首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Aim We examined the relative contributions of spatial gradients and local environmental conditions to macroinvertebrate assemblages of boreal headwater streams at three hierarchical extents: bioregion, ecoregion and drainage system. We also aimed to identify the environmental variables most strongly related to assemblage structure at each study scale, and to assess how the importance of these variables is related to regional context and spatial structuring at different scales. Location Northern Finland ( 62 – 68° N, 25–32° E). Methods Variation in macroinvertebrate data was partitioned using partial canonical correspondence analysis into components explained by spatial variables (nine terms from the cubic trend surface regression), local environmental variables (15 variables) and spatially structured environmental variation. Results The strength of the relationship between assemblage structure and local environmental variables increased with decreasing spatial extent, whereas assemblage variation related to spatial variables and spatially structured environmental variation showed the opposite pattern. At the largest extents, spatial variation was related to latitudinal gradients, whereas spatial autocorrelation among neighbouring streams was the likely mechanism creating spatial structure within drainage systems. Only stream size and water acidity were consistently important in explaining assemblage structure at all study scales, while the importance of other environmental variables was more context‐dependent. Main conclusions The importance of local environmental factors in explaining macroinvertebrate assemblage structure increases with decreasing spatial extent. This scale‐related pattern is not caused solely by changes in study extent, however, but also by variable sample sizes at different regional extents. The importance of environmental gradients is context‐dependent and few factors are likely to be universally important correlates of macroinvertebrate assemblage structure. Finally, our results suggest that bioassessment should give due attention to spatial structuring of stream assemblages, because important assemblage gradients may not only be related to local factors but also to biogeographical constraints and neighbourhood dispersal processes.  相似文献   

3.
Geomorphology and fish assemblages in a Piedmont river basin, U.S.A.   总被引:7,自引:0,他引:7  
1. We investigated linkages between fishes and fluvial geomorphology in 31 wadeable streams in the Etowah River basin in northern Georgia, U.S.A. Streams were stratified into three catchment sizes of approximately 15, 50 and 100 km2, and fishes and geomorphology were sampled at the reach scale (i.e. 20–40 times stream width). 2. Non‐metric multidimensional scaling (NMDS) identified 85% of the among‐site variation in fish assemblage structure and identified strong patterns in species composition across sites. Assemblages shifted from domination by centrarchids, and other pool species that spawn in fine sediments and have generalised food preferences, to darter‐cyprinid‐redhorse sucker complexes that inhabit riffles and runs, feed primarily on invertebrates, and spawn on coarser stream beds. 3. Richness and density were correlated with basin area, a measure of stream size, but species composition was best predicted (i.e. |r| between 0.60–0.82) by reach‐level geomorphic variables (stream slope, bed texture, bed mobility and tractive force) that were unrelated to stream size. Stream slope was the dominant factor controlling stream habitat. Low slope streams had smaller bed particles, more fines in riffles, lower tractive force and greater bed mobility compared with high slope streams. 4. Our results contrast with the ‘River Continuum Concept’ which argues that stream assemblages vary predictably along stream size gradients. Our findings support the ‘Process Domains Concept’, which argues that local‐scale geomorphic processes determine the stream habitat and disturbance regimes that influence stream communities.  相似文献   

4.
5.
Community response to environmental gradients operating at hierarchical scales was assessed in studies of benthic diatoms, macroinvertebrates and fish from 44 stream sites in the New York City watershed. Hierarchical cluster analysis (TWINSPAN) of diatoms and fish partitioned the study sites into four groups, i.e., acid streams, reservoir outlets and wetland streams, large eutrophic streams, and small eutrophic streams; macroinvertebrate TWINSPAN distinguished an additional group of silty eutrophic streams. The correspondence among the three assemblage TWINSPAN groupings was moderate, ranging from 51 to 57%. The similarity across the four major group types was the highest among large eutrophic stream and acid stream assemblages, and the lowest among small eutrophic stream assemblages. Stepwise discriminant function analysis revealed that environmental factors discriminated most effectively the diatom grouping and least effectively the fish grouping. The best environmental predictors for diatom and macroinvertebrate grouping were conductance and percent surface water, while population density was most powerful in separating the fish groups. Carbaryl was the only pesticide that correlated with macroinvertebrate grouping. Partial redundancy analyses suggested a differential dependence of freshwater communities on the scale of the environmental factors to which they respond. The role of small‐scale habitat and habitatland cover/land use interaction steadily increased across the diatom, macroinvertebrate, and fish assemblages, whereas the effect of large‐scale land cover/land use declined.  相似文献   

6.
7.
In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid‐ and late‐21st‐century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural, and ecosystem services these fish provide. We combined field measurements and model simulations to estimate the potential influence of future flood disturbance on geomorphic processes controlling the quality and extent of coho, chum, and pink salmon spawning habitat in over 800 southeast Alaska watersheds. Spawning habitat responses varied widely across watersheds and among salmon species. Little variation among watersheds in potential spawning habitat change was explained by predicted increases in mean annual flood size. Watershed response diversity was mediated primarily by topographic controls on stream channel confinement, reach‐scale geomorphic associations with spawning habitat preferences, and complexity in the pace and mode of geomorphic channel responses to altered flood size. Potential spawning habitat loss was highest for coho salmon, which spawn over a wide range of geomorphic settings, including steeper, confined stream reaches that are more susceptible to streambed scour during high flows. We estimated that 9–10% and 13–16% of the spawning habitat for coho salmon could be lost by the 2040s and 2080s, respectively, with losses occurring primarily in confined, higher‐gradient streams that provide only moderate‐quality habitat. Estimated effects were lower for pink and chum salmon, which primarily spawn in unconfined floodplain streams. Our results illustrate the importance of accounting for valley and reach‐scale geomorphic features in watershed assessments of climate vulnerability, especially in topographically complex regions. Failure to consider the geomorphic context of stream networks will hamper efforts to understand and mitigate the vulnerability of anadromous fish habitat to climate‐induced hydrologic change.  相似文献   

8.
This study examined the interplay of spatial and environmental effects shaping the range margin of the red‐backed shrike (Lanius collurio) in northern Portugal. The occurrence of shrikes in 10 × 10 km UTM squares was related to three sets of explanatory variables, reflecting environmental effects (climate and habitat), large‐scale spatial trends, and neighbourhood influences (considering an autologistic term); spatial variables were used as surrogates for historical and demographic factors. Multiple logistic regression models were built for each set, and then variation partitioning based on partial regressions isolated the unique and shared components of explained variation. The environmental model revealed a dominant influence of climate effects, with the occurrence of shrikes increasing with frost and thermal amplitude, declining with insolation, and responding unimodally to rainfall. There was a weaker influence of habitat conditions, though shrikes were more likely with increasing cover by annual crops and pastures, and decreasing forest cover. Only a relatively small proportion of explained variation was due to a ‘pure’ environmental component (10.4%), as most variation explained by environmental factors appeared spatially structured (51.9%). The unique contributions of spatial variables to the overall model were also small, though the neighbourhood effects appeared relatively stronger than large‐scale trends. Taken together, results suggested that the south‐western range margin of the red‐backed shrike was largely determined by spatially structured environmental factors. Nevertheless, there were also ‘pure’ environmental factors determining some isolate occurrences irrespective of any spatial structure, and ‘pure’ spatial factors that appeared to favour the occupation of squares surrounding the core distribution areas irrespective of environmental conditions. These results add to the growing evidence that both environmental and spatial factors need to be considered in predictive modelling of species range margins.  相似文献   

9.
1. Evaluations of stream geomorphic condition may increase our understanding of the composite effects of human‐induced habitat change on fish communities. Using systematic sampling of 44 reaches spread across 26 rivers in Vermont from 2002 through 2004, we tested the hypothesis that stream reaches in reference geomorphic condition would support fish assemblages that differed in diversity and productivity from fish communities found in reaches of poorer geomorphic condition. 2. At each study reach, we sampled the fish community, identified the morphological unit according to common stream classification systems and then evaluated the extent of deviation from reference geomorphic condition using a regionally adapted geomorphic assessment methodology. 3. We used principal component analysis (PCA) and linear regression to build exploratory models linking stream geomorphic condition to fish community characteristics. 4. Our results suggest that geomorphic condition significantly influences fish community diversity, productivity and condition. Geomorphic condition was a significant factor in all of our fish community models. In conjunction with additional reach characteristics, geomorphic condition explained up to 31% of the total variance observed in models for species diversity of fish communities, 44% of the variance in assemblage biomass and 45% of the variance in a regional index of biotic integrity. 5. Our work builds on single‐species evidence that geomorphic characteristics represent important local‐scale fish‐habitat variables, showing that stream geomorphic condition is a dominant factor affecting entire fish communities. Our results enhance our understanding of the hierarchy of factors that influences fish community diversity and organisation and support the use of geomorphic condition assessments in stream management.  相似文献   

10.
11.
Much debate about assemblage organization in stream fish may stem from analysing the effects of both local and large-scale processes on assemblage attributes over whole geographic regions. This study addresses this issue, by examining the contribution of local habitat attributes and landscape context to fish assemblage variation across small Mediterranean drainages in southern Portugal. Fish abundance and species composition was estimated in 28 sites, across 10 drainages, in both a dry year (1999) and a wet year (2001), and related to two sets of variables reflecting habitat and landscape characteristics. Fish showed responses to both sets of variables with variance partitioning indicating that landscape context had important effects on species richness whereas habitat attributes were the primary determinants of local fish abundance. In general, high species richness was associated with larger drainage area and higher rainfall variability, whereas variation in species abundances mostly reflected the influence of width, depth, conductivity, current velocity, substrate size and emergent vegetation. The relative contributions of both landscape context and habitat attributes to species richness and abundance were generally lower in 1999 than in 2001, with much less diversified species–habitat relationships being found in the former dry year. These results point to the dynamic nature of assemblage organization, emphasizing the importance of innovative, multi-scale approaches in advancing our knowledge of fish assemblage structure in Mediterranean streams.  相似文献   

12.
Contemporary and historical factors influence assemblage structure. The environmental and spatial influences acting on fish organization of rain forest coastal streams in the Atlantic rain forest of Brazil were examined. Fish (and functional traits such as morphology, diet, velocity preference, body size), environmental variables (pH, water conductivity, dissolved oxygen, temperature, stream width, flow, depth, substrate), and altitude were measured from 59 stream reaches. Asymmetric eigenvector maps were used to model the spatial structure considering direction of fish movements. Elevation played an important role—fish abundance, biomass, and richness all decrease with increasing elevation. Fish communities are influenced by both environmental and spatial factors, but downstream movements were shown to be more important in explaining the observed spatial variation than were bidirectional and upstream movements. Spatial factors, as well as environmental variables influenced by the spatial structure, explained most of the variation in fish assemblages. The strong spatial structuring is probably attributable to asymmetric dispersal limitation along the altitudinal profile: Dispersal is likely to be more limiting moving upstream than downstream. These fish assemblages reflect scale-dependent processes: At the stream-reach scale, fish respond to local environmental filters (habitat structure, water chemistry, and food supply), which are in turn influenced by a larger scale, namely the altitudinal gradient expected in steep coastal mountains. Thus, environmental drivers are not independent of spatial factors, and the effects of local factors can be confounded across the altitudinal gradient. These results may have implications for conservation, because downstream reaches are often neglected in management and conservation plans.  相似文献   

13.
1. Biological resilience is of heightened concern in increasingly anthropogenic landscapes. Quantification of faunal resilience across a wide range of spatial scales and geographical areas is necessary to understand factors influencing the rate and degree of recovery, especially in fragmented ecosystems. 2. We evaluated the recovery of a riverine fish assemblage from a major diesel oil pipeline spill and associated fish kill in 37 km of the Reedy River, South Carolina, U.S.A. The fish assemblage was monitored at four disturbed sites within the fish kill zone and one upstream, undisturbed reference site over a 112‐month (9.3‐year) period following the disturbance. We used non‐metric multidimensional scaling (NMS) ordination to evaluate change in fish assemblage structure among sites and to determine the degree of recovery in assemblage structure. 3. NMS ordination of species relative abundance in two dimensions represented 93% of the total variation in fish assemblage structure among samples and illustrated recovery of the fish assemblage. Initial dissimilarity in assemblage structure was evident between the disturbed sites and the reference site, reflecting high mortality from the oil spill. The disturbed sites as a group increased in similarity to the reference assemblage with time, while the reference assemblage remained relatively stable. Strongest similarity in assemblage structure between the disturbed group and the reference group was achieved by October 2000 (52 months post‐disturbance), indicating recovery from the oil spill. Remaining variation in assemblage structure was consistent with longitudinal site position and comparable to that of an undisturbed reference river, attributable to inherent longitudinal variation along the 37‐kilometre river section. 4. Recovery rate among sites varied in relation to proximity and connectivity to recolonisation sources on a landscape scale. Recovery of the uppermost disturbed site was faster than the other disturbed sites because of its proximity to the undisturbed main stem fish assemblage, whereas the three most downstream sites were slower to recover largely because of isolation by anthropogenic barriers. These observations illustrate the influence of fragmentation on fish assemblage resilience at large spatial scales.  相似文献   

14.
1. Studies of North American streams have shown that hydraulic parameters and stream geomorphology can explain unionid mussel abundance at both the reach and catchment scale. However, few studies have examined applicability of hydrogeomorphic variables across broader spatial scales, such as across whole catchments, or have elucidated conditions under which spates can affect mussel populations in streams. 2. We quantified freshwater mussel abundance and species richness and their physical habitat at 24 sites in eight streams in southern Appalachian catchments in 2000 and 2001. In addition, we modelled site‐specific hydraulic parameters during summer baseflow and bankfull stages to estimate high‐ and low‐discharge conditions, respectively. 3. Mussel abundance was related to stream geomorphology, whereas richness was related to stream size. Baseflow habitat parameters explained only minor variation in abundance or richness, and both measures were highly correlated with mean current velocity or stream size. Bankfull shear stress composed a relatively low proportion of overall mussel habitat variability, but it accounted for significant variation in abundance and richness. 4. Mussel abundance was highly variable at sites subject to low‐shear stress during spates, whereas abundance always was low at sites subject to high‐shear stress. These data suggest that habitat conditions during floods, rather than those at summer baseflow, limit the abundance of mussels in Appalachian streams. These data also suggest that mussel abundance and assemblage structure may be sensitive to any changes in channel geomorphology and hydraulic conditions that might result from land use in the catchment.  相似文献   

15.
Aim To examine the role of multiple landscape factors on the species richness patterns of native and introduced freshwater fish. Location Mediterranean streams, south‐western Iberian Peninsula, Europe (c. 87,000 km2). Methods We used a dataset of fish occurrences from 436 stream sites. We quantified the incremental explanatory power of multiple landscape factors in native, introduced, and overall local species richness using regression analysis. First, we related variation in local species richness across river basins to regional species richness (here, the basin species pool), area and factors of climate and topography. Second, we related within‐river basin local species richness to site’s climate and topography, and spatial structure derived from Principal Coordinates of Neighbour Matrices approach, after testing for species richness spatial autocorrelation; predicted local richness was mapped. Results Patterns of local species richness across river basins were strongly associated with regional species richness for overall, native and introduced species; annual rainfall showed a significant incremental contribution to variation in introduced species richness only. Within river basins, environmental factors were associated with local richness for the three species groups, though their contributions to the total explained variation were inferior to those of spatial factors; rainfall seasonality and stream slope were the most consistent environmental correlates for all species groups, while the influence of spatial factors was most prevalent for native species. Main conclusions Landscape factors operating among and within river basins seem to play a relevant role in shaping local species richness of both native and introduced species, and may be contingent on basin‐specific contexts. Nevertheless, local factors, such as habitat characteristics and biotic interactions and human‐induced disturbances may also be at play. Multiscale approaches incorporating a multitude of factors are strongly encouraged to facilitate a deeper understanding of the biodiversity patterns of Mediterranean streams, and to promote more effective conservation and management strategies.  相似文献   

16.
17.
We studied spatial variation of macroinvertebrate species richness in headwater streams at two spatial extents, within and across drainage systems, and assessed the relative importance of three groups of variables (local, landscape and regional) at each extent. We specifically asked whether the same variables proposed to control broad‐scale richness patterns of terrestrial organisms (temperature, topographic variability) are important determinants of species richness also in streams, or whether environmental factors effective at mainly local scales (in‐stream heterogeneity, potential productivity) constrain species richness in local communities. We used forward selection with two stopping criteria to identify the key environmental and spatial variables at each study extent. Eigenvector‐based spatial filtering was applied to evaluate spatial patterns in species richness, and variation partitioning was used to assess the amount of variation in richness attributable to purely environmental and spatial components. A prime regulator of richness variation at the bioregion extent was elevation range (increasing richness with higher topographic variability), whereas hydrological stability and temperature were unimportant. Water chemistry variables, particularly water color, exhibited strong spatially‐structured variation across drainage systems. Local environmental variables explained most of the variation in species richness at the drainage‐system extent, reflecting gradients in total phosphorus and water color (negative effect on richness). The importance of the pure spatial component was strongly region‐dependent, with a peak (60%) in one drainage system, suggesting the presence of unmeasured environmental factors. Our results emphasize the need for spatially‐explicit, regional studies to better understand geographical variation of freshwater biodiversity. Future studies need to relate species richness not only to local factors but also to broad‐scale climatic variables, recognizing the presence of spatially‐structured environmental variation.  相似文献   

18.
1. Studies assessing human impacts on freshwater ecosystems are typically based on a single taxonomic group, often macroinvertebrates or fish. Unfortunately, the degree to which such macroinvertebrate or fish‐based surveys can be generalised across other taxonomic groups remains largely unknown. A prerequisite for useful generalisations is that different taxonomic groups exhibit concordant patterns of community structure across sites. 2. We examined the concordance among fish, benthic macroinvertebrates and bryophytes in 32 streams in a boreal catchment in Finland. Our goal was to test how consistently different taxonomic groups classify stream sites; for example, can site groupings based on macroinvertebrates be used as a surrogate for bryophyte or fish assemblage classification? 3. Our results show that community classifications in headwater streams are not concordant across taxonomic groups, at least not at the within‐river system scale. The lack of concordance reflected the fact that all three groups responded to different environmental factors. Macroinvertebrate community structure was mainly correlated with stream size and pH, whereas bryophytes were related to water colour, nutrient content and in‐stream habitat variability. Fish community structure was best described by stream depth, substrate size and water oxygen concentration. 4. Our results suggest that great care should be taken when typologies based on benthic macroinvertebrates, or any other taxonomic group, are extrapolated to other groups in creating typologies of lotic environments.  相似文献   

19.
Quantifying the role of spatial patterns is an important goal in ecology to further understand patterns of community composition. We quantified the relative role of environmental conditions and regional spatial patterns that could be produced by environmental filtering and dispersal limitation on fish community composition for thousands of lakes. A database was assembled on fish community composition, lake morphology, water quality, climatic conditions, and hydrological connectivity for 9885 lakes in Ontario, Canada. We utilized a variation partitioning approach in conjunction with Moran's Eigenvector Maps (MEM) and Asymmetric Eigenvector Maps (AEM) to model spatial patterns that could be produced by human‐mediated and natural modes of dispersal. Across 9885 lakes and 100 fish species, environmental factors and spatial structure explained approximately 19% of the variation in fish community composition. Examining the proportional role of spatial structure and environmental conditions revealed that as much as 90% of the explained variation in native species assemblage composition is governed by environmental conditions. Conversely on average, 67% of the explained variation in non‐native assemblage composition can be related to human‐mediated dispersal. This study highlights the importance of including spatial structure and environmental conditions when explaining patterns of community composition to better discriminate between the ecological processes that underlie biogeographical patterns of communities composed of native and non‐native fish species.  相似文献   

20.
  • 1 We used 94 sites within the Northern Lakes and Forests ecoregion spanning Minnesota, Wisconsin and Michigan to identify environmental variables at the catchment, reach and riparian scales that influence stream macroinvertebrates. Redundancy analyses (RDA) found significantly influential variables within each scale and compared their relative importance in structuring macroinvertebrate assemblages.
  • 2 Environmental variables included landcover, geology and groundwater delivery estimates at the catchment scale, water chemistry, channel morphology and stream habitat at the reach scale, and landcover influences at three distances perpendicular to the stream at the riparian scale. Macroinvertebrate responses were characterised with 22 assemblage attributes, and the relative abundance and presence/absence of 66 taxa.
  • 3 Each scale defined macroinvertebrates along an erosional to depositional gradient. Wisconsin's macroinvertebrate index of biotic integrity, Ephemeroptera–Plecoptera–Trichoptera taxa and erosional taxa corresponded with forest streams, whereas organic pollution tolerant, Chironomidae and depositional taxa corresponded with wetland streams. Reach scale analyses defined the gradient similarly as dissolved oxygen and wide, shallow channels (erosional) opposed instream macrophytes and pool habitats (depositional). Riparian forests within 30 m of the stream coincided with an erosional assemblage and biotic integrity.
  • 4 Next, we combined all significant environmental variables across scales to compare the relative influence of each spatial scale on macroinvertebrates. Partial RDA procedures described how much of the explained variance was attributable to each spatial scale and each interrelated scale combination.
  • 5 Our results appeared consistent with the concept of hierarchical functioning of scale in which large‐scale variables restrict the potential for macroinvertebrate traits or taxa at smaller spatial scales. Catchment and reach variables were equally influential in defining assemblage attributes, whereas the reach scale was more influential in determining relative abundance and presence/absence.
  • 6 Ultimately, comprehending the relative influence of catchment and reach scale properties in structuring stream biota will assist prioritising the scale at which to rehabilitate, manage and derive policies for stream ecosystem integrity.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号