首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
目的研究RunX3基因对造血干细胞自我更新和分化能力的影响。方法流式细胞术测定小鼠骨髓干细胞和外周血单个核细胞的比例;通过竞争性骨髓移植实验检测RunX3转基因小鼠骨髓干细胞的功能。结果移植后来源于RunX3-/-小鼠骨髓干细胞供体的外周血细胞占总外周血细胞的比例与野生对照鼠相比无明显差异,移植后来源于RunX3-/-小鼠骨髓干细胞供体的外周血中髓系细胞占总外周血髓系细胞的比例较野生型对照鼠高。结论RunX3基因缺失对骨髓造血干细胞的自我更新没有影响,但其可能参与了骨髓造血干细胞的分化过程。  相似文献   

2.
针对脐血源内皮祖细胞(endothelial progenitor cell,EPC)与造血干细胞(hematopoietic stem cell,HSC)联合移植方式进行研究,并探讨移植后的造血细胞重建及移植物抗宿主病(graft versus host disease,GVHD)的影响。构建人-鼠移植EPC与HSC模型,采用移植HSC的小鼠为参考对比,分析移植后的体内植入及造血重建状况,并分析小鼠有无GVHD相关症状,最后采用病理对GVHD进行实验验证。EPC与HSC联合移植小鼠组(n=10)的实验组,生存的平均时间约54 d,长时间生存率接近70%;单纯移植小鼠组(n=10)的实验组中,生存的平均时间约51 d,长时间生存率达到60%;EPC与HSC联合移植小鼠组与单纯移植小鼠组进行比较,生存时间有显著的增高趋势,但经统计学分析两者比较无显著差异性(p=0.314)。在血细胞恢复实验中,联合移植组相比较单纯组,随着时间的增加,HBG、WBC及PLT的恢复值均有增高趋势。联合移植组小鼠骨髓中人CD45比例为(18.21±10.57)%,单纯组骨髓中人CD45嵌合比例为(13.27±6.36)%,无明显统计学差异性(p=0.308);在联合移植组脾脏中的嵌合比例为(5.14±2.97)%,在单纯移植组比为(4.91±7.56)%,无显著统计学差异(p=0.840)。在联合移植组中检查到2只小鼠带有GVHD病症,表现是轻中度活动度明显减少和体重有下降趋势;单纯移植组检查到3只小鼠带有GVHD病症,表现为活动度下降、体重下降、弓背姿势及耸毛现象;共同点为带有GVHD症状的小鼠均有骨髓与小肠不同损伤情况。本研究初步认为脐血源内皮祖细胞与造血干细胞联合移植的方式,能够对移植后的造血系统重建及移植物抗宿主病产生一定的积极影响,但是效果并不显著。  相似文献   

3.
观察p18INK4C(p18)基因缺失对造血干细胞(HSC)在亚致死剂量照射小鼠体内长期植入的影响. 供体为p18基因缺失型(p18(/()纯系C57BL/6小鼠(CD45.2表型), 竞争性细胞来源于C57BL/6-Ly5.1(CD45.1/2)双表型小鼠, 受体为野生型(p18+/+)C57BL/6-Ly5.1(CD45.1)小鼠. 竞争性骨髓移植(cBMT)实验根据受体小鼠照射剂量的不同分为3个剂量组(10 Gy, 5 Gy和1 Gy). 供体细胞和竞争性细胞1:1混合后移植, 移植后采集外周血和骨髓细胞用流式细胞仪检测各细胞比例. 造血恢复移植实验: 移植后检测外周血白细胞计数评价移植后造血恢复速度. 10和5 Gy照射剂量组, 供体细胞和竞争性细胞成功植入, 而1 Gy照射剂量组无供体细胞植入. 无论在10 Gy或是5 Gy照射剂量情况下, 供体细胞在受体内的比例均高于竞争性细胞. 移植后6周, 10和5 Gy照射剂量时外周血中供体细胞比例分别为竞争性细胞的1.46±0.21倍和1.64±0.43倍, 14周时分别为竞争性细胞的1.84±0.25倍和2.00±0.49倍, 26周时分别为竞争性细胞的3.13±0.79倍和3.24±1.33倍. 移植后6个月, 10 Gy照射剂量时骨髓细胞中供体细胞比例为竞争性细胞的7.68±4.42倍, 5 Gy照射剂量时为竞争性细胞的10.83±2.98倍. 移植后6个月, 在10和5 Gy照射剂量组之间骨髓中造血细胞植入率相当, 分别为(85.53±8.71)%和(80.87±2.87)% (P = 0.457). p18(/(细胞与p18+/+细胞相比, 移植后造血恢复的速度相当. p18基因缺失可以显著增强HSC在亚致死剂量照射小鼠体内的长期植入能力.  相似文献   

4.
胚胎发育中,肝脏是一个重要的造血器官。近年来胎肝移植的临床应用重新引起了人们的关注。本文应用染色体的 C-带染色法研究了小鼠骨髓和胎肝造血干细胞在照射受体小鼠中的增殖能力与相互间的竞争作用。实验结果表明胎肝造血干细胞在成年骨髓中的植入率比较同样条件下的成年骨髓造血干细胞低,但胎肝造血干细胞比较成年骨髓造血干细胞具有更强的自我更新或增殖能力。在同种胎肝造血干细胞移植中,为了降低同种移植抗力,提高移植的胎肝造血干细胞在受体中的耐受性,移植前对受体作适当的免疫抑制处理是必要的。因此,克服个体发育屏障和移植免疫屏障是提高同种胎肝造血干细胞移植效果中两个重要的研究课题。  相似文献   

5.
目的研究制备人鼠肝组织嵌合小鼠模型。方法将人骨髓干细胞直接注射到一定日龄胎鼠肝组织,每只注射移植约1×109人骨髓干细胞。用免疫组化对出生一定日龄移植小鼠肝脏进行甲胎蛋白免疫组织化学检测,检定分析人肝细胞在小鼠体内嵌合生长情况。结果移植人骨髓干细胞胎鼠出生2月龄、12月龄可检测到甲胎蛋白。结论将人骨髓干细胞移植小鼠肝脏内能够存活并分化成人肝细胞并能够长期存活。  相似文献   

6.
目的研究Cramp蛋白过表达对小鼠骨髓造血干细胞自我更新和分化能力的影响。方法应用流式细胞仪分析Cramp过表达转基因小鼠及同龄野生型小鼠的骨髓、脾脏、胸腺等组织器官中各种细胞的比例;分选骨髓造血干细胞,体外培养,观察其克隆形成能力。结果与野生型小鼠相比,Cramp过表达转基因小鼠的骨髓、脾脏、胸腺等组织器官中各种细胞的比例、骨髓造血干细胞的克隆形成能力等均无明显变化。结论本研究中,Cramp过表达转基因小鼠骨髓造血干细胞的分化能力、克隆形成能力无明显变化。  相似文献   

7.
通过同种基因型小鼠构建造血干细胞移植模型,将预处理的全骨髓单个核细胞或c-Kit+造血干细胞移植至致死剂量照射的受体小鼠体内,动态监测移植2~16周后受体小鼠体内供体来源细胞造血重建以及嵌合情况,以期揭示不同群体的供体细胞以及预处理等因素对小鼠造血干细胞移植后造血重建的影响。实验结果显示,移植后早期(2周)全骨髓单个核细胞组髓系比例要高于c-Kit+细胞移植组,但全骨髓移植组受体小鼠呈现出较大的移植后不良反应,出现脱毛、食欲不振以及体重减轻的症状。c-Kit+细胞移植组在淋系重建上要早于全骨髓移植组,供体细胞的嵌合植入也早于全骨髓移植组,但两组实验组最终均能完成造血重建过程。实验结果表明c-Kit+细胞移植组在移植后能够较快地实现供体细胞植入,进而开始造血重建,且c-Kit+细胞移植组的不良反应要低于全骨髓移植组。结果说明在整体造血重建效果上c-Kit+细胞移植组要优于全骨髓移植组。  相似文献   

8.
一旦分娩的是废弃婴儿 ,其脐带血便被倍加珍视 ,因为脐带血可使白血病与其他疾病的病人的不健全的骨髓得以恢复正常 .遗憾的是 ,脐带血常不能获得足够使干细胞移植物存活所需的血液量 .干细胞如骨髓细胞那样可以产生各种类型的新的血细胞 .科学家现在报道 ,当脐带血与一个称为Dalta 1的蛋白质一起培养时 ,并与生长发育增强子相配合时 ,脐带血干细胞则高速增殖 .当用Dalta 1与增强子处理的干细胞移植到小鼠体内 ,干细胞就能很好地移植到小鼠的骨髓中去 ,提示干细胞已开始重建小鼠红细胞与白细胞的储备 .甚至发现某些干细胞进入了胸…  相似文献   

9.
探讨骨髓间充质干细胞在器官移植中记忆性T淋巴细胞功能的影响。通过同种异基因皮肤移植的方法诱导CD8~+记忆性T淋巴细胞的产生,在体外应用混合淋巴增殖实验观察骨髓间充质干细胞对经过刺激后的T细胞增殖情况的影响;另一方面,通过同种异基因小鼠心脏移植模型的建立,在体内验证和观察骨髓间充质干细胞对小鼠移植器官生存寿命的影响。骨髓间充质干细胞在混合淋巴增殖实验中,可以有效抑制CD8~+记忆性T淋巴细胞的增殖能力,实验组淋巴细胞增殖指数明显低于对照组(t=4.575,p0.05);在小鼠心脏移植模型中,输注骨髓间充质干细胞后移植心脏的生存寿命明显增加,差异有统计学意义(p0.05)。骨髓间充质干细胞能够有效抑制器官移植中CD8~+记忆性T淋巴细胞的增殖,诱导免疫耐受,延长异体器官存活时间。  相似文献   

10.
蛋白酶3(proteinase 3, PRTN3)是一种中性丝氨酸蛋白酶,与病原体清除、组织损伤和细胞凋亡有关。近期研究发现, Prtn3在造血干/祖细胞中高表达,但其生物学功能及意义仍不清楚。围绕上述问题,该文采用单细胞转录组测序方法分析Prtn3基因在野生型小鼠(WT)血细胞中的表达情况;构建Prtn3基因敲除小鼠(Prtn3–/–),并采用流式细胞术和血常规分别分析Prtn3–/–小鼠骨髓中的LT-HSC、ST-HSC、MPP、CMP、GMP、MEP及分化成熟细胞的数目和比例;体外干/祖细胞单细胞和集落培养法分析LSK细胞的增殖和分化潜能;竞争移植实验分析Prtn3–/–小鼠LSK细胞的竞争能力以及外周血、脾脏和骨髓中各种血细胞的数目和比例;免疫荧光法分析Prtn3–/–小鼠脾脏和骨髓中的供体血细胞分布。结果显示, Prtn3在小鼠造血干/祖细胞,尤其是在髓系祖细胞(CMP和GMP)中持续高表达; Prtn3–/–小鼠骨髓中LSK和LK细胞所占比例显著高于WT小鼠骨髓中LSK和LK细胞的比例且表现为LT-HSC、ST-HSC、MPP、CMP及GMP在骨髓细胞中的比例均显著增加(P...  相似文献   

11.
Reduced quantity and quality of stem cells in aged individuals hinders cardiac repair and regeneration after injury. We used young bone marrow (BM) stem cell antigen 1 (Sca‐1) cells to reconstitute aged BM and rejuvenate the aged heart, and examined the underlying molecular mechanisms. BM Sca‐1+ or Sca‐1? cells from young (2–3 months) or aged (18–19 months) GFP transgenic mice were transplanted into lethally irradiated aged mice to generate 4 groups of chimeras: young Sca‐1+, young Sca‐1?, old Sca‐1+, and old Sca‐1?. Four months later, expression of rejuvenation‐related genes (Bmi1, Cbx8, PNUTS, Sirt1, Sirt2, Sirt6) and proteins (CDK2, CDK4) was increased along with telomerase activity and telomerase‐related protein (DNA‐PKcs, TRF‐2) expression, whereas expression of senescence‐related genes (p16INK4a, P19ARF, p27Kip1) and proteins (p16INK4a, p27Kip1) was decreased in Sca‐1+ chimeric hearts, especially in the young group. Host cardiac endothelial cells (GFP?CD31+) but not cardiomyocytes were the primary cell type rejuvenated by young Sca‐1+ cells as shown by improved proliferation, migration, and tubular formation abilities. C‐X‐C chemokine CXCL12 was the factor most highly expressed in homed donor BM (GFP+) cells isolated from young Sca‐1+ chimeric hearts. Protein expression of Cxcr4, phospho‐Akt, and phospho‐FoxO3a in endothelial cells derived from the aged chimeric heart was increased, especially in the young Sca‐1+ group. Reconstitution of aged BM with young Sca‐1+ cells resulted in effective homing of functional stem cells in the aged heart. These young, regenerative stem cells promoted aged heart rejuvenation through activation of the Cxcl12/Cxcr4 pathway of cardiac endothelial cells.  相似文献   

12.
Type I interferon (IFN-I) plays a critical role in the homeostasis of hematopoietic stem cells and influences neutrophil influx to the site of inflammation. IFN-I receptor knockout (Ifnar1 −/−) mice develop significant defects in the infiltration of Ly6Chi monocytes in the lung after influenza infection (A/PR/8/34, H1N1). Ly6Chi monocytes of wild-type (WT) mice are the main producers of MCP-1 while the alternatively generated Ly6Cint monocytes of Ifnar1 −/− mice mainly produce KC for neutrophil influx. As a consequence, Ifnar1 −/− mice recruit more neutrophils after influenza infection than do WT mice. Treatment of IFNAR1 blocking antibody on the WT bone marrow (BM) cells in vitro failed to differentiate into Ly6Chi monocytes. By using BM chimeric mice (WT BM into Ifnar1 −/− and vice versa), we confirmed that IFN-I signaling in hematopoietic cells is required for the generation of Ly6Chi monocytes. Of note, WT BM reconstituted Ifnar1 −/− chimeric mice with increased numbers of Ly6Chi monocytes survived longer than influenza-infected Ifnar1 −/− mice. In contrast, WT mice that received Ifnar1 −/− BM cells with alternative Ly6Cint monocytes and increased numbers of neutrophils exhibited higher mortality rates than WT mice given WT BM cells. Collectively, these data suggest that IFN-I contributes to resistance of influenza infection by control of monocytes and neutrophils in the lung.  相似文献   

13.
Endocannabinoids are lipid signaling molecules that act via G-coupled receptors, CB1 and CB2. The endocannabinoid system is capable of activation of distinct signaling pathways on demand in response to pathogenic events or stimuli, hereby enhancing cell survival and promoting tissue repair. However, the role of endocannabinoids in hematopoietic stem and progenitor cells (HSPCs) and their interaction with hematopoietic stem cells (HSC) niches is not known. HSPCs are maintained in the quiescent state in bone marrow (BM) niches by intrinsic and extrinsic signaling. We report that HSPCs express the CB1 receptors and that BM stromal cells secrete endocannabinoids, anandamide (AEA) (35 pg/107 cells), and 2-AG (75.2 ng/107 cells). In response to the endotoxin lipopolysaccharide (LPS), elevated levels of AEA (75.6 pg/107 cells) and 2-AG (98.8 ng/107 cells) were secreted from BM stromal cells, resulting in migration and trafficking of HSPCs from the BM niches to the peripheral blood. Furthermore, administration of exogenous cannabinoid CB1 agonists in vivo induced chemotaxis, migration, and mobilization of human and murine HSPCs. Cannabinoid receptor knock-out mice Cnr1−/− showed a decrease in side population (SP) cells, whereas fatty acid amide hydrolase (FAAH)−/− mice, which have elevated levels of AEA, yielded increased colony formation as compared with WT mice. In addition, G-CSF-induced mobilization in vivo was modulated by endocannabinoids and was inhibited by specific cannabinoid antagonists as well as impaired in cannabinoid receptor knock-out mice Cnr1−/−, as compared with WT mice. Thus, we propose a novel function of the endocannabinoid system, as a regulator of HSPC interactions with their BM niches, where endocannabinoids are expressed in HSC niches and under stress conditions, endocannabinoid expression levels are enhanced to induce HSPC migration for proper hematopoiesis.  相似文献   

14.
Allo-chimerism and clonal elimination of self antigen (Ag) (Ia + Mls-1a) reactive Vβ6+ T cells were analyzed and compared between allogeneic bone marrow (BM) chimeras reconstituted with BM cells which had been treated with anti-Thy-1 monoclonal antibody (mAb) plus complement (C) (T chimeras) and BM chimeras which had been reconstituted with BM cells pretreated with anti-Thy-1 mAb alone (T+ chimeras). When lethally irradiated AKR (Mls-1a) mice were reconstituted with BM cells from B10 or B10 H-2 congenic mice, both T+ and T chimeras were entirely free of signs of graft-versus-host reaction (GVHR). However, complete replacement of the AKR lymphoid tissues by donor BM cells was accomplished at an early stage in T+ chimeras but not in T chimeras. On the other hand, clonal elimination of Vβ6+ T cells reactive to the recipient Ag (Mls-1a) was abolished in T+ chimeras but successfully induced in T chimeras. The Vβ6+ T cells not eliminated in T+ chimeras showed depressed responses against Mls-1a antigens. The findings herein demonstrate that T cells which contaminate a BM inoculum survive in recipient mice after treatment with anti-Thy-1 mAb without C in vitro followed by BMT. The surviving T cells have been estimated to represent fewer than 0.5% of the BM cells inoculated. These cells appear to accelerate the full replacement of recipient lymphoid tissues by donor cells. Furthermore, the T cells which survive in the marrow inoculum influence eventually the development of a tolerant state in the T cell repertoire of the donor.  相似文献   

15.
Bone marrow–derived cells represent a heterogeneous cell population containing haematopoietic stem and progenitor cells. These cells have been identified as potential candidates for use in cell therapy for the regeneration of damaged tissues caused by trauma, degenerative diseases, ischaemia and inflammation or cancer treatment. In our study, we examined a model using whole-body irradiation and the transplantation of bone marrow (BM) or haematopoietic stem cells (HSCs) to study the repair of haematopoiesis, extramedullary haematopoiesis and the migration of green fluorescent protein (GFP+) transplanted cells into non-haematopoietic tissues. We investigated the repair of damage to the BM, peripheral blood, spleen and thymus and assessed the ability of this treatment to induce the entry of BM cells or GFP+linSca-1+ cells into non-haematopoietic tissues. The transplantation of BM cells or GFP+linSca-1+ cells from GFP transgenic mice successfully repopulated haematopoiesis and the haematopoietic niche in haematopoietic tissues, specifically the BM, spleen and thymus. The transplanted GFP+ cells also entered the gastrointestinal tract (GIT) following whole-body irradiation. Our results demonstrate that whole-body irradiation does not significantly alter the integrity of tissues such as those in the small intestine and liver. Whole-body irradiation also induced myeloablation and chimerism in tissues, and induced the entry of transplanted cells into the small intestine and liver. This result demonstrates that grafted BM cells or GFP+linSca-1+ cells are not transient in the GIT. Thus, these transplanted cells could be used for the long-term treatment of various pathologies or as a one-time treatment option if myeloablation-induced chimerism alone is not sufficient to induce the entry of transplanted cells into non-haematopoietic tissues.  相似文献   

16.
17.
Glaucoma is characterized by retinal ganglion cell (RGC) death, the underlying mechanisms of which are still largely unknown. An E50K mutation in the Optineurin (OPTN) gene is a leading cause of normal-tension glaucoma (NTG), which directly affects RGCs in the absence of high intraocular pressure and causes severe glaucomatous symptoms in patients. Bone marrow (BM) stem cells have been demonstrated to play a key role in regenerating damaged tissue during ageing and disease through their trophic effects and homing capability. Here, we separated BM stem cells into Sca-1+ and Sca-1- cells and transplanted them into lethally irradiated aged OPTN E50K mice to generate Sca-1+ and Sca-1 chimaeras, respectively. After 3 months of BM repopulation, we investigated whether Sca-1+ cells maximized the regenerative effects in the retinas of NTG model mice with the OPTN E50K mutation. We found that the OPTN E50K mutation aggravated age-related deficiency of neurotrophic factors in both retinas and BM during NTG development, leading to retinal degeneration and BM dysfunction. Sca-1+ cells from young healthy mice had greater paracrine trophic effects than Sca-1 cells and Sca-1+ cells from young OPTN E50K mice. In addition, Sca-1+ chimaeras demonstrated better visual functions than Sca-1 chimaeras and untreated OPTN E50K mice. More Sca-1+ cells than Sca-1 cells were recruited to repair damaged retinas and reverse visual impairment in NTG resulting from high expression levels of neurotrophic factors. These findings indicated that the Sca-1+ cells from young, healthy mice may have exhibited an enhanced ability to repair retinal degeneration in NTG because of their excellent neurotrophic capability.Subject terms: Neurotrophic factors, Haematopoietic stem cells  相似文献   

18.
The acute and residual (or long-term) bone marrow (BM) injury induced by ionizing radiation (IR) is a major clinic concern for patients receiving conventional radiotherapy and victims accidentally exposed to a moderate-to-high dose of IR. In this study, we investigated the effects of the treatment with the p38 inhibitor SB203580 (SB) and/or granulocyte colony-stimulating factor (G-CSF) on the hematoimmune damage induced by IR in a mouse model. Specifically, C57BL/6 mice were exposed to a sublethal dose (6 Gy) of total body irradiation (TBI) and then treated with vehicle, G-CSF, SB, and G-CSF plus SB. G-CSF (1 µg/mouse) was administrated to mice by intraperitoneal (ip) injection twice a day for six successive days; SB (15 mg/kg) by ip injection every other day for 10 days. It was found that the treatment with SB and/or G-CSF significantly enhanced the recovery of various peripheral blood cell counts and the number of BM mononuclear cells 10 and 30 days after the mice were exposed to TBI compared with vehicle treatment. Moreover, SB and/or G-CSF treatment also increased the clonogenic function of BM hematopoietic progenitor cells (HPCs) and the frequency of BM lineageSca1+c-kit+ cells (LSK cells) and short-term and long term hematopoietic stem cells (HSCs) 30 days after TBI, in comparison with vehicle treated controls. However, the recovery of peripheral blood B cells and CD4+ and CD8+ T cells was not significantly affected by SB and/or G-CSF treatment. These results suggest that the treatment with SB and/or G-CSF can reduce IR-induced BM injury probably in part via promoting HSC and HPC regeneration.  相似文献   

19.
Tissue renewal is a phenomenon based on replacement of vanishing cells by progeny of resident or circulated stem cells (SCs). The delivery of stem cells via circulation should result in stem-cell homing and differentiation into a wide variety of tissues and shows promise for therapy of tissue diseases. Here, we studied whether bone-marrow SC transplantation may promote lifespan. For this purpose, we created C57BL/6 chimeric mice by bone-marrow (BM) transplantation from young, 1.5-month-old donors to 21.5-month-old recipient mice of the same C57BL/6 strain. Transplantation was performed by the recently developed new technique of high-yield nonmyeloablative transplantation that allows high levels of chimerism to be obtained due to a very high amount of transplanted cells (1.5 × 108 per mouse or 25% of its total BM count). As a result of the modified technique implementation, the mean post-transplantation life (starting at 21.5 months old) of treated mice was 4.9 months versus 3.4 months for untreated mice. The difference of 1.5 months is a 44% extension of mean post-transplantation life.  相似文献   

20.
The objective of this study was to determine the combined effects of HL and cholesteryl ester transfer protein (CETP), derived exclusively from bone marrow (BM), on plasma lipids and atherosclerosis in high-fat-fed, atherosclerosis-prone mice. We transferred BM expressing these proteins into male and female double-knockout HL-deficient, LDL receptor-deficient mice (HL−/−LDLr−/−). Four BM chimeras were generated, where BM-derived cells expressed 1) HL but not CETP, 2) CETP and HL, 3) CETP but not HL, or 4) neither CETP nor HL. After high-fat feeding, plasma HDL-cholesterol (HDL-C) was decreased in mice with BM expressing CETP but not HL (17 ± 4 and 19 ± 3 mg/dl, female and male mice, respectively) compared with mice with BM expressing neither CETP nor HL (87 ± 3 and 95 ± 4 mg/dl, female and male mice, respectively, P < 0.001 for both sexes). In female mice, the presence of BM-derived HL mitigated this CETP-mediated decrease in HDL-C. BM-derived CETP decreased the cholesterol component of HDL particles and increased plasma cholesterol. BM-derived HL mitigated these effects of CETP. Atherosclerosis was not significantly different between BM chimeras. These results suggest that BM-derived HL mitigates the HDL-lowering, HDL-modulating, and cholesterol-raising effects of BM-derived CETP and warrant further studies to characterize the functional properties of these protein interactions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号