首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The activity of enzyme carbonic anhydrase (CA) was investigated in two diazotrophic cyanobacteria, Anabaena sp. (ARM 629) and Nostoc calcicola, in the presence of CO2/NaHCO3 and different inhibitors. The CA activity increased when the cells were pretreated with a high concentration of CO2/NaHCO3 and then transferred to ambient level CO2. Maximum activity of CA was observed after 8 h of incubation in light on transfer of cells from high Ci to ambient level CO2, and was low when incubated in dark. Addition of the photosynthetic inhibitor DCMU brought about a differential reduction in CA activity, depending on the carbon source (NaHCO3/CO2). CA inhibitors--ethoxyzolamide (EZ) and acetazolamide (AZ)--inhibited the enzyme activity in both the genera, but the extent of inhibition was greater in Anabaena sp. than in N. calcicola. Such a variation in extent of inhibition/stimulation of CA activity being different in the two genera reflects differences in their inherent potential and genetic background. The relevance of such cyanobacterial strains as CO2 sinks is also discussed.  相似文献   

2.
In the last years, the effect of extremely low-frequency electromagnetic fields (ELF-EMF) on the activity of different enzymes were investigated. Only the membrane-anchored enzymes did decrease their activity, up to 50%. In this work, the effect of ELF-EMF on bovine lung membrane carbonic anhydrase (CA) were studied. Carbonic anhydrases are a family of 14 zinc-containing isozymes catalyzing the reversible reaction: CO(2)+H(2)O = HCO(3)(- )+H(+). CA differ in catalytic activity and subcellular localization. CA IV, IX, XII, XIV, and XV are membrane bound. In particular, CA IV, which is expressed in the lung, is glycosyl phosphatidyl inositol-linked to the membrane, therefore it was a candidate to inhibition by ELF-EMF. Exposure to the membranes to a field of 75 Hz frequency and different amplitudes caused CA activity to a reproducible decrease in enzymatic activity by 17% with a threshold of about 0.74 mT. The decrease in enzymatic activity was independent of the time of permanence in the field and was completely reversible. When the source of enzyme was solubilized with Triton, the field lost its effect on CA enzymatic activity, suggesting a crucial role of the membrane, as well as of the particular linkage of the enzyme to it, in determining the conditions for CA inactivation. Results are discussed in terms of the possible physiologic effects of CA inhibition in target organs.  相似文献   

3.
Diffusion of (14)C-labeled CO(2) was measured through lipid bilayer membranes composed of egg lecithin and cholesterol (1:1 mol ratio) dissolved in n-decane. The results indicate that CO(2), but not HCO(3-), crosses the membrane and that different steps in the transport process are rate limiting under different conditions. In one series of experiments we studied one-way fluxes between identical solutions at constant pCO(2) but differing [HCO(3-)] and pH. In the absence of carbonic anhydrase (CA) the diffusion of CO(2) through the aqueous unstirred layers is rate limiting because the uncatalyzed hydration-dehydration of CO(2) is too slow to permit the high [HCO(3-)] to facilitate tracer diffusion through the unstirred layers. Addition of CA (ca. 1 mg/ml) to both bathing solutions causes a 10-100-fold stimulation of the CO(2) flux, which is proportional to [HCO(3-)] over the pH range 7-8. In the presence of CA the hydration- dehydration reaction is so fast that CO(2) transport across the entire system is rate limited by diffusion of HCO(3-) through unstirred layers. However, in the presence of CA when the ratio [HCO(3-) + CO(3=)]:[CO(2)] more than 1,000 (pH 9-10) the CO(2) flux reaches a maximum value. Under these conditions the diffusion of CO(2) through the membrane becomes rate limiting, which allows us to estimate a permeability coefficient of the membrane to CO(2) of 0.35 cm s(-1). In a second series of experiments we studied the effects of CA and buffer concentration on the net flux of CO(2). CA stimulates the net CO(2) flux in well buffered, but no in unbuffered, solutions. The buffer provides a proton source on the upstream side of the membrane and proton sink on the downstream side, thus allowing HCO(3-) to facilitate the net transport of CO(2) through the unstirred layers.  相似文献   

4.
Rosacea and chronic urticaria are two common skin disorders existing in idiopathic forms. A role of Helicobacter pylori bacterium infection in the aetiopathogenesis of rosacea or chronic urticaria has been suggested although still controversial. The aim of the present study was to establish a relationship between H. pylori infection and rosacea chronic urticaria by means of an immunoproteomic investigation. We analyzed immunoglobulin A (IgA)-, IgG-, and IgE-mediated immune-responses against H. pylori antigens and we identified some bacterial immunoresponsive proteins. A general IgA- and IgE-mediated immune response against antioxidative bacterial proteins was observed. A correlation between the bacterial occurrence and skin diseases pathogenesis is discussed.  相似文献   

5.
From the membrane fraction of the Gram-positive bacterium Carboxydothermus hydrogenoformans, an enzyme complex catalyzing the conversion of CO to CO2 and H2 was purified. The enzyme complex showed maximal CO-oxidizing:H2-evolving enzyme activity with 5% CO in the headspace (450 U per mg protein). Higher CO concentrations inhibited the hydrogenase present in the enzyme complex. For maximal activity, the enzyme complex had to be activated by either CO or strong reductants. The enzyme complex also catalyzed the CO- or H2-dependent reduction of methylviologen at 5900 and 180 U per mg protein, respectively. The complex was found to be composed of six hydrophilic and two hydrophobic polypeptides. The amino-terminal sequences of the six hydrophilic subunits were determined allowing the identification of the encoding genes in the preliminary genome sequence of C. hydrogenoformans. From the sequence analysis it was deduced that the enzyme complex is formed by a Ni-containing carbon monoxide dehydrogenase (CooS), an electron transfer protein containing four [4Fe-4S] clusters (CooF) and a membrane bound [NiFe] hydrogenase composed of four hydrophilic subunits and two membrane integral subunits. The hydrogenase part of the complex shows high sequence similarity to members of a small group of [NiFe] hydrogenases with sequence similarity to energy conserving NADH:quinone oxidoreductases. The data support a model in which the enzyme complex is composed of two catalytic sites, a CO-oxidizing site and a H2-forming site, which are connected via a different iron-sulfur cluster containing electron transfer subunits. The exergonic redox reaction catalyzed by the enzyme complex in vivo has to be coupled to energy conservation, most likely via the generation of a proton motive force.  相似文献   

6.
Helicobacter pylori infection in humans is associated with diverse of clinical outcomes which are partly attributed to bacterial strain differences. Secreted bacterial products are thought to be involved in the pathogenesis caused by this non-invasive bacterium. Electron microscopy of gastric biopsies from infected individuals revealed blebbing of the H. pylori outer membrane, similar to the process of outer membrane vesicle shedding which occurs when the bacterium is grown in broth. Porins, a class of proinflammatory proteins, were observed in the outer membrane vesicles. The VacA cytotoxin, which is produced by 50-60% of H. pylori strains and associated with increased pathogenesis of infection, was also found to be vesicle-associated and biologically active. This supports the hypothesis that these vesicles represent a vehicle for the delivery of damaging bacterial products to the gastric mucosa.  相似文献   

7.
Carbonic anhydrase (CA) has recently gained renewed interests for its potential as a mass-transfer facilitator for CO(2) sequestration. However, the low stability and high price severely limit its applications. In this work, the expression of α-CA from Helicobacter pylori on the outer membrane of Escherichia coli using a surface-anchoring system derived from ice nucleation protein (INP) from Pseudomonas syringae was developed. To find the best surface anchoring motif, full-length INP (114 kDa), truncated INP (INP-NC, 33 kDa), and INP's N-domain with first two subunits (INP-N, 22 kDa) were evaluated. Two vectors, pKK223-3 and pET22b(+), with different promoters (T7 and Tac) were used to construct the fusion genes, and for each vector, three recombinant strains, each expressing a different length of the fusion protein, were obtained. SDS-PAGE, Western blot, immunofluorescence microscopy, FACS, and whole-cell ELISA confirmed the expression of fusion proteins on the surface of E. coli. The smallest fusion protein with INP-N as the anchoring motif had the highest expression level and CA activity, suggesting that INP-N is the best carrying protein due to its smaller size. Also, the T7 promoter in pET22b(+) induced with 0.2 mM IPTG gave high protein expression levels, whereas the Tac promoter in pKK223-3 gave low expression levels. The surface displayed CA was at least twofold more stable than that of the free form, and did not show any adverse effect on cell growth and outer membrane integrity. Cells with surface displayed CA were successfully used to facilitate CO(2) sequestration in contained liquid membrane (CLM).  相似文献   

8.
BACKGROUND: Some authors have reported, using different protocols, that 13C-urea breath test (13C-UBT) is capable of assessing the intragastric Helicobacter pylori bacterial load, whereas others have not confirmed these data. Our aim is to evaluate the correlation between 13C-UBT values and H. pylori bacterial load. MATERIALS AND METHODS: One hundred ninety-two patients diagnosed H. pylori-positive by rapid urease test, histology, and 13C-UBT were enrolled. H. pylori bacterial load (H. pylori score) and gastritis activity (activity score) were evaluated according to the Updated Sydney System. 13C-UBT was performed according to the European Standard Protocol. Breath samples were obtained every 10 minutes for 60 minutes in 52 patients and at 30 minutes (T30) in 140 patients and analyzed by mass spectrometry. RESULTS: At T30, mean +/- SD excess delta 13CO2 excretion was 17.4 +/- 1.1, 29.9 +/- 2.2, and 48.7 +/- 4.8 in patients with H. pylori scores 1, 2, and 3, respectively. This difference was statistically significant: H. pylori score 1 versus 2, p < .005; score 1 versus 3, p < .05; score 2 versus 3, p < .05. A significant positive correlation (G = 0.59) was found between H. pylori score and activity score of chronic gastritis. At T40 and T50 significant correlation between mean excess delta 13CO2 excretion and bacterial load was achieved only in patients with H. pylori scores 1 and 3. CONCLUSIONS: 13C-UBT European Standard Protocol values correlate with H. pylori bacterial load and the activity of gastritis at T30 breath sampling time.  相似文献   

9.
The activity of carbonic anhydrase (CA) was studied in different cell fractions of the alkaliphilic cyanobacterium Microcoleus chthonoplastes. The activity of this enzyme was found in the soluble and membrane protein fractions, as well as in intact cells and in a thick glycocalyx layer enclosing the cyanobacterium cells. The localization of CA in glycocalyx of M. chthonoplastes was shown by the western blot analysis and by immunoelectron microscopy studies with antibodies to the thylakoid CA from Chlamydomonas reinhardtii (Cah3). At least one of the CA forms occurring in M. chthonoplastes CA was shown to be an alpha-type enzyme. A possible mechanism of the involvement of the glycocalyx CA in calcification of cyanobacteria is discussed.  相似文献   

10.
The activity and cellular localization of carboanhydrase (CA) in two alkaliphilic anaerobes growing in soda lakes at pH 9-10 was studied. CA activity in the cell extracts of the acetogenic bacterium Natroniella acetigena was comparable to that of the neutrophilic acetogens. Hydrogenotrophically grown cells of Desulfonatronum lacustre exhibited higher CA activity compared to the cells grown on media with formate. High CA activity in the cytoplasmic fraction and the absence of high activity in the extracellular fraction were demonstrated. We propose that the cytoplasmic CA in alkaliphilic sulfate-reducers participates in conversion of bicarbonate to CO2, which is reduced in the cell to acetate via the acetyl-CoA pathway.  相似文献   

11.
The gastric pathogen Helicobacter pylori harbors one Nudix hydrolase, NudA, that belongs to the nucleoside polyphosphate hydrolase subgroup. In this work, the enzymatic activity of purified recombinant NudA protein was analyzed on a number of nucleoside polyphosphates. This predicted 18.6-kDa protein preferably hydrolyzes diadenosine tetraphosphate, Ap(4)A at a k(cat) of 0.15 s(-1) and a K(m) of 80 microm, resulting in an asymmetrical cleavage of the molecule into ATP and AMP. To study the biological role of this enzyme in H. pylori, an insertion mutant was constructed. There was a 2-7-fold decrease in survival of the mutant as compared with the wild type after hydrogen peroxide exposure but no difference in survival after heat shock or in spontaneous mutation frequency. Western blot analyses revealed that NudA is constitutively expressed in H. pylori at different growth stages and during stress, which would indicate that this protein has a housekeeping function. Given that H. pylori is a diverse species and that all the H. pylori strains tested in this study harbor the nudA gene and show protein expression, we consider NudA to be an important enzyme in this bacterium.  相似文献   

12.
Helicobacter pylori is a causative agent of gastritis in humans and is correlated with gastric ulcer formation. Infections with this bacterium have proven difficult to treat with antimicrobial agents. To better understand how this bacterium transports compounds such as antimicrobial agents across its outer membrane, identification of porin proteins is important. We have recently identified a family of H. pylori porins (HopA to HopD) (M. M. Exner, P. Doig, T. J. Trust, and R. E. W. Hancock, Infect. Immun. 63:1567-1572, 1995). Here, we report on an unrelated porin species (HopE) from this bacterium. This protein had a apparent molecular mass of 31 kDa and was seen to form 50- and 90-kDa aggregates that were designated putative dimeric and trimeric forms, respectively. The protein was purified to homogeneity and, with a model planar lipid membrane system, was shown to act as a nonselective pore with a single channel conductance in 1.0 M KCl of 1.5 nS, similarly to other bacterial nonspecific porins. An internal peptide sequence of HopE shared homology with the P2 porin of Haemophilus influenzae. HopE was also shown to be antigenic in vivo as assessed by sera taken from H. pylori-infected individuals and was immunologically conserved with both patient sera and specific monoclonal antibodies. From these data, it appears that HopE is a major nonselective porin of H. pylori. The implications of these findings are discussed.  相似文献   

13.
Rat salivary glands were studied by Hanson's method to specify the ultrastructural localization of carbonic anhydrase (CA). Two different procedures were used: 1) The embedding of the tissues in water-soluble resins, followed by the incubation of the resin sections on the medium. 2) The embedding in epon-araldite of previously incubated frozen sections. Light and electron microscopy were used to observe the distribution and the ultrastructural localization of the cobalt precipitate. In parotid and mandibular glands, CA was localized in the secretion granules and the hyaloplasma of the secretory endpieces. The enzyme was also detected on the basal and lateral membranes of the striated duct cells in the three glands. In the convoluted granular duct cells of the mandibular gland CA was found in the hyaloplasma only. In the sublingual gland, CA was localized in the hyaloplasma of the serous crescents and no activity was detected in the mucous tubules. As regards the localization of the enzyme in the granules of the secretory endpieces of parotid and mandibular glands, it appears that CA has to be considered as a secretory product of these cells; this localization is consistent with the presence of the enzyme in rat saliva.  相似文献   

14.
The human erythrocyte membrane is an efficient enhancer of both high (CA II) and low (CA I) activity isozymes of red blood cell carbonic anhydrase. The presence of membrane increased CO2 hydration catalyzed by bovine CA II 1.6-fold, human CA II 3.5-fold, and human CA I 1.6-fold. With the high activity CA isozymes, maximal stimulation was observed in the presence of 1-3 micrograms membrane protein/ml. The Vmax for bovine CA II (4 nM) rose from 0.302 to 0.839 mM/s, while that for human CA II (6 nM) increased from 0.113 to 0.414 mM/s in the absence and presence of membrane, respectively. The apparent Km for CO2 increased from 13.2 to 51.2 mM for bovine CA II, and from 6.5 to 38.5 mM for human CA II. Mixtures of membrane plus enzyme, upon centrifugation through linear sucrose density gradients, displayed enhanced Ca activity only in membrane-containing gradient fractions, verifying the stimulatory ability of membranes on enzyme activity and indicating tight and stable complex formation. Membrane enhancement of CA activity appears to be a general phenomenon in that mouse hepatocyte membranes also stimulated CA activity, although less efficiently than erythrocyte membranes. Of the many soluble putative effectors assayed, only imidazole enhanced CA II activity to an extent comparable with erythrocyte membranes; imidazole did not, however, stimulate the activity of human CA I. The data are consistent with a model of CA II activation by membrane association that may effect a distortion of the enzyme conformation in such a way as to facilitate intra- and/or intermolecular proton transfer between membrane-bound and enzyme-bound proton shuttling residues (perhaps the imidazole moiety of histidine) and the Zn-bound hydroxide at the catalytic site of the enzyme.  相似文献   

15.
Carbonic anhydrase (CA) is a diffusion-limited enzyme that rapidly catalyzes the hydration of carbon dioxide (CO2). CA has been proposed as an eco-friendly yet powerful catalyst for CO2 capture and utilization. A bacterial whole-cell biocatalyst equipped with periplasmic CA provides an option for a cost-effective CO2-capturing system. However, further utilization of the previously constructed periplasmic system has been limited by its relatively low activity and stability. Herein, we engineered three genetic components of the periplasmic system for the construction of a highly efficient whole-cell catalyst: a CA-coding gene, a signal sequence, and a ribosome-binding site (RBS). A stable and halotolerant CA (hmCA) from the marine bacterium Hydrogenovibrio marinus was employed to improve both the activity and stability of the system. The improved secretion and folding of hmCA and increased membrane permeability were achieved by translocation via the Sec-dependent pathway. The engineering of RBS strength further enhanced whole-cell activity by improving both the secretion and folding of hmCA. The newly engineered biocatalyst displayed 5.7-fold higher activity and 780-fold higher stability at 60°C compared with those of the previously constructed periplasmic system, providing new opportunities for applications in CO2 capture and utilization.  相似文献   

16.
BACKGROUND: There is no general consensus about the specific oxygen and carbon dioxide requirements of the human pathogen Helicobacter pylori. This bacterium is considered a microaerophile and consequently, it is grown under atmospheres at oxygen tensions 5-19% and carbon dioxide tensions 5-10%, both for clinical and basic and applied research purposes. The current study compared the growth of H. pylori in vitro, under various gas atmospheres, and determined some specific changes in the physiology of bacteria grown under different oxygen partial pressures. METHODS: Measurements of bacterial growth under various conditions were carried out employing classical solid and liquid culture techniques. Enzymatic activities were measured using spectrophotometric assays. RESULTS: H. pylori and all the other Helicobacter spp. tested had an absolute requirement for elevated carbon dioxide concentrations in the growth atmosphere. In contrast with other Helicobacter spp., H. pylori can tolerate elevated oxygen tensions when grown at high bacterial concentrations. Under 5% CO(2), the bacterium showed similar growth in liquid cultures under oxygen tensions from microaerobic (< 5%) to fully aerobic (21%) at cell densities higher than 5 x 10(5) cfu/ml for media supplemented with horse serum and 5 x 10(7) cfu/ml for media supplemented with beta-cyclodextrin. Evidence that changes occurred in the physiology of H. pylori was obtained by comparing the activities of ferredoxin:NADH (nicotinamide adenine dinucleotide) oxidoreductases of bacteria grown under microaerobic and aerobic atmospheres. CONCLUSIONS: H. pylori is a capnophile able to grow equally well in vitro under microaerobic or aerobic conditions at high bacterial concentrations, and behaved like oxygen-sensitive microaerophiles at low cell densities. Some characteristics of H. pylori cells grown in vitro under microaerobic conditions appeared to mimic better the physiology of organisms grown in their natural niche in the human stomach.  相似文献   

17.
莱茵藻胞外碳酸酐酶分子定位与活性诱导   总被引:5,自引:1,他引:4  
胞外碳酸酐酶是藻类CCM机制和光合作用的一个重要组分 ,藻类从高CO2 转入低CO2 浓度培养时可诱导出胞外碳酸酐酶。应用金标免疫分子定位和pH调节对胞外碳酸酐酶分子定位和CO2 诱导机制进行研究 ,结果表明 :胞外碳酸酐酶主要分布于胞壁空间 (细胞质膜与细胞壁之间 ) ,且细胞壁上也有较多分布 ,细胞壁外分布较少。说明胞外碳酸酐酶能从胞壁空间穿过细胞壁。通过CO2 诱导和pH调节(升高 ) ,均可提高碳酸酐酶活性 ,且pH提高幅度越大 ,胞外碳酸酐酶活性也越大 ,说明胞外碳酸酐酶的CO2 诱导与pH调节有一定关系  相似文献   

18.
The role of the periplasmic alpha-carbonic anhydrase (alpha-CA) (HP1186) in acid acclimation of Helicobacter pylori was investigated. Urease and urea influx through UreI have been shown to be essential for gastric colonization and for acid survival in vitro. Intrabacterial urease generation of NH3 has a major role in regulation of periplasmic pH and inner membrane potential under acidic conditions, allowing adequate bioenergetics for survival and growth. Since alpha-CA catalyzes the conversion of CO2 to HCO3-, the role of CO2 in periplasmic buffering was studied using an alpha-CA deletion mutant and the CA inhibitor acetazolamide. Western analysis confirmed that alpha-CA was bound to the inner membrane. Immunoblots and PCR confirmed the absence of the enzyme and the gene in the alpha-CA knockout. In the mutant or in the presence of acetazolamide, there was an approximately 3 log10 decrease in acid survival. In acid, absence of alpha-CA activity decreased membrane integrity, as observed using membrane-permeant and -impermeant fluorescent DNA dyes. The increase in membrane potential and cytoplasmic buffering following urea addition to wild-type organisms in acid was absent in the alpha-CA knockout mutant and in the presence of acetazolamide, although UreI and urease remained fully functional. At low pH, the elevation of cytoplasmic and periplasmic pH with urea was abolished in the absence of alpha-CA activity. Hence, buffering of the periplasm to a pH consistent with viability depends not only on NH3 efflux from the cytoplasm but also on the conversion of CO2, produced by urease, to HCO3- by the periplasmic alpha-CA.  相似文献   

19.
A library of sulfonamides/sulfamates has been investigated for the inhibition of the carboxyterminal truncated form of the alpha-carbonic anhydrase (CA, EC 4.2.1.1) isolated from the gastric pathogen Helicobacter pylori (hpCA). This enzyme, incorporating 202 amino acid residues, showed a catalytic activity similar to that of the full length hpCA, with k(cat) of 2.35 x 10(5)s(-1) and k(cat)/K(M) of 1.56 x 10(7)M(-1)s(-1) at 25 degrees C and pH of 8.9, for the CO(2) hydration reaction. All types of activity for inhibition of the bacterial enzyme have been detected. Dorzolamide and simple 4-substituted benzenesulfonamides were weak hpCA inhibitors (inhibition constants, K(I)s, in the range of 830-4310 nM). Sulfanilamide, orthanilamide, some of their derivatives, and indisulam showed better activity (K(I)s in the range of 310-562 nM), whereas most of the clinically used CA inhibitors, such as methazolamide, ethoxzolamide, dichlorophenamide, brinzolamide, topiramate, zonisamide, etc., acted as medium potency hpCA inhibitors (K(I)s in the range of 124-287 nM). Some potent hpCA inhibitors were detected too (K(I)s in the range of 20-96 nM) such as acetazolamide, 4-amino-6-chloro-1,3-benzenedisulfonamide, 4-sulfanilyl-aminoethyl-benzenesulfonamide, and 4-(2-amino-pyrimidin-4-yl)-benzenesulfonamide. Most of the investigated derivatives acted as better inhibitors of the human isoform hCA II than as hpCA inhibitors. Since hpCA is essential for the survival of the pathogen in acid, its inhibition by compounds such as those investigated here might be used as a new pharmacologic tool in the management of drug resistant H. pylori.  相似文献   

20.
The oceans globally constitute an important sink for carbon dioxide (CO(2)) due to phytoplankton photosynthesis. However, the marine environment imposes serious restraints to carbon fixation. First, the equilibrium between CO(2) and bicarbonate (HCO(3)(-)) is pH dependent, and, in normal, slightly alkaline seawater, [CO(2)] is typically low (approximately 10 mum). Second, the rate of CO(2) diffusion in seawater is slow, so, for any cells unable to take up bicarbonate efficiently, photosynthesis could become carbon limited due to depletion of CO(2) from their immediate vicinity. This may be especially problematic for those dinoflagellates using a form II Rubisco because this form is less oxygen tolerant than the usually found form I enzyme. We have identified a carbonic anhydrase (CA) from the free-living marine dinoflagellate Lingulodinium polyedrum that appears to play a role in carbon acquisition. This CA shares 60% sequence identity with delta-class CAs, isoforms so far found only in marine algae. Immunoelectron microscopy indicates that this enzyme is associated exclusively with the plasma membrane. Furthermore, this enzyme appears to be exposed to the external medium as determined by whole-cell CA assays and vectorial labeling of cell surface proteins with (125)I. The fixation of (14)CO(2) is strongly pH dependent, suggesting preferential uptake of CO(2) rather than HCO(3)(-), and photosynthetic rates decrease in the presence of 1 mm acetazolamide, a non-membrane-permeable CA inhibitor. This constitutes the first CA identified in the dinoflagellates, and, taken together, our results suggest that this enzyme may help to increase CO(2) availability at the cell surface.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号