首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Microsomal glycerolphosphate acyltransferase from rat adipose tissue is shown to be inactivated with time upon incubation with ATP. The inactivation can be observed in postmitochondrial supernatant as well as in washed microsomes. However, the effect is more pronounced upon addition of the cytosolic fraction. This activity is specific for ATP, is dependent on the nucleotide concentration, and is prevented when ATP is substituted by beta,gamma-methylene-ATP. Some protection is provided by amiloride but not by EGTA or cAMP-protein kinase inhibitor. Also, the level of enzyme inactivation is not modified by addition of cAMP-dependent protein kinase and its substrates. Inactivated glycerol-phosphate acyltransferase from ATP-treated microsomes can be reactivated by incubation with partially purified protein phosphatase from rat liver. These results suggest the existence in adipose tissue of a protein kinase (cAMP independent) that may be involved in the regulation of glycerolphosphate acyltransferase.  相似文献   

2.
The steroid-binding capacity of the adrenocortical pregnenolone-binding protein (PBP) is effectively destroyed by extreme temperature (boiling water for 2-5 min); however, the boiled preparation contains a factor that potentiates ligand binding when readded to native PBP. Treatment of the boiled fraction with calf intestinal alkaline phosphatase at pH 9 reverses the stimulatory effect on PBP activity. Additionally, if native PBP is first incubated with alkaline phosphatase, which converts it to a nonbinding form, activity can be fully restored in a dose-dependent manner by the addition of the boiled preparation. The factor (itself devoid of binding capacity) can also be generated by exposing native PBP to acidic conditions (pH 4). The molecule is small (mol wt, less than 2000), as judged by Sephadex G-25 gel filtration and equilibrium dialysis. It is not retained on Concanavalin-A-Sepharose and is not extractable with a variety of organic solvents. The factor remains active after lyophilization and has a net negative charge at pH 7.4 (determined by DEAE-cellulose chromatography). While the binding capacity of native PBP is destroyed by a variety of proteases, the heat-stable factor is unaffected by similar treatment. Additionally, factor activity is not susceptible to RNase, DNase, or lipase digestion. Thus, the protein moiety of the PBP has an absolute requirement for a distinct phosphorylated heat-stable factor for expression of ligand-binding activity, and it may be through this factor that binding activity is regulated. It is not yet known whether the factor is acting allosterically or actually functions as part of the steroid-binding site.  相似文献   

3.
This paper presents data identifying adenosine 3',5'-diphosphate (3',5'-ADP) as the small heat-stable factor essential for the active steroid binding complex of the adrenocortical pregnenolone-binding protein (PBP). Factor activity obtained from the boiled supernatant of partially purified PBP was isolated by high performance liquid chromatography using weak anion-exchange and hydrophobic (C18) chromatography sequentially. The purified material retained characteristic factor activity and presented a UV spectrum identical to that for authentic 3',5'-ADP. Mass spectroscopic analysis of the isolated factor revealed an M-H ion of appropriate mass (m/z = 426) and a decomposition pattern for the M-H ion that was consistent with the structure of 3',5'-ADP. The studies presented here demonstrate that authentic 3',5'-ADP can categorically substitute for factor prepared from the soluble fraction of the guinea pig adrenal. Specifically, 3',5'-ADP potentiated ligand binding of partially purified native PBP and restored binding capacity to alkaline phosphatase-inactivated PBP in a dose-dependent manner. As is the case for adrenocortical factor activity, these effects were negated by pretreating the 3',5'-ADP with calf intestinal alkaline phosphatase. Other nucleotides similarly tested, including ADP isomers, were ineffective as factor substitutes. The sulfated form of 3',5'-ADP (i.e. 3'-phosphoadenosine 5'-phosphosulfate) demonstrated some potential for restoring binding capacity to phosphatase-inactivated PBP; however, this compound was clearly inhibitory rather than stimulatory for native PBP activity. Taken collectively, the data overwhelmingly demonstrate that 3',5'-ADP is in fact the molecule required by the PBP for high affinity steroid binding complex formation. It is not yet known whether 3',5'-ADP acts allosterically or contributes directly to the structure of the steroid binding site.  相似文献   

4.
Incubation of highly purified preparations of the bovine kidney cytosolic protamine kinase in the presence of near homogeneous preparations of the catalytic subunit of protein phosphatase 2A (PrP2Ac) from bovine kidney resulted in time-dependent inactivation of the protamine kinase. By contrast, incubation of bovine kidney cytosolic casein kinase II with PrP2Ac had no effect on the activity of this casein kinase II. In the presence of 10 mM sodium fluoride, 10 mM inorganic orthophosphate, 1 mM pyrophosphate or 0.1 mM ATP, the inactivation of the protamine kinase by PrP2Ac was completely inhibited. Half-maximal inhibition by ATP occurred at about 20 microM. The rate of inactivation of the protamine kinase by PrP2Ac was unaffected by Mg2+, Mn2+, Ca2+, EDTA or EGTA at 1 mM. The results strongly indicate that the activity of the cytosolic protamine kinase is regulated by phosphorylation/dephosphorylation.  相似文献   

5.
Acetyl CoA carboxylase, in a partially purified preparation, was inactivated by ATP in a time- and temperature-dependent reaction. Adenosine 3′,5′-monophosphate did not affect the inactivation. Further purification separated the carboxylase from a protein fraction which could greatly enhance the inactivation of the enzyme.Inactivation of the enzyme with [γ-32P]ATP resulted in the incorporation of 32P which copurified with the enzyme. No label was incorporated when [U-14C]ATP was used. When carboxylase inactivated by exposure to [γ-32P]ATP was precipitated with antibody, isotope incorporation into the precipitate paralleled enzyme inactivation. The phosphate was bound to serine and threonine residues by an ester linkage.Sodium fluoride completely inhibited the activation of partially purified enzyme by magnesium ions. Activation by magnesium, accompanied by the release of protein-bound 32P, was antagonistic to inactivation of the enzyme by ATP.The data presented in this communication are consistent with a mechanism for controlling acetyl CoA carboxylase activity by interconversion between phosphorylated and dephosphorylated forms. Phosphorylation of the enzyme by a portein kinase decreases enzyme activity, whereas dephosphorylation by a protein phosphatase reactivates the enzyme.  相似文献   

6.
The ATP-dependent inactivation of the pyruvate dehydrogenase complex (PDC) was examined using ruptured mitochondria and partially purified pyruvate dehydrogenase complex isolated from broccoli and cauliflower (Brassica oleracea) bud mitochondria. The ATP-dependent inactivation was temperature- and pH-dependent. [(32)P]ATP experiments show a specific transphosphorylation of the gamma-PO(4) of ATP to the complex. The phosphate attached to the PDC was labile under mild alkaline but not under mild acidic conditions. The inactivated-phosphorylated PDC was not reactivated by 20 mm MgCl(2), dialysis, Sephadex G-25 treatment, apyrase action, or potato acid phosphatase action. However, partially purified bovine heart PDC phosphatase catalyzed the reactivation and dephosphorylation of the isolated plant PDC. The ATP-dependent inactivation-phosphorylation of the PDC was inhibited by pyruvate. It is concluded that the ATP-dependent inactivation-phosphorylation of broccoli and cauliflower mitochondrial PDC is catalyzed by a PDC kinase. It is further concluded that the PDC from broccoli and cauliflower mitochondria is capable of interconversion between an active (dephosphorylated) and an inactive (phosphorylated) form.  相似文献   

7.
The activity of 3-hydroxy-3-methylglutaryl-coenzyme A reductase (hydroxymethylglutaryl-CoA reductase) was considerably inhibited during incubation with ATP+Mg2+. The inactivated enzyme was reactivated on further incubation with partially purified cytosolic phosphoprotein phosphatase. The inactivation was associated with a decrease in the apparent Km of the reductase for hydroxymethylglutaryl-CoA, and this was reversed on reactivation. The slight increase in activity observed during incubation of microsomal fraction without ATP was not associated with a change in apparent Km and, unlike the effect of the phosphatase, was not inhibited by NaF. Liver microsomal fraction from rats given cholesterol exhibited a low activity of hydroxymethylglutaryl-CoA reductase with a low apparent Km for hydroxymethylglutaryl-CoA. Mícrosomal fraction from rats fed cholestyramine exhibited a high activity with a high Km. To discover whether these changes had resulted from phosphorylation and dephosphorylation of the reductase, microsomal fraction from rats fed the supplemented diets and the standard diet were inactivated with ATP and reactivated with phosphoprotein phosphatase. Inactivation reduced the maximal activity of the reductase in each microsomal preparation and also reduced the apparent Km for hydroxymethylglutaryl-CoA. There was no difference between the preparations in the degree of inactivation produced by ATP. Treatment with phosphatase restored both the maximal activity and the apparent Km of each preparation, but never significantly increased the activity above that observed with untreated microsomal fraction. It is concluded that hydroxymethylglutaryl-CoA reductase in microsomal fraction prepared by standard procedures is almost entirely in the dephosphorylated form, and that the difference in kinetic properties in untreated microsomal fraction from rats fed the three diets cannot be explained by differences in the degree of phosphorylation of the enzyme.  相似文献   

8.
Microsomal human liver HMG-CoA reductase has been shown to exist in active (dephosphorylated) and inactive (phosphorylated) forms. Microsomal HMG-CoA reductase was inactivated in vitro by ATP-Mg in a time dependent manner; this inactivation was mediated by reductase kinase. Incubation of inactivated enzyme with phosphatase resulted in a time dependent reactivation (dephosphorylation). Polyacrylamide gel electrophoresis of purified HMG-CoA reductase incubated with reductase kinase and radiolabeled ATP revealed that the 32P radioactivity and HMG-CoA reductase enzymic activity were localized in a single electrophoretic position. Partial dephosphorylation of the phosphorylated enzyme was associated with loss of 32P and increase in HMG-CoA reductase activity. Human reductase kinase also exists in active and inactive forms. The active (phosphorylated) form of reductase kinase can be inactivated by incubation with phosphatase. Phosphorylation of inactive reductase kinase with ATP-Mg and a second kinase, reductase kinase kinase, was associated with a parallel increase in the enzymic activity of reductase kinase and the ability to inactivate HMG-CoA reductase. The combined results present initial evidence for the presence of human HMG-CoA reductase and reductase kinase in active and inactive forms, and the in vitro modulation of its enzymic activity by a bicyclic phosphorylation cascade. This bicyclic cascade system may provide a mechanism for short-term regulation of the pathway for cholesterol biosynthesis in man.  相似文献   

9.
Pyruvate dehydrogenase complex activity from spinach leaf mitochondria was inhibited up to 90% within 2 min of incubation with 1 mm ATP at 27 °C. The inhibition was time, temperature and ATP concentration dependent. The inhibition was partially prevented with 3.0 mm dichloroacetate, a known inhibitor of mammalian pyruvate dehydrogenase kinases. Optimum pH for ATP-dependent inactivation was between 8.0 and 9.0 The inactivated complex was reactivated with 10 to 20 mm MgCl2. Complete reactivation occurs within 10 min after MgCl2 addition. Reactivation was inhibited by fluoride, a known inhibitor of mammalian pyruvate dehydrogenase phosphatase. Optimum pH for Mg2+-dependent reactivation was 8.0. It is concluded that the inactivation and reactivation process of pyruvate dehydrogenase complex from spinach leaf mitochondria is due to phosphorylation and dephosphorylation.  相似文献   

10.
Glucocorticoid receptor in rat liver cytosol is inactivated (rendered unable to bind steroid) by incubation with calf intestine alkaline phosphatase or highly purified rabbit muscle phosphoprotein phosphatase (phosphorylase phosphate, protein phosphatase C). The receptor is inactivated by both enzymes even when 10 mM sodium molybdate is present. Receptors that are inactivated by phosphatases in the presence of molybdate can be reactivated to the steroid-binding state by addition of dithiothreitol, but receptors that are inactivated in the absence of molybdate cannot be reactivated. These observations suggest that dephosphorylation leads to oxidation of a moiety (-SH) on the receptor that is required for steroid binding. Molybdate apparently preserves the receptor in a form such that reduction returns the receptor to the steroid binding state. We would propose that molybdate may act by complexing with sulfur groups on the receptor.  相似文献   

11.
The regulation of kinase activity associated with insulin receptor by phosphorylation and dephosphorylation has been examined using partially purified receptor immobilized on insulin-agarose. The immobilized receptor preparation exhibits predominately tyrosine but also serine and threonine kinase activities toward insulin receptor beta subunit and exogenous histone. Phosphorylation of the insulin receptor preparation with increasing concentrations of unlabeled ATP, followed by washing to remove the unreacted ATP, results in a progressive activation of the receptor kinase activity when assayed in the presence of histone and [gamma-32P]ATP. A maximal 4-fold activation is achieved by prior incubation of receptor with concentrations of ATP approaching 1 mM. High pressure liquid chromatographic analysis of tryptic hydrolysates of the 32P-labeled insulin receptor beta subunit reveals three domains of phosphorylation (designated peaks 1, 2, and 3). Phosphotyrosine and phosphoserine residues are present in these three domains while peak 2 contains phosphothreonine as well. Thus, at least seven sites are available for phosphorylation on the beta subunit of the insulin receptor. Incubation of the phosphorylated insulin receptor with alkaline phosphatase at 15 degrees C results in the selective dephosphorylation of the phosphotyrosine residues on the beta subunit of the receptor while the phosphoserine and phosphothreonine contents are not affected. The dephosphorylation of the receptor is accompanied by a marked 65% inhibition of the receptor kinase activity. Almost 90% of the decrease in [32P]phosphate content of the receptor after alkaline phosphatase treatment is accounted for by a decrease in phosphotyrosine content in peak 2, while very small decreases are observed in peaks 1 and 3, respectively. These results demonstrate that the extent of phosphorylation of tyrosine residues in receptor domain 2 closely parallels the receptor kinase activity state, suggesting phosphorylation of this domain may play a key role in regulating the insulin receptor tyrosine kinase.  相似文献   

12.
The active NAD-dependent glutamate dehydrogenase of wild type yeast cells fractionated by DEAE-Sephacel chromatography was inactivated in vitro by the addition of either the cAMP-dependent or cAMP-independent protein kinases obtained from wild type cells. cAMP-dependent inhibition of glutamate dehydrogenase activity was not observed in the crude extract of bcy1 mutant cells which were deficient in the regulatory subunit of cAMP-dependent protein kinase. The cAMP-dependent protein kinase of CYR3 mutant cells, which has a high K alpha value for cAMP in the phosphorylation reaction, required a high cAMP concentration for the inactivation of NAD-dependent glutamate dehydrogenase. An increased inactivation of partially purified active NAD-dependent glutamate dehydrogenase (Mr = 450,000) was observed to correlate with increased phosphorylation of a protein subunit (Mr = 100,000) of glutamate dehydrogenase. The phosphorylated protein was labeled by an NADH analog, 5'-p-fluorosulfonyl[14C]benzoyladenosine. Activation and dephosphorylation of inactive NAD-dependent glutamate dehydrogenase fractions were observed in vitro by treatment with bovine alkaline phosphatase or crude yeast cell extracts. These results suggested that the conversion of the active form of NAD-dependent glutamate dehydrogenase to an inactive form is regulated by phosphorylation through cAMP-dependent and cAMP-independent protein kinases.  相似文献   

13.
1. In freshly isolated rat hepatocytes, the activity of the AMP-activated protein kinase is high, but decreases by 5-10-fold during incubation of the cells for 60 min. The expressed activity of acetyl-CoA carboxylase is initially very low, then rises in a reciprocal manner to the AMP-activated protein kinase activity. For both enzymes, treatment of partially purified preparations under dephosphorylating conditions abolishes the difference in activity between freshly isolated and preincubated cells. Thus, both the high activity of the AMP-activated protein kinase and the low activity of acetyl-CoA carboxylase in freshly isolated cells can be explained by phosphorylation. 2. Immediately after isolation, the hepatocytes have AMP/ATP ratios that are unphysiologically high (approximately 1:1.5). During incubation of the cells for 60 min, AMP levels fall and ATP levels rise so that the ratio becomes about 1:15, close to previous estimates of the ratio in freeze-clamped liver. The fall in AMP/ATP ratio precedes the decrease in AMP-activated protein kinase activity. 3. In cells which have been incubated for 60 min, treatment with 20 mM fructose, which causes a large but transient increase in the AMP/ATP ratio, also causes concomitant activation of the AMP-activated protein kinase and inactivation of acetyl-CoA carboxylase. 4. In all cases described above, the increases in activity of acetyl-CoA carboxylase were blocked by treatment with the cell-permeable protein phosphatase inhibitor, okadaic acid. However, the decreases in activity of the AMP-activated protein kinase were not blocked by this inhibitor. This is consistent with the finding that okadaic-acid-insensitive protein phosphatase 2C is the most effective at dephosphorylating the kinase in cell-free assays. 5. The results above suggested that AMP either promotes phosphorylation, or inhibits dephosphorylation, of the kinase. Studies in a partially purified cell-free system suggested that the former hypothesis was correct; reactivation of dephosphorylated AMP-activated protein kinase by kinase kinase was completely dependent on the presence of AMP. 6. Our results, obtained in both intact cells and a cell-free system, suggest that rises in the AMP/ATP ratio promote phosphorylation of the AMP-activated protein kinase by the kinase kinase, as well as causing direct allosteric activation. This represents a very sensitive system for switching off lipid biosynthetic pathways when ATP levels are limiting. The results with okadaic acid also suggest that protein phosphatase 2C is mainly responsible for dephosphorylation of the AMP-activated protein kinase in intact hepatocytes.  相似文献   

14.
The regulatory mechanism of a phosphoprotein phosphatase (EC 3.1.3.16), which is considered to catalyze the dephosphorylation reaction of several phosphoproteins (glycogen synthetase-D (EC 2.4.1.11), phospho-form of phosphorylase b kinase (EC 2.7.1.38), phosphohistone and phosphorylase a (EC 2.4.1.1)), was studied with partially purified preparations from rabbit skeletal muscle. Time- and temperature-dependent inactivation and reactivation of phosphohistone phosphatase, as well as phosphorylase phosphatase (EC 3.1.3.17), were observed on pre0incubation of the enzyme(s) with ATP, and subsequent incubation with divalent metal ions (Mg2+, Mn2+, or Co2+) without any change of molecular size. Manganese, however, instantly restored the activity of the ATP-inactivated enzyme, and increased the maximal velocity of the enzyme while decreasing its affinity to phosphorylase a. However, the metal ion inhibited the reactivated enzyme competively with respect to phosphorylase a. It is suggested that phosphoprotein phosphatase(s) is a metalloenzyme, and that ATP results in a conformational change of the enzyme protein in such a way that a metal ion can be easily released due to the chelating effect of ATP, or incorporated (in the presence of excess metal ions) into the enzyme protein.  相似文献   

15.
We have observed that ATP induces a second type of oestradiol binding site with slightly lower affinity (Ka 3.3 x 10(8) M-1) and lower sedimentation coefficient (4 S) in cytosol from immature lamb uterus and MCF-7 cells. A factor isolated from immature lamb uterine nuclear extract was found to decrease the steroid binding activity of oestradiol receptor that had been purified by heparin Sepharose and oestradiol-Sepharose chromatography. Inhibition of this factor by known phosphatase inhibitors, indicated that this factor may be a phosphatase. Another factor isolated from immature lamb uterine cytosol was found to enhance the effect of ATP on receptor binding in cytosol from immature lamb uterus and MCF-7 cells. The ability of this factor to phosphorylate a partially purified cytosol receptor from immature lamb uterus when incubated with [gamma 32P]ATP, indicates that this factor is a phosphokinase. The phosphorylated products after labeling with [3H]tamoxifen aziridine were characterized by sodium dodecyl sulphate-polyacrylamide gel electrophoresis. Three phosphorylated proteins with molecular weights 150, 97, and 67 kDa bound [3H]tamoxifen aziridine. Ammonium sulphate precipitated cytosol oestradiol receptor from immature lamb uterus was inactivated with receptor inactivating factor and then reactivated with receptor activating factor in the presence of [gamma 32P]ATP and substantially affinity labelled with [3H]tamoxifen aziridine. The affinity labelled oestradiol receptor was immunopurified with the monoclonal antibody JS 34/32. Three proteins with molecular weights 67, 50 and 43 kDa specifically bound [3H]tamoxifen aziridine and only 43 kDa receptor fragment was phosphorylated. The relevance of inactivation/reactivation of oestradiol receptor to the dephosphorylation/phosphorylation of receptor is discussed.  相似文献   

16.
Purified alkaline phosphatase and plasma membranes from human liver were shown to dephosphorylate phosphohistones and plasma membrane phosphoproteins. The protein phosphatase activity of the liver plasma membranes was inhibited by levamisole, a specific inhibitor of alkaline phosphatase, and by phenyl phosphonate and orthovanadate, but was relatively insensitive to fluoride (50 mM). Endogenous membrane protein phosphatase activity was optimal at pH 8.0, compared to pH 7.8 for purified liver alkaline phosphatase. Plasma membranes also exhibited protein kinase activity using exogenous histone or endogenous membrane proteins (autophosphorylation) as substrates; this activity was cAMP-dependent. Autophosphorylation of plasma membrane proteins was apparently enhanced by phenyl phosphonate, levamisole, or orthovanadate. The dephosphorylation of phosphohistones by protein phosphatase 1 was not inhibited by levamisole but was inhibited by fluoride. Inhibition of endogenous protein phosphatase activity by orthovanadate during autophosphorylation of plasma membranes could be reversed by complexation of the inhibitor with (R)-(-)-epinephrine, and the dephosphorylation that followed was levamisole-sensitive. Neither plasma membranes nor purified liver alkaline phosphatase dephosphorylated glycogen phosphorylase a. These results suggest that the increased [32P]phosphate incorporation by endogenous protein kinases into the membrane proteins is due to inhibition of alkaline phosphatase and that the major protein phosphatase of these plasma membranes is alkaline phosphatase.  相似文献   

17.
J M Argüello  J H Kaplan 《Biochemistry》1990,29(24):5775-5782
Treatment of renal Na,K-ATPase with N-acetylimidazole (NAI) results in loss of Na,K-ATPase activity. The inactivation kinetics can be described by a model in which two classes of sites are acetylated by NAI. The class I sites are rapidly reacting, the acetylation is prevented by the presence of ATP (K0.5 congruent to 8 microM), and the inactivation is reversed by incubation with hydroxylamine. These data suggest that the class I sites are tyrosine residues at the ATP binding site. The second class of sites are more slowly reacting, not protected by ATP, nor reversed by hydroxylamine treatment. These are probably lysine residues elsewhere in the protein. The associated K-stimulated p-nitrophenylphosphatase activity is inactivated by acetylation of the class II sites only; thus the tyrosine residues associated with ATP binding to the catalytic center are not essential for phosphatase activity. Inactivated enzyme no longer has high-affinity ATP binding associated with the catalytic site, although low-affinity ATP effects (inhibition of phosphatase and deocclusion of Rb) are still present. The inactivated enzyme can still be phosphorylated by Pi, occlude Rb+ ions, and undergo the major conformational transitions between the E1 Na and E2 K forms of the enzyme. Thus acetylation of the Na,K-ATPase by NAI inhibits high-affinity ATP binding to the catalytic center and produces inactivation.  相似文献   

18.
Glucokinase, purified from rat liver, was phosphorylated to an extent of 1 mol [32P]-phosphate/mol of enzyme when incubated with [32P]ATP and protein kinase A from pig or rabbit muscle. The phosphate was bound to serine residues. K0.5 increased and Vmax decreased upon phosphorylation. The phosphate group was removed during incubation of the phosphorylated glucokinase with alkaline phosphatase. Enzymatically inactive glucokinase was not phosphorylated by the protein kinase.  相似文献   

19.
Adenosine 3′:5′-monophosphate-dependent protein kinase and phosphoprotein phosphatases were solubilized by Triton X-100, from a particulate fraction of bovine cerebral cortex enriched in synaptic membranes, and partially purified. The properties of these partially purified enzymes were studied using two substrates, Protein I and Protein II, prepared from the synaptic membrane fraction, as well as the substrates protamine and histone. The results suggest that the phosphorylation of Protein I and Protein II, as well as protamine and histone, are catalyzed by a single species of cAMP-deperident protein kinase. Thus, a single peak of protein kinase activity was observed, upon DEAE-cellulose hromatography of the Triton X-100 extract of the synaptic membrane preparation, which catalyzed the phosphorylation of all four substrate proteins. Moreover, the activity of this partially purified protein kinase toward the various substrate proteins was altered in a parallel fashion, either when the protein kinase preparation was subjected to heat inactivation or pH inactivation, or when the enzyme was assayed in the presence of various concentrations of cyclic nucleotides or of a protein kinase modulator. The individual protein substrates acted as competitive inhibitors with respect to one another. Upon sucrose density gradient centrifugation, the protein kinase activity toward the various substrates sedimented as a single peak. Finally, the relative specific activities toward the various substrates did not change significantly during a 2000-fold purification of the enzyme. In contrast to these observations with protein kinase, two peaks of protein phosphatase activity, with markedly different specificities toward Protein I and Protein II, were found upon DEAE-cellulose and Bio-Gel P-200 column chromatography of the Triton X-100 extract of the synaptic membrane fractions. One peak catalyzed the dephosphorylation of Phosphoprotein I but not of Phosphoprotein II, whereas the other peak catalyzed the dephosphorylation of Phosphoprotein II but not of Phosphoprotein I. The dephosphorylation of Phosphoprotein I by Phosphoprotein I phosphatase was not affected by adenosine 3':5'-monophosphate, whereas the dephosphorylation of Phosphoprotein II by Phosphoprotein II phosphatase required the presence of this nucleotide. Moreover, the two phosphatases differed from one another with respect to Stokes' radius as well as sedimentation coefficient.  相似文献   

20.
Abstract Total trehalose-6-phosphate synthase activity decreased in cell extracts from Candida utilis under conditions inducing activation of the regulatory trehalase by protein kinase catalysed phosphorylation. The synthase activity was reactivated by treatment with alkaline phosphatase revealing the presence of an enzyme whose activity is inactivated by reversible phosphorylation. The occurrence in the trehalose-6-phosphate synthase complex of a second synthase enzyme whose activity is not controlled by phosphorylation and dephosphorylation was demonstrated following gel filtration of cell extracts. The activity of the isolated enzymes was differently modified in vitro by the presence of alkaline phosphatase, ATP, glucose or protein kinase.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号