首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Metal-binding capacity of arbuscular mycorrhizal mycelium   总被引:25,自引:1,他引:24  
Experiments with excised mycelium of several Glomus spp. with different histories of exposure to heavy metals were carried out to measure their capacities to bind Cd and Zn. Cd sorption was followed for up to 6 h of incubation to determine its time course relationships. Controls treated with a metabolic inhibitor were included to evaluate whether sorption was due to active uptake or passive adsorption. The effect of ion competition (effects of Ca or Zn on Cd sorption) and general measurements of cation exchange capacity (CEC) of roots and hyphae were also performed. The results showed that AM mycelium has a high metal sorption capacity relative to other microorganisms, and a CEC comparable to other fungi. Metal sorption was rapid (<30 min) and appeared mainly to be due to passive adsorption. Adsorption was highest in a metal-tolerant G. mosseae isolate and intermediate for a fungus isolated from a soil treated with metal-contaminated sludge. The former adsorbed up to 0.5 mg Cd per mg dry biomass, which was three times the binding capacity of non-tolerant fungi, and more than 10 times higher than reported values for, e.g., the commonly used biosorption organism Rhizopus arrhizus. The implications of these results for AM involvement in plant protection against excess heavy metal uptake are discussed. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

2.
 Analysis of the community of arbuscular mycorrhizal (AM) fungi in roots of Fragaria vesca growing in a heavy metal contaminated site was carried out on a Zn waste site near Chrzanow (southern Poland). The waste substratum was characterized by high contents of Pb, Zn, Cd, Cu and As, and by low levels of N, P and organic matter. Spores of Glomales were isolated by wet sieving and DNA was isolated from individual spores. Nested polymerase chain reaction (PCR) with taxon-specific primers was used to identify the species Glomus mosseae, Glomus intraradices and Glomus claroideum. Spores of other fungi were morphologically characterized and new taxon-discriminating molecular probes were developed for two of them (Glomus sp. HM-CL4 and HM-CL5) based on variations in the large ribosomal subunit (25S rDNA). High sequence similarities were found between Glomus sp. HM-CL4 and Glomus gerdemanii, and between Glomus sp. HM-CL5 and Glomus occultum. The designed primers were used to characterize the population of AM fungi colonizing the roots of F. vesca collected from the Zn waste site. The analysis, carried out on roots stained with trypan blue, showed that the most effective colonizer was closely related to G. gerdemannii. G. claroideum and the G. occultum-like fungus were slightly less common whilst frequencies of G. intraradices and G. mosseae in roots were much lower. The analysis of mycorrhiza stained with rhodizoniate to localize heavy metal accumulation showed that the stain does not influence the PCR reaction. Seventy percent of the root samples containing positively stained fungal hyphae were found to be colonized by G. mosseae. The data obtained demonstrate the usefulness of nested PCR for studies carried out in polluted areas. It will enable selection of AM fungi which are able to colonize plant roots under heavy metal stress conditions, as well as the identification of fungi showing high in situ accumulation of potentially toxic elements. Accepted: 7 July 2000  相似文献   

3.
The effects of two arbuscular mycorrhizal fungi (AMF) (Glomus mosseae and G. claroideum) and a pathogenic fungus (Pythium ultimum) on the production of eight flavonoids in roots of two white clover (Trifolium repens L.) cultivars were evaluated. Quantification of AM and pathogenic fungi in the roots showed that the AM symbiosis significantly reduced P. ultimum biomass and in some cases prevented infection. The flavonoid productions in clover roots varied depending on the presence of beneficial and/or pathogenic fungi, fungal isolate or plant cultivar. Only plants colonized with G. claroideum showed detectable concentrations of either coumestrol or kaempferol (cultivar-dependant). In addition, inoculation with G. claroideum resulted in significantly higher concentrations of coumestrol in cv. Sonja and medicarpin in cv. Milo. A low production of coumestrol and kaempferol in mycorrhizal plants may be G. mosseae-specific. Only the concentrations of formononetin and daidzein increased in clover roots in response to infection with P. ultimum. These flavonoids are supposedly stress metabolites, synthesized or produced from glycosides in response to pathogen infection. However, the presence of one or both AMF significantly lowered the formononetin and daidzein concentrations, and overruled the inductive effect of P. ultimum. Therefore the antagonistic action of AM against the pathogen must take place through another mechanism.  相似文献   

4.
Cd-tolerant arbuscular mycorrhizal (AM) fungi from heavy-metal polluted soils   总被引:13,自引:1,他引:13  
Spores of arbuscular mycorrhizal (AM) fungi were isolated from two heavy-metal polluted soils in France via trap culture with leek (Allium porrum L.). Preliminary identification showed that the predominant spore type of both cultures (P2 and Cd40) belongs to the Glomus mosseae group. Their sensitivity to cadmium was compared to a laboratory reference strain (G. mosseae) by in vitro germination tests with cadmium nitrate solutions at a range of concentrations (0 to 100 mg L–1) as well as extracts from a metal-polluted and unpolluted soils. Both cultures of AM fungi from heavy-metal polluted soils were more tolerant to cadmium than the G. mosseae reference strain. The graphically estimated EC50 was 0.8 mg L–1 Cd (concentration added to the test device) for G. mosseae and 7 mg L–1 for P2 culture, corresponding to effective Cd concentrations of approximately 50–70 g L–1 and 200–500 g L–1, respectively. The extract of the metal-polluted soil P2 decreased germination of spores from the reference G. mosseae but not from P2 culture. However, the extracts of two unpolluted soils with different physico-chemical characteristics did not affect G. mosseae, whereas germination of P2 spores was markedly decreased in the presence of one of the extracts. These results indicate a potential adaptation of AM fungi to elevated metal concentrations in soil. The tested spores may be considered as metal-tolerant ecotypes. Spore germination results in presence of soil extracts show the difficulty of assessing the ecotoxic effect of metals on AM fungi without considering other soil factors that may interfere in spore germination and hyphal extension.  相似文献   

5.
Solaiman  M. Zakaria  Abbott  Lynette K. 《Plant and Soil》2003,248(1-2):313-320
Communities of indigenous arbusuclar mycorrhizal (AM) fungi are expected to alter phosphorus uptake and biomass productivity of plants according to characteristics of the life cycles of the fungi present and the way they interact with each other inside roots and with host plants. Differences in the relative abundance of AM fungi inside roots could influence P uptake if the fungi present differ in effectiveness at accessing P and transferring it to the plant. However, it is difficult to assess the contribution of AM fungi under field conditions. We investigated P uptake, from point sources of P placed 2, 4 and 6 cm from roots, by plants colonised by a community of AM fungi in jarrah forest soil. Roots were retained within a mesh bag to prevent them from growing towards the point source of P. The relative abundance of morphotypes of fungi inside roots and the P status of plants were assessed after 12 and 16 weeks. First, a bioassay was carried out in undisturbed forest soil cores using two host plants, a forest understorey plant Phyllanthus calycinus Labill and the annual pasture species subterranean clover (Trifolium subterraneaumL.), to assess the infectivity of the indigenous community of AM fungi. Roots of both bioassay host plants were colonised in similar proportions by morphotypes of AM fungi resembling Glomus, Acaulospora, Scutellospora and fine endophytes. In this bioassay, there were positive correlations between the proportion of root length colonised and plant biomass and P uptake for P. calycinus, but not for subterranean clover. In the experiment assessing the capacity of P. calycinus to access P placed at increasing distances from the root, shoot P content and concentration in P. calycinus were greater when P was placed 2 cm compared with 4 and 6 cm from roots. The length of hyphae in the vicinity of the point source of P decreased with increasing distance from the plant. The extent to which the individual AM fungi were involved in P uptake is not known. The Glomus morphotype was dominant at both times of sampling.  相似文献   

6.
The populations of the general microflora (bacteria, actinomycetes and fungi) in the rhizosphere and their corresponding non-rhizosphere soil samples of Ginkgo biloba L. of two age groups (Group A, <25 years-young trees; Group B, >60 years-old trees) growing under a temperate location of Indian Himalayan Region (IHR) have been determined. Observations were also made for the diversity, distribution and colonization of arbuscular mycorrhizal (AM) fungi and occurrence of endophytes in roots of G. biloba. The population of general microflora was found to be higher in the rhizosphere of Group B trees, more clearly reflected in terms of rhizosphere: soil (R:S) ratios. Contrary to this, per cent colonization and spore densities of AM fungi were higher in the rhizosphere of Group A trees as compared to the rhizosphere of Group B. AM fungal colonization was observed mostly in form of loose coils. All the spores detected, belonged to the genus Glomus with five different types. Presence of endophytes (both bacteria and fungi) was observed in the cortical cells of G. biloba roots, more profound in case of Group B trees. Data suggest that, while the species of Glomus dominated the rhizosphere of G. biloba, an inverse correlation exist between the colonization of general microflora and the colonization of AM fungi including endophytes.  相似文献   

7.
Abstract

Members of the Australian native perennial Fabaceae have been little explored with regard to their root biology and the role played by arbuscular mycorrhizal (AM) fungi in their establishment, nutrition and long-term health. The ultimate goal of our research is to determine the dependency of native perennial legumes on their co-evolved AM fungi and conversely, the impact of AM fungal species in agricultural fields on the productivity of sown native perennial legume pastures. In this paper we investigate the colonisation morphology in roots and the AMF, identified by spores extracted from rhizosphere soil, from three replicate plots of each of the native legumes, Cullen australasicum, C. tenax and Lotus australis and the exotic legumes L. pedunculatus and Medicago sativa. The plants were grown in an agricultural field. The level and density of colonisation by AM fungi, and the frequency of intraradical and extraradical hyphae, arbuscules, intraradical spores and hyphal coils all differed between host plants and did not consistently differ between native and exotic species. However, there were strong similarities between species in the same genus. The three dominant species of AM fungi in rhizosphere soil also differed with host plant, but one fungus (Glomus mosseae) was always the most dominant. Sub-dominant AM species were the same between species in the same genus. No consistent differences in dominant spores were observed between the exotic and native Fabaceae species. Our results suggest that plant host influences the mycorrhizal community in the rhizosphere soil and that structural and functional differences in the symbiosis may occur at the plant genus level, not the species level or due to provenance.  相似文献   

8.
Arbuscular mycorrhizal fungi (AMF) can improve plant tolerance to several abiotic stresses, including heavy metals, drought or salinity exposure. However, the role of AMF in alleviation of soil cadmium (Cd)-induced toxicity to plants is still largely unknown. In this study, Cd speciation in soil and subcellular distribution of Cd were used to characterize the roles of application AM fungi in the alleviation of Cd toxicity in alfalfa plants. Our results showed that the addition of Glomus mosseae in Cd contaminated soil (10 mg/Kg) significantly increased soil pH, cation exchange capacity (CEC) and organic matter in rhizosphere soil with Medicago truncatula L., and then account for significantly decreased contents of exchangeable and carbonate-bounded Cd speciation in rhizosphere soil, indicating alleviation of plant toxicity by reduction of bioavailable fractions of Cd. Although there is no significant difference found in Cd accumulation by roots and shoots respectively between Cd and AM-Cd treatments, more portion of Cd was recorded compartmentalization in cell wall fraction of both root and shoot in treatment of Cd with AM application, indicating alleviation of Cd toxicity to plant cell. Herein, application of AM fungi in Cd treatments performed to inhibit the appearance of Cd toxicity symptoms, including the improvement of leaf electrolyte leakage, root elongation, seedling growth and biomass. This information provides a clearer understanding of detoxification strategy of AM fungi on Cd behavior with development and stabilization of soil structure and subcellular distribution of plant.  相似文献   

9.
Arbuscular mycorrhizas in a valley-type savanna in southwest China   总被引:6,自引:1,他引:5  
Tao L  Jianping L  Zhiwei Z 《Mycorrhiza》2004,14(5):323-327
The arbuscular mycorrhizal (AM) status of 67 plant species in a savanna community in the hot, dry valley of Jinsha River, southwest China was surveyed. It was found that about 95% of the plant species formed AM and 5% possibly formed AM. The composition of AM fungi (AMF) in the rhizosphere soils was also investigated. The AMF spore density ranged from 5 to 6,400 per 100 g soil, with an average of 1,530, and these spores/sporocarps were identified as belonging to six genera. Fungi belonging to the genera Glomus and Acaulospora were the dominant AMF. High densities of AMF spores in the rhizosphere soils, and the intensive colonization of the plant roots, indicated that plants grown in this valley-type savanna may be highly dependent on AM.  相似文献   

10.
Liu R  Dai M  Wu X  Li M  Liu X 《Mycorrhiza》2012,22(4):289-296
Arbuscular mycorrhizal (AM) fungi and plant growth-promoting rhizobacteria (PGPR) have potential for the biocontrol of soil-borne diseases. The objectives of this study were to quantify the interactions between AM fungi [Glomus versiforme (Karsten) Berch and Glomus mosseae (Nicol. & Gerd.) Gerdemann & Trappe] and PGPR [Bacillus polymyxa (Prazmowski) Mace and Bacillus sp.] during colonization of roots and rhizosphere of tomato (Lycopersicon esculentum Mill) plants (cultivar Jinguan), and to determine their combined effects on the root-knot nematode, Meloidogyne incognita, and on tomato growth. Three greenhouse experiments were conducted. PGPR increased colonization of roots by AM fungi, and AM fungi increased numbers of PGPR in the rhizosphere. Dual inoculations of AM fungi plus PGPR provided greater control of M. incognita and greater promotion of plant growth than single inoculations, and the best combination was G. mosseae plus Bacillus sp. The results indicate that specific AM fungi and PGPR can stimulate each other and that specific combinations of AM fungi and PGPR can interact to suppress M. incognita and disease development.  相似文献   

11.
Although members of the Oxalidaceae family have been described as host plants of vesicular-arbuscular mycorrhizal fungi, Oxalis pes-caprae did not become colonized by Glomus mosseae. Extracts of Ox. pes-caprae root inhibited the germination of G. mosseae spores. However, the presence of G. mosseae in the rhizosphere of Ox. pes-caprae produced browning of the roots, which was interpreted as a hypersensitivity response of the plant to the presence of VA fungus.  相似文献   

12.
Zhang Y  Guo LD 《Mycorrhiza》2007,17(4):319-325
We investigated the colonization and diversity of arbuscular mycorrhizal (AM) fungi associated with 24 moss species belonging to 16 families in China. AM fungal structures, i.e. spores, vesicles, hyphal coils (including intracellular hyphae), or intercellular nonseptate hyphae, were found in 21 moss species. AM fungal structures (vesicles, hyphal coils, and intercellular nonseptate hyphae) were present in tissues of 14 moss species, and spores and nonseptate hyphae on the surface of gametophytes occurred in 15 species. AM fungal structures were present in 11 of the 12 saxicolous moss species and in six of the ten terricolous moss species, but absent in two epixylous moss species. AM fungal structures were only observed in moss stem and leaf tissues, but not in rhizoids. A total of 15 AM fungal taxa were isolated based on trap culture with clover, using 13 moss species as inocula. Of these AM fungi, 11 belonged to Glomus, two to Acaulospora, one to Gigaspora, and one to Paraglomus. Our results suggest that AM fungal structures commonly occur in most mosses and that diverse AM fungi, particularly Glomus species, are associated with mosses.  相似文献   

13.
Three arbuscular mycorrhizal (AM) fungi (Glomus mosseae, Glomus claroideum, and Glomus intraradices) were compared for their root colonizing ability and activity in the root of Astragalus sinicus L. under salt-stressed soil conditions. Mycorrhizal formation, activity of fungal succinate dehydrogenase, and alkaline phosphatase, as well as plant biomass, were evaluated after 7 weeks of plant growth. Increasing the concentration of NaCl in soil generally decreased the dry weight of shoots and roots. Inoculation with AM fungi significantly alleviated inhibitory effect of salt stress. G. intraradices was the most efficient AM fungus compared with the other two fungi in terms of root colonization and enzyme activity. Nested PCR revealed that in root system of plants inoculated with a mix of the three AM fungi and grown under salt stress, the majority of mycorrhizal root fragments were colonized by one or two AM fungi, and some roots were colonized by all the three. Compared to inoculation alone, the frequency of G. mosseae in roots increased in the presence of the other two fungal species and highest level of NaCl, suggesting a synergistic interaction between these fungi under salt stress.  相似文献   

14.
Saito K  Suyama Y  Sato S  Sugawara K 《Mycorrhiza》2004,14(6):363-373
The effects of defoliation on arbuscular mycorrhizal (AM) associations in the field were investigated in terms of the community structure of AM fungi colonizing roots of grassland plants; the carbohydrate balance of the host plants was also determined. We focused on two plant species dominating Japanese native grasslands: the grazing-intolerant species Miscanthus sinensis and the grazing-tolerant species Zoysia japonica. Community structures of AM fungi were determined from 18S rRNA gene sequences. The dominant fungal group in both plant species was the Glomus clade, which was classified into several phylogenetic groups based on genetic distances and topology. In Miscanthus roots, the Glomus-Ab, Glomus-Ac, and Glomus-Ad groups were detected almost equally. In Zoysia roots, the Glomus-Ab group was dominant. Defoliation effects on the community structure of AM fungi differed between the plant species. In Miscanthus roots, the percentage of root length colonized (%RLC) by the Glomus-Ac and Glomus-Ad groups was significantly reduced by defoliation treatment. On the other hand, AM fungal group composition in Zoysia roots was unaffected by defoliation except on the last sampling date. Decreased %RLC by Glomus-Ac and Glomus-Ad coincided with decreased non-structural carbohydrate (NSC) levels in host plants; also, significant positive correlations were found between the %RLC and some NSC levels. On the other hand, the %RLC by Glomus-Ab in both plant species was unaffected by the NSC level. These results suggest that AM fungal groups have different carbohydrate requirements from host plants.Electronic Supplementary Material Supplementary material is available in the online version of this article at http://dx.doi.org/10.1007/s00572-003-0286-x  相似文献   

15.
To understand arbuscular mycorrhizal (AM) fungi resources and develop AM fungal species in ornamental plants with saline-alkaline tolerances, Iris lactea, which grows in the Songnen saline-alkaline grassland with a high ornamental value, was selected as the experimental material, and the colonization characteristics of its roots and the AM fungal diversity in its rhizosphere were explored. The results of the observations and calculations of mycorrhizae from ten different samples showed that AM fungi colonized the roots of I. lactea and formed Arum-type mycorrhizal structures. There was a significant correlation between soil spore density and pH value, while the colonization rate showed a fluctuating trend with increasing pH values. The observed colonization intensities were of Levels II (1%–10%) or III (11%–50%), and the vesicle abundances were of grades A2 or A3 among different sites. AM fungi produced a large number of mycelia and vesicles in the roots of I. lactea after colonization. Thirty-seven species belonging to 15 genera of AM fungi were isolated from the rhizosphere of I. lactea and identified by morphological identification. Funneliformis and Glomus were the dominant genera, accounting for 21.79% and 20.85% of the total number, respectively. F. mosseae and Rhizophagus intraradices were isolated in all samples with importance values of 58.62 and 51.19, respectively. These results are expected to provide a theoretical basis for the analysis of the salt tolerance mechanism of I. lactea and for the discovery, exploration and further screening of AM fungal resources with salinity tolerances in saline-alkaline soils.  相似文献   

16.
  • DNA methylation is an important epigenetic mechanism regulating gene expression in plants. DNA methylation has been shown to vary among species and also among plant tissues. However, no study has evaluated whether arbuscular mycorrhizal (AM) fungi affect DNA methylation levels in a tissue‐specific manner.
  • We investigated whether symbiosis with AM fungi affects DNA methylation in the host, focusing on different plant tissues (roots versus leaves) and across time. We carried out a 6‐month pot experiment using Geranium robertianum in symbiosis with the AM fungus Funneliformis mosseae.
  • Our results show that the pattern of total DNA methylation differed between leaves and roots and was related to when plants were harvested, confirming that DNA methylation is a process that occurs dynamically throughout an organism's lifetime. More importantly, the presence of AM fungus in roots of our experimental plants had a positive effect on total DNA methylation in both tissues.
  • This study shows that colonisation by AM fungi can affect DNA methylation levels in their hosts and that plant DNA methylation varies in an age‐ and tissue‐specific manner.
  相似文献   

17.
In two pot-culture experiments with maize in a silty loam (P2 soil) contaminated by atmospheric deposition from a metal smelter, root colonization with indigenous or introduced arbuscular mycorrhizal (AM) fungi and their influence on plant metal uptake (Cd, Zn, Cu, Pb, Mn) were investigated. Soil was -irradiated for the nonmycorrhizal control. In experiment 1, nonirradiated soil provided the mycorrhizal treatment, whereas in experiment 2 the irradiated soil was inoculated with spores of a fungal culture from P2 soil or a laboratory reference culture, Glomus mosseae. Light intensity was considerably higher in experiment 2 and resulted in a fourfold higher shoot and tenfold higher root biomass. Under the conditions of experiment 1, biomass was significantly higher and Cd, Cu, Zn and Mn concentrations significantly lower in the mycorrhizal plants than in the nonmycorrhizal plants, suggesting a protection against metal toxicity. In contrast, in experiment 2, biomass did not differ between treatments and only Cu root concentration was decreased with G. mosseae-inoculated plants, whereas Cu shoot concentration was significantly increased with the indigenous P2 fungal culture. The latter achieved a significantly higher root colonization than G. mosseae (31.7 and 19.1%, respectively) suggesting its higher metal tolerance. Zn shoot concentration was higher in both mycorrhizal treatments and Pb concentrations, particularly in the roots, also tended to increase with mycorrhizal colonization. Cd concentrations were not altered between treatments. Cu and Zn, but not Pb and Cd root-shoot translocation increased with mycorrhizal colonization. The results show that the influence of AM on plant metal uptake depends on plant growth conditions, on the fungal partner and on the metal, and cannot be generalized. It is suggested that metal-tolerant mycorrhizal inoculants might be considered for soil reclamation, since under adverse conditions AM may be more important for plant metal resistance. Under the optimized conditions of normal agricultural practice, however, AM colonization even may increase plant metal absorption from polluted soils.  相似文献   

18.
19.
Analysis of arbuscular mycorrhizal (AM) fungal diversity through morphological characters of spores and intraradicular hyphae has suggested previously that preferential associations occur between plants and AM fungi. A field experiment was established to investigate whether AM fungal diversity is affected by different host plants in upland grasslands. Indigenous vegetation from plots in an unimproved pasture was replaced with monocultures of either Agrostis capillaris or Lolium perenne. Modification of the diversity of AM fungi in these plots was evaluated by analysis of partial sequences in the large subunit (LSU) ribosomal RNA (rDNA) genes. General primers for AM fungi were designed for the PCR amplification of partial sequences using DNA extracted from root tissues of A. capillaris and L. perenne. PCR products were used to construct LSU rDNA libraries. Sequencing of randomly selected clones indicated that plant roots were colonised by AM fungi belonging to the genera Glomus, Acaulospora and Scutellospora. There was a difference in the diversity of AM fungi colonising roots of A. capillaris and L. perenne that was confirmed by PCR using primers specific for each sequence group. These molecular data suggest the existence of a selection pressure of plants on AM fungal communities.  相似文献   

20.
In this study, it is aimed to asses the association of arbuscular mycorrhizal (AM) fungi within colonised rhizosphere of Gramineae family members through a survey by using nested- polymerase chain reaction method in Van province (Turkey). From 24 agro-ecological fields, a total of 82 samples belonging to Gramineae family were tested by molecular methods. The presence of Glomus intraradices and Glomus mosseae was ascertained in 10 plants belonging to eight different species by using fungus specific primers. Root colonisation ranged from 6 to 37% within rhizosphere of Gramineae family members and the average root colonisation by AM fungi was 22%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号