozygous rn +/rn + Swedish Landrace × Swedish Yorkshire sows. The segregation at the RN locus was inferred from data on glycolytic potential and residual glycogen in white muscle which both showed clear bimodal distributions. Highly significant evidence for genetic linkage was obtained against microsatellite markers on Chromosome (Chr) 15. Multipoint analysis revealed the order Sw1111–8.0–S0088–10.6–RN–4.8–Sw936,Sw906 (recombination estimates are given as Kosambi cM). Comparative mapping data imply that the human homolog of RN is located on Chr 2q. Received: 18 April 1995 / Accepted: 16 June 1995  相似文献   

18.
Two novel non-allelic mutants that were unable to fix nitrogen (Fix) were obtained after EMS (ethyl methyl sulfonate) mutagenesis of pea (Pisum sativum L.). Both mutants, SGEFix–1 and SGEFix–2, form two types of nodules: SGEFix–1 forms numerous white and some pink nodules, while mutant SGEFix–2 forms white nodules with a dark pit at the distal end and also some pinkish nodules. Both mutations are monogenic and recessive. In both lines the manifestation of the mutant phenotype is associated with the root genotype. White nodules of SGEFix–1 are characterised by hypertrophied infection threads and infection droplets, mass endocytosis of bacteria, abnormal morphological differentiation of bacteroids, and premature degradation of nodule symbiotic structures. The structure of the pink nodules of SGEFix–1 does not differ from that of the parental line, SGE. White nodules of SGEFix–2 are characterised by “locked” infection threads surrounded with abnormally thick plant cell walls. In these nodules there is no endocytosis of bacteria into host-cell cytoplasm. The pinkish nodules of SGEFix–2 are characterised by virtually undifferentiated bacteroids and premature degradation of nodule tissues. Thus, the novel pea symbiotic genes, sym40 and sym33, identified after complementation analysis in SGEFix–1 and SGEFix–2 lines, respectively, control early nodule developmental stages connected with infection thread formation and function. Received: 12 June 1998 / Accepted: 25 June 1998  相似文献   

19.
Lambda clones of mouse DNA from BALB/c and C57BL/10, each containing an array of telomere hexamers, were localized by FISH to a region close to the telomere of Chr 13. Amplification of mouse genomic DNA with primers flanking SSRs within the cloned DNA showed several alleles, which were used to type eight sets of RI strains. The two lambda clones contained allelic versions of the interstitial telomere array, Tel-rs4, which is 495 bp in C57BL/10 and which includes a variety of sequence changes from the consensus telomere hexamer. Comparison of the segregation of the amplification products of the SSRs with the segregation of other loci in an interspecies backcross (C57BL/6JEi × SPRET/Ei) F1× SPRET/Ei shows recombination suppression, possibly associated with ribosomal DNA sequences present on distal Chr 13 in Mus spretus, when compared with recombination in an interstrain backcross, (C57BL/6J × DBA/J) F1× C57BL/6J, and with the MIT F2 intercross. Analysis of recombination in females using a second interstrain backcross, (ICR/Ha × C57BL/6Ha) F1× C57BL/6Ha, also indicates recombination suppression when compared with recombination in males of the same strains, using backcross C57BL/6Ha × (ICR/Ha × C57BL/6Ha) F1. Thus, more than one cause may contribute to recombination suppression in this region. The combined order of the loci typed was D13Mit37–D13Mit30–D13Mit148–(D13Rp1, 2, 3, 4, Tel-rs4)–D13Mit53–D13Mit196–D13Mit77–(D13Mit78, 35). Data from crosses where apparently normal frequencies of recombination occur suggest that the telomere array is about 6 map units proximal to the most distal loci on Chr 13. This distance is consistent with evidence from markers identified in two YAC clones obtained from the region. Received: 24 September 1996/Accepted: 20 January 1997  相似文献   

20.
We describe six recessive autosomal male sterile mutations inDrosophila, generated by mobilization of single P-elements, exhibiting abnormal male courtship behavior. Detailed analysis of courtship behavior elicited by virgin wild type females indicated that five of the six mutants are affected in the early steps of courtship. The sixth mutant is blocked at the step of attempted copulation which occurs later in the courtship sequence. All of the mutants have normal olfactory responses and normal locomotor activity. No defect in the visual modality has been observed for the five mutants affected in the initiation of courtship. The mutant blocked at attempted copulation lacks the ‘on’ and ‘off’ transients, but this appears to be due to genetic background rather than the mutation itself. Abnormal spermatogenesis was observed in five of the mutants. Spermatogenic defects vary and include lesions in the proliferation of the germline, in meiosis, and in the differentiation and maturation of the spermatids into motile sperm.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号