首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
p300/CBP相关因子(p300/CBPassociated factor,PCAF)是真核细胞内一种重要的组蛋白乙酰转移酶,它主要通过催化核心组蛋白的乙酰化,促进特定基因的转录,参与细胞内多种生物学过程。国内目前尚没有制备出具有生物学活性的组蛋白乙酰转移酶PCAF的报道。为此, PCAF全长cDNA被克隆入原核表达载体pGEX-5X-1,通过对诱导条件进行优化,实现了PCAF在大肠杆菌BL21(DE3)菌株中的高效可溶性表达并进行了亲和纯化。利用体外乙酰转移酶活性分析实验,检测到所表达的GST-PCAF融合蛋白能够使组蛋白H3发生乙酰化。这种具有生物学活性的PCAF蛋白的成功制备为进一步研究PCAF的转录调控功能以及它与其它蛋白间的相互作用奠定了基础。  相似文献   

2.
组蛋白乙酰化是表观遗传修饰的重要方式,主要受到组蛋白乙酰转移酶(histone acetyltransferases, HATs)和组蛋白去乙酰化酶(histone deacetylase, HDACs)催化. MYST是人类HATs的4大家族之一,包括MOF(males absent on the first),TIP60 (tat interacting protein 60 kD),结合ORC1的组蛋白乙酰转移酶(histone acetyltransferase binding to ORC1, HBO1),单核细胞白血病锌指蛋白(monocytic leukemia zinc finger protein, MOZ)和MOZ相关蛋白(MOZ related factor, MORF)等,均具有典型的MYST结构域.MYST介导的乙酰化是重要的翻译后修饰,其催化底物包括组蛋白和非组蛋白,如组蛋白H3, H4, H2A, H2A突变体,以及许多参与DNA代谢、细胞增殖和发育调控的蛋白因子. MYST蛋白家族参与许多细胞的生理过程,本文主要综述其在调节基因转录、DNA损伤修复和肿瘤发生发展等方面的生物学功能.  相似文献   

3.
植物组蛋白乙酰基转移酶的研究进展   总被引:1,自引:0,他引:1  
组蛋白乙酰化是一个动态的、可逆的过程,包括组蛋白乙酰化和去乙酰化两个过程。组蛋白乙酰基转移酶催化组蛋白乙酰化,与组蛋白去乙酰化酶共同作用来调节组蛋白乙酰化状态。组蛋白乙酰化状态影响染色质的结构,进而影响基因的转录,在植物的生长、发育和胁迫反应过程中具有十分重要的调节作用。对组蛋白乙酰基转移酶的细胞内分布、分类、底物特异性以及在发育和胁迫反应中的功能进行了综述。  相似文献   

4.
p300/CBP及其相关因子PCAF与转录调控   总被引:1,自引:0,他引:1  
p300/CBP及相关因子PCAF具有乙酰转移酶活性,能通过乙酰化组蛋白和非组蛋白的方式参与基因的转录调控.同时,它们能在转录因子和基本转录复合物之间起到桥梁作用,而且也能为整合多种转录因子提供支架,是一种典型的转录辅激活子. p300/CBP与细胞周期调控、细胞凋亡以及癌症的发生等过程之间有着直接的联系。本文概括了p300/CBP与PCAF的基本特性,并简要介绍它们与其他蛋白之间的相互作用,特别是E1A的最新研究进展。  相似文献   

5.
赖氨酸乙酰化是重要的蛋白质翻译后修饰之一,广泛存在于细胞的生理和病理过程.组蛋白乙酰基转移酶1(HAT1)作为第一个被鉴定的蛋白ε-氨基赖氨酸乙酰基转移酶,具有介导组蛋白和非组蛋白乙酰化的作用.然而,在肝癌细胞中HAT1介导的乙酰化蛋白质及其修饰位点目前仍不清楚.本研究首先揭示了 HAT1在肝癌组织中呈高表达,并且与预...  相似文献   

6.
组蛋白乙酰化与癌症   总被引:17,自引:0,他引:17  
由于组蛋白被修饰所引起的染色质结构的改变,在真核生物基因表达调控中发挥着重要的作用,这些修饰主要包括甲基化、乙酰化、磷酸化和泛素化等,其中组蛋白乙酰化尤为重要.组蛋白乙酰转移酶(HAT)和组蛋白去乙酰化酶(HDAC)参与决定组蛋白乙酰化状态.HAT通常作为多亚基辅激活物复合体的一部分,催化组蛋白乙酰化,导致染色质结构的松散、激活转录;而HDAC是多亚基辅抑制物复合体的一部分,使组蛋白去乙酰化,导致染色质集缩,并抑制基因的转录. 编码这些酶的基因染色体易位易于导致急性白血病的发生.另一方面,已经确定了一些乙酰化修饰酶的基因在染色体上的位置,它们尤其倾向定位于染色体的断裂处.综述了HAT和HDAC参与的组蛋白乙酰化与癌症发生之间关系的最新进展,以期进一步阐明组蛋白乙酰化修饰酶的生物学功能以及它们在癌症发生过程中的作用.  相似文献   

7.
组蛋白乙酰转移酶及脱乙酰基酶的作用及调节机制   总被引:1,自引:0,他引:1  
姜绮霞  袁洪 《生命的化学》2007,27(3):218-220
组蛋白乙酰转移酶(HAT)及脱乙酰基酶(HDAC)调节组蛋白和转录因子的乙酰化水平,从而在控制细胞生命活动中发挥着重要作用.该文主要从HAT和HDAC的量、酶活性以及利用度的调节三个方面,详细阐述了HAT和HDAC调控的分子机制,并对未来的研究方向提出新的构想.  相似文献   

8.
组蛋白乙酰转移酶和组蛋白脱乙酰酶分别催化组蛋白的乙酰化和脱乙酰基反应,调节组蛋白的乙酰化水平,从而调控基因表达。这些过程与恶性肿瘤的发生具有密切的关系。组蛋白脱乙酰酶抑制剂通过增加细胞内组蛋白的乙酰化程度,调节多种基因的表达水平,抑制肿瘤细胞的增殖、诱导细胞分化和凋亡。该文从抑制细胞增殖、诱导细胞分化、诱导细胞凋亡和抗血管形成等4个方面介绍组蛋白脱乙酰酶抑制剂的抗癌机制,并简要介绍它们的分类。  相似文献   

9.
研究p300乙酰化在卡介苗(bacillus Calmette Guérin,BCG)感染中的作用。构建THP-1巨噬细胞模型,比较BCG感染前后p300蛋白表达水平和组蛋白H3乙酰化水平的改变,加入p300特异性抑制剂Delphinidin,观察细胞内组蛋白H3乙酰化水平的变化。结果表明,在分化成熟的THP-1细胞系中,BCG感染能够上调p300蛋白表达水平和组蛋白H3乙酰化水平,加入p300特异性抑制剂Delphinidin后,组蛋白H3乙酰化水平降低。BCG感染通过p300途径导致蛋白质乙酰化水平发生改变。  相似文献   

10.
陈坚  张晓琴  傅继梁 《生命科学》2000,12(5):199-202
组蛋白乙酰化与基因转录等生物效应有密切的关系,组蛋白乙酰化主要是由组蛋白乙酰转移酶催化的。 要介绍了基因转录有关组蛋白乙酰转移酶,包括HATA/Gcn5p、p300/CBP、p/CAF、ACTR、Src1、TAF Ⅱ 250、Elp3等的来源,与其相互作用的蛋白质及其主要功能。  相似文献   

11.
Bottomley MJ 《EMBO reports》2004,5(5):464-469
DNA is packed together with histone proteins in cell nuclei to form a compact structure called chromatin. Chromatin represents a scaffold for many genetic events and shows varying degrees of condensation, including a relatively open form (euchromatin) and a highly condensed form (heterochromatin). Enzymes such as histone acetyltransferases (HATs) and methylases covalently label the amino-termini of histones, thereby creating a 'histone code' of modifications that is interpreted by the recruitment of other proteins through recognition domains. Ultimately, this network of interacting proteins is thought to control the degree of chromatin condensation so that DNA is available when it is required for genomic processes. Reviewed here are the structures of HAT and SET domains, which mediate the acetylation and methylation of histones, respectively, and bromodomains and chromodomains, which recognize the modified histones. How these structures have increased our understanding of DNA regulation is also discussed.  相似文献   

12.
Regulation of protein turnover by acetyltransferases and deacetylases   总被引:3,自引:0,他引:3  
  相似文献   

13.
14.
15.
In vivo, histone tails are involved in numerous interactions, including those with DNA, adjacent histones, and other, nonhistone proteins. The amino termini are also the substrates for a number of enzymes, including histone acetyltransferases (HATs), histone deacetylases, and histone methyltransferases. Traditional biochemical approaches defining the substrate specificity profiles of HATs have been performed using purified histone tails, recombinant histones, or purified mononucleosomes as substrates. It is clear that the in vivo presentation of the substrate cannot be accurately represented by using these in vitro approaches. Because of the difficulty in translating in vitro results into in vivo situations, we developed a novel single-cell HAT assay that provides quantitative measurements of endogenous HAT activity. The HAT assay is performed under in vivo conditions by using the native chromatin structure as the physiological substrate. The assay combines the spatial resolving power of laser scanning confocal microscopy with simple statistical analyses to characterize CREB binding protein (CBP)- and P300-induced changes in global histone acetylation levels at specific lysine residues. Here we show that CBP and P300 exhibit unique substrate specificity profiles, consistent with the developmental and functional differences between the two HATs.  相似文献   

16.
17.
Tat-controlled protein acetylation   总被引:3,自引:0,他引:3  
  相似文献   

18.
19.
The eukaryotic genome is a highly dynamic nucleoprotein complex that is comprised of DNA, histones, nonhistone proteins and RNA, and is termed as chromatin. The dynamicity of the chromatin is responsible for the regulation of all the DNA-templated phenomena in the cell. Several factors, including the nonhistone chromatin components, ATP-dependent remodeling factors and the chromatin-modifying enzymes, mediate the combinatorial post-translational modifications that control the chromatin fluidity and, thereby, the cellular functions. Among these modifications, reversible acetylation plays a central role in the highly orchestrated network. The enzymes responsible for the reversible acetylation, the histone acetyltransferases (HATs) and histone deacetylases (HDACs), not only act on histone substrates but also on nonhistone proteins. Dysfunction of the HATs/HDACs is associated with various diseases like cancer, diabetes, asthma, cardiac hypertrophy, retroviral pathogenesis and neurodegenerative disorders. Therefore, modulation of these enzymes is being considered as an important therapeutic strategy. Although substantial progress has been made in the area of HDAC inhibitors, we have focused this review on the HATs and their small-molecule modulators in the context of disease and therapeutics. Recent discoveries from different groups have established the involvement of HAT function in various diseases. Furthermore, several new classes of HAT modulators have been identified and their biological activities have also been reported. The scaffold of these small molecules can be used for the design and synthesis of better and efficient modulators with superior therapeutic efficacy.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号