首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
杀菌/通透性增加蛋白(BPI)是人中性粒细胞中存在的一种碱性蛋白,它能与革兰氏阴性菌脂多糖(LPS)结合,具有中和内毒素和杀灭细菌作用。在革兰氏阴性菌感染的治疗方面有良好的发展前景,本文主要就BPI的生理功能,作用机理及临床研究方面的进展作一综述。  相似文献   

2.
革兰氏阴性菌脂多糖运输系统的构成及作用机制   总被引:1,自引:0,他引:1  
莫婷  刘马峰  程安春 《微生物学报》2018,58(9):1521-1530
革兰氏阴性菌包含有两层组分不同的膜结构——内膜和外膜,对大多数革兰氏阴性菌而言,脂多糖(lipopolysaccharides,LPS)是其外膜上最主要的脂质成分,锚定在外膜小叶(the outer leaflet of the OM)上,是革兰氏阴性菌固有免疫的重要组成部分。脂多糖运输系统(lipopolysaccharide transport system,Lpt)将胞内装配完整的LPS正确装配到外膜,使得与脂多糖相关的阻渗、有机溶剂耐受性、疏水性抗生素耐受性、膜通透性等功能得以实现。该运输系统的正确作用主要依赖7个不同的脂多糖运输蛋白(Lpt ABCDEFG)协同完成,整个系统贯穿细菌内膜至外膜,由内膜上ABC转运体复合物Lpt B2FG、胞质内转运协同蛋白Lpt A/C及被许多学者称作脂多糖运输的"命门"的外膜蛋白复合物Lpt DE共同构成。本文就革兰氏阴性菌脂多糖的具体结构功能进行简介,进而综述脂多糖运输系统的7个蛋白的构成和作用机制,以期为进一步研究该系统中每个蛋白的功能提供理论基础及参考。  相似文献   

3.
斑点叉尾鮰BPI抗菌肽的cDNA克隆及原核表达载体的构建   总被引:1,自引:0,他引:1  
杀菌/渗透增强蛋白(bactericidal/permeability increasing protein,BPI)是生物机体细胞中表达的一种能够特异性杀灭革兰氏阴性菌的抗菌类蛋白,该蛋白包括氨基端和羧基端两个结构域,其中氨基端结构域主要承担杀菌和中和内毒素的功能.参考已经报道的对人类BPI进行重组DNA表达的研究结果,首先通过RT-PCR和巢式PCR从斑点叉尾鲴(Ictalurus punctatus)鳃中克隆了编码BPI氨基端活性结构域的cDNA片段“BPINtd”,该片段由175个氨基酸残基组成,其中63个氨基酸残基在空间上形成一个非极性的脂质结合袋,与革兰氏阴性菌外膜上脂多糖(LPS)结合,从而改变细菌膜的通透性,达到杀菌的效果.根据斑点叉尾鲴与其他生物之间BPI氨基酸序列的比对结果,发现氨基端存在40个保守的氨基酸残基,其中9个高度保守的残基位于脂多糖结合区域内.为了进一步建立原核表达系统,根据pET-32a(+)和pET-28a(+)两种质粒的不同特点,选择其作为原核表达质粒,将“BPINtd”片段分别插入两种质粒,通过菌落PCR、EcoR Ⅰ和Hind Ⅲ双酶切反应以及DNA测序等方法,证明了重组表达质粒“pET-32a-BPINtd”和“pET-28a-BPINtd”已被成功构建.  相似文献   

4.
在革兰氏阴性菌中,脂多糖是外膜的重要组成部分,并参与构成细菌的固有免疫。而在大多数革兰氏阴性菌中,Lpt系统都是运输脂多糖的唯一途径,在该系统中LptD作为一个跨膜的外膜蛋白,也是脂多糖输出的最后一步,因此被许多学者称作脂多糖运输的"命门"。LptD参与多种重要的生物学功能,包括有机溶剂耐受性、疏水性抗生素耐受性、膜通透性等。但近来的研究表明,LptD最重要的功能是参与了脂多糖的运输,也因为其参与脂多糖运输而具有了多种功能。本文重点介绍部分革兰氏阴性菌LptD的蛋白结构及其功能研究进程,以期为进一步研究其它革兰氏阴性菌脂多糖运输通路(Lpt通路)及该通路上各蛋白间的相互作用机制提供参考。  相似文献   

5.
杀菌/通透性增加蛋白(Bactericidal/permeability-increasing protein,BPI)能结合并特异地中和来自革兰氏阴性菌外膜的脂多糖(Lipopolysaccharide,LPS)。为了研究牛源BPI蛋白及其N端结构域在LPS介导的免疫应答中的作用,本文将BPI全长1 449 bp编码区序列(BPI)和其N端714 bp的编码区序列(BPI714)分别导入m HEK293细胞,分析了稳定表达的BPI或BPI714对LPS介导的炎性细胞因子表达的影响。首先将构建的p LEX-BPI/p LEX-BPI714载体分别转染m HEK293细胞,获得稳定表达牛源BPI或BPI714的m HEK293细胞;然后用LPS刺激上述细胞,分别收集刺激前、刺激后1 h、3 h、6 h、12 h、24 h、36 h和48 h的细胞,并同时收集未表达BPI或BPI714的m HEK293细胞在各时间点的样品作为对照;采用定量RT-PCR检测上述细胞中炎性细胞因子IL-8、IL-1β、TNF-α、NF-κB-1、NF-κB-2的相对表达水平,比较LPS刺激前后表达BPI/BPI714和对照细胞中上述基因转录水平的变化规律。研究表明,LPS刺激后,对照细胞中IL-8、IL-1β、TNF-α、NF-κB-2表达水平在不同时间点均显著提高(P0.05),并呈现规律性变化;而稳定表达BPI/BPI714的细胞在同样刺激条件下,IL-8、IL-1β、TNF-α、NF-κB-2基因的转录水平均未发生显著变化(P0.05)。根据我们的实验结果,在m HKE293细胞模型中BPI或BPI714均能显著降低LPS介导的炎性细胞因子表达,抑制LPS介导的免疫应答。这不仅为进一步研究BPI抑菌机制和利用其抑菌功能提供了可靠的实验依据,也为分析抗菌蛋白的抗菌效果提供了一种可靠的实验方法。  相似文献   

6.
革兰氏阴性菌细胞外壁中的脂多糖结构即内毒素,经常是引发脓毒症、菌血症等系统性炎症反应的"元凶"。近十余年的研究发现,细菌透性增加蛋白(bactericidal/permeability-increasing protein,BPI)具有特有的中和内毒素和拮抗革兰氏阴性菌的能力, 是一种抗感染的天然的分子靶。大量的临床研究结果已经显示其用药的有效性和安全性。近几年来国外生物药业公司正努力将重组人BPI推向市场。  相似文献   

7.
革兰氏阴性菌血红素载体蛋白Hemophore的结构及作用机制   总被引:1,自引:1,他引:0  
血红素作为宿主体内最丰富的铁离子来源,是致病菌营养竞争的主要目标,尤其对于血红素自身合成途径部分丧失的细菌。革兰氏阴性菌血红素转运系统由血红素载体蛋白(Hemophore)、外膜血红素受体、TonB-ExbB-ExbD复合物、ABC转运体等组成。Hemophore是存在于细菌细胞膜上或分泌到胞外环境中的一种蛋白。它能从宿主血红素结合蛋白中捕获血红素并将其传递给外膜受体。目前,在不同革兰氏阴性菌中已发现3种类型的Hemophore,分别是HasA、HxuA和HmuY型。本文将详细描述这3种Hemophore捕获血红素及与外膜受体相互作用的机制,以期为进一步研究其他细菌血红素载体蛋白的功能及作用机制奠定基础。  相似文献   

8.
陈国忠  张燕娇  陈师勇 《微生物学报》2017,57(12):1769-1777
细菌脂蛋白是细胞膜的重要组成成分,在革兰氏阴性菌的生理及致病性中扮演着重要的角色。革兰氏阴性菌中已知负责胞内脂蛋白转运的是Lol(Localization of lipoprotein)系统。该系统识别成熟脂蛋白的分泌信号,将外膜脂蛋白转运并定位于细胞外膜内侧。近年来的研究发现,跨细胞外膜进行表面展示的脂蛋白实际上在革兰氏阴性菌中广泛存在,其分泌机制开始成为研究热点。为了对革兰氏阴性菌中脂蛋白分泌机制的研究现状有一个系统全面的了解,本文概述了脂蛋白转运过程中Lol系统5个转运蛋白的功能与保守性、不同细菌中脂蛋白分泌信号的差异以及表面展示脂蛋白可能的分泌机制。  相似文献   

9.
代先祝  罗峰 《微生物学报》2014,54(3):261-268
摘要:β-桶状结构外膜蛋白是革兰氏阴性细菌细胞外膜层的主要组成部分,在营养吸收、维持外膜完整性、病原菌致病性及多重耐药性等方面发挥着重要的作用,对细菌的存活至关重要。详细了解这些蛋白的合成、折叠与组装到外膜的过程在增加筛选抗病原菌药物靶位、增强有益菌的生物活性等方面具有重要意义。本文对近年来革兰氏阴性细菌β-桶状结构外膜蛋白的合成、转运、折叠及组装到外膜过程的研究结果进行了综合论述,重点叙述了β-桶状结构外膜蛋白组装复合体的研究进展,并在此基础对这一类蛋白的折叠与膜整合过程提出一些新的见解,便于读者快速、全面了解该领域的最新发现和发展。  相似文献   

10.
β-桶状结构外膜蛋白是革兰氏阴性细菌细胞外膜层的主要组成部分,在营养吸收、维持外膜完整性、病原菌致病性及多重耐药性等方面发挥着重要的作用,对细菌的存活至关重要。详细了解这些蛋白的合成、折叠与组装到外膜的过程在增加筛选抗病原菌药物靶位、增强有益菌的生物活性等方面具有重要意义。本文对近年来革兰氏阴性细菌β-桶状结构外膜蛋白的合成、转运、折叠及组装到外膜过程的研究结果进行了综合论述,重点叙述了β-桶状结构外膜蛋白组装复合体的研究进展,并在此基础对这一类蛋白的折叠与膜整合过程提出一些新的见解,便于读者快速、全面了解该领域的最新发现和发展。  相似文献   

11.
The killing of gram-negative bacteria by the bactericidal/permeability-increasing protein ( BPI ) of neutrophils requires surface binding, and is accompanied by a discrete increase in outer membrane permeability to small hydrophobic substances. This outer membrane alteration appears to be related to perturbation of outer membrane lipopolysaccharides (LPS). BPI causes extracellular release of LPS, but only at supra-saturating doses. Nevertheless, because the organization of LPS in the outer membrane is altered by pretreatment of bacteria with saturating doses of BPI (producing maximal bactericidal and permeability-increasing effects), the amount of LPS released during Tris-EDTA treatment is reduced by 80%. BPI markedly (approximately 50%) and selectively stimulates biosynthesis of LPS, suggesting an attempt by BPI -killed bacteria to repair outer membrane damage. The removal of surface-bound BPI by 40 mM Mg2+ initiates time- and temperature-dependent repair of the outer membrane permeability barrier and a further increase (approximately 170% of control) in LPS synthesis, even though the bacteria are no longer viable. Mg2+-induced repair is blocked when: 1) a temperature-sensitive mutant (Salmonella typhimurium HD50 ) with a conditional defect in LPS synthesis is incubated at the nonpermissive temperature (42 degrees C); and 2) LPS synthesis is selectively inhibited by a diazaborine derivative (Sandoz drug No. 84474). In contrast, repair is normal by the mutant at permissive temperatures (30 degrees C) and by the parent strain (S. typhimurium AG701 ) at both 30 degrees C and 42 degrees C. Inhibition (greater than 85%) of protein synthesis by chloramphenicol has little or no effect on repair. These findings indicate that the repair of the permeability barrier after the removal of BPI from the surface requires newly made LPS, but apparently no biosynthesis of other outer membrane constituents, which strongly suggests that the effects of BPI on LPS are mainly responsible for the break-down of the outer membrane permeability barrier.  相似文献   

12.
The specificity of the basic bactericidal/permeability increasing protein (BPI) of polymorphonuclear leukocytes (PMN) for gram-negative bacteria is attributable to its strong attraction for the negatively charged envelope LPS. The antibacterial activity of PMN homogenates or extracts toward Escherichia coli corresponds to their BPI content and is blocked by anti-BPI IgG, suggesting that BPI action is unaffected by the presence of other PMN proteins. To test if BPI is preferentially bound to E. coli when other antibacterial proteins are present, we have measured binding in buffered (pH 7.5) balanced salts solution of [125I] human BPI to E. coli J5 in the presence and absence of other human PMN granule proteins. BPI binding is saturable with an apparent K = 23 nM and 2.2 million binding sites/cell. While binding of [125I] human BPI is competitively inhibited by human or rabbit BPI, it is only weakly inhibited by myeloperoxidase, lysozyme, or cathepsin G. In contrast, myeloperoxidase binding to E. coli is strongly inhibited by BPI. Moreover, incubation of E. coli with crude extracts of PMN or CML spleen results in near quantitative binding of BPI, identified by silver staining and immunoblotting after SDS-PAGE of the washed E. coli pellet, without recognizable binding of other leukocyte proteins (greater than 98% of added total protein is recovered in supernatant). After addition of 200 mM MgCl2, approximately 80% of bound BPI is released as fully active and pure protein (as judged by SDS-PAGE and HPLC). Thus the selective and reversible binding of BPI in crude PMN extracts to target bacteria provides a one-step "affinity" purification procedure.  相似文献   

13.
14.
Two related mammalian proteins, bactericidal/permeability-increasing protein (BPI) and lipopolysaccharide-binding protein (LBP), share high-affinity binding to lipopolysaccharide (LPS), a glycolipid found in the outer membrane of gram-negative bacteria. The recently determined crystal structure of human BPI permits a structure/function analysis, presented here, of the conserved regions of these two proteins sequences. In the seven known sequences of BPI and LBP, 102 residues are completely conserved and may be classified in terms of location, side-chain chemistry, and interactions with other residues. We find that the most highly conserved regions lie at the interfaces between the tertiary structural elements that help create two apolar lipid-binding pockets. Most of the conserved polar and charged residues appear to be involved in inter-residue interactions such as H-bonding. However, in both BPI and LBP a subset of conserved residues with positive charge (lysines 42, 48, 92, 95, and 99 of BPI) have no apparent structural role. These residues cluster at the tip of the NH2-terminal domain, and several coincide with residues known to affect LPS binding; thus, it seems likely that these residues make electrostatic interactions with negatively charged groups of LPS. Overall differences in charge and electrostatic potential between BPI and LBP suggest that BPI''s bactericidal activity is related to the high positive charge of its NH2-terminal domain. A model of human LBP derived from the BPI structure provides a rational basis for future experiments, such as site-directed mutagenesis and inhibitor design.  相似文献   

15.
16.
Bactericidal/permeability-increasing protein (BPI) is an important factor of innate immunity that in mammals is known to take part in the clearance of invading Gram-negative bacteria. In teleost, the function of BPI is unknown. In the present work, we studied the function of tongue sole (Cynoglossus semilaevis) BPI, CsBPI. We found that CsBPI was produced extracellularly by peripheral blood leukocytes (PBL). Recombinant CsBPI (rCsBPI) was able to bind to a number of Gram-negative bacteria but not Gram-positive bacteria. Binding to bacteria led to bacterial death through membrane permeabilization and structural destruction, and the bound bacteria were more readily taken up by PBL. In vivo, rCsBPI augmented the expression of a wide arrange of genes involved in antibacterial and antiviral immunity. Furthermore, rCsBPI enhanced the resistance of tongue sole against bacterial as well as viral infection. These results indicate for the first time that a teleost BPI possesses immunoregulatory effect and plays a significant role in antibacterial and antiviral defense.  相似文献   

17.
Antimicrobial peptides provide a defense system against microorganisms. One class of these molecules binds lipophilic substrates and is therefore directed against gram-negative bacteria. This family includes proteins related to bactericidal/permeability-increasing protein (BPI). We characterized an approximately 100-kb cluster of three human genes named RYSR, RYA3, and RY2G5 that are related to the BPI family. The RY cluster maps to 20q11.21, >5 Mb upstream of the BPI cluster. The RY and BPI genes have similar exon structures, indicating that they were derived by duplication from a common ancestor. We identified mouse BPI-related and RY orthologues in syntenic regions, indicating that the gene family expanded before mouse and human diverged. Expression analyses show that RYs are strongly expressed in the olfactory epithelium, suggesting that they also could act as odorant transporters or detoxification agents in the olfactory system. Together, these data show how mammals diversified their antimicrobial defenses/olfactory pathways through a duplication-driven adaptive selection process.  相似文献   

18.
Recognition of LPS by TLR4 initiates inflammatory responses inducing potent antimicrobial immunity. However, uncontrolled inflammatory responses can be detrimental. To prevent the development of septic shock during an infection with Gram-negative bacteria, the immune system has developed mechanisms to neutralize LPS by specialized proteins. In this study, we report the recombinant expression and functional characterization of the mouse homolog of human bactericidal/permeability-increasing protein (BPI). Purified recombinant mouse BPI was able to neutralize LPS-mediated activation of macrophages and to block LPS-dependent maturation of dendritic cells. Recombinant mouse BPI neutralized the capacity of Gram-negative bacteria to activate immune cells, but did not influence the stimulatory properties of Gram-positive bacteria. Unlike human BPI, mouse BPI failed to kill or inhibit the growth of Pseudomonas aeruginosa. Together, these data demonstrate that murine BPI is a potent LPS-neutralizing protein that may limit innate immune responses during Gram-negative infections.  相似文献   

19.
The bactericidal permeability increasing protein (BPI) is a 50-60-kDa membrane-associated protein isolated from granules of polymorphonuclear leukocytes. A full-length cDNA clone encoding human BPI has been isolated and the derived amino acid sequence reveals a structure that is consistent with previously determined biological properties. BPI may be organized into two domains: the amino-terminal half, previously shown to contain all known antimicrobial activity, contains a large fraction of basic and hydrophilic residues. In contrast, the carboxyl-terminal half contains more acidic than basic residues and includes several potential transmembrane regions which may anchor the holoprotein in the granule membrane. The cytotoxic action of BPI is limited to many species of Gram-negative bacteria; this specificity may be explained by a strong affinity of the very basic aminoterminal half for the negatively charged lipopolysaccharides that are unique to the Gram-negative bacterial envelope. The amino-terminal end of BPI exhibits significant similarity with the sequence of a rabbit lipopolysaccharide-binding protein, suggesting that both molecules share a similar structure for binding lipopolysaccharides.  相似文献   

20.
The mechanisms of protein secretion by pathogenic bacteria remain poorly understood. In gram-negative bacteria, the two-partner secretion pathway exports large, mostly virulence-related "TpsA" proteins across the outer membrane via their dedicated "TpsB" transporters. TpsB transporters belong to the ubiquitous Omp85 superfamily, whose members are involved in protein translocation across, or integration into, cellular membranes. The filamentous hemagglutinin/FhaC pair of Bordetella pertussis is a model two-partner secretion system. We have reconstituted the TpsB transporter FhaC into proteoliposomes and demonstrate that FhaC is the sole outer membrane protein required for translocation of its cognate TpsA protein. This is the first in vitro system for analyzing protein secretion across the outer membrane of gram-negative bacteria. Our data also provide clear evidence for the protein translocation function of Omp85 transporters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号