首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
金城 《微生物学通报》2011,38(9):1449-1449
单核细胞增生李斯特菌(Listeria monocyiogenes)能引起人和动物脑膜炎、败血症、流产和单核细胞增多等症状,临床发病率在美国和欧洲等西方发达国家大约为2-8例/10万人,死亡率20%-30%或更高,被WHO列为关系食品卫生安全的重要病源细菌之一一[1-2].该菌能在多数固体表面形成生物被膜,在食品生产、加工、运输和保藏过程中,一旦发生细菌感染并形成生物被膜便难以将其彻底清除,严重威胁着食品卫生安全[3],但其生物被膜形成的具体分子机制尚不清楚[4].  相似文献   

2.
The ability to form persistent biofilms makes the pathogenic bacterium Listeria monocytogenes a hazardous contaminant in food processing environments. Growth and biofilm formation of L. monocytogenes EGD-e were studied in defined medium (HTM) and in tryptic soy broth (TSB) with different supplements. TSB + 1% glucose gave optimal results. Using this medium, biofilm development on the model surface polystyrene (microtiter plate) was monitored by the standard crystal violet staining for adherent cells after bacterial cultivation for 24 and 48 h at five different temperatures (4, 18, 25, 30 and 37°C). In parallel, the matrix exopolysaccharide formed after 48 h of incubation was quantified by staining with ruthenium red. In both assays incubation at 30°C yielded the highest values. The formation of larger scale biofilms on dialysis membranes, placed on TSB agar with 1% glucose for 48 h, was studied by scanning electron microscopy. Contiguous and multilayered biofilms were observed at 18, 25, 30 and 37°C incubation temperature. The methodology is suitable for quantitative and microscopic studies and, in addition, yields sufficient cell mass for subsequent biochemical and molecular biological analyses.  相似文献   

3.
Listeria monocytogenes is an important food-borne pathogen whose ability to form disinfectant-tolerant biofilms on a variety of surfaces presents a food safety challenge for manufacturers of ready-to-eat products. We developed here a high-throughput biofilm assay for L. monocytogenes and, as a proof of principle, used it to screen an 80-compound protein kinase inhibitor library to identify molecules that perturb biofilm development. The screen yielded molecules toxic to multiple strains of Listeria at micromolar concentrations, as well as molecules that decreased (≤ 50% of vehicle control) or increased (≥ 200%) biofilm formation in a dose-dependent manner without affecting planktonic cell density. Toxic molecules-including the protein kinase C antagonist sphingosine-had antibiofilm activity at sub-MIC concentrations. Structure-activity studies of the biofilm inhibitory compound palmitoyl-d,l-carnitine showed that while Listeria biofilm formation was inhibited with a 50% inhibitory concentration of 5.85 ± 0.24 μM, d,l-carnitine had no effect, whereas palmitic acid had stimulatory effects. Saturated fatty acids between C(9:0) and C(14:0) were Listeria biofilm inhibitors, whereas fatty acids of C(16:0) or longer were stimulators, showing chain length specificity. De novo-synthesized short-chain acyl carnitines were less effective biofilm inhibitors than the palmitoyl forms. These molecules, whose activities against bacteria have not been previously established, are both useful probes of L. monocytogenes biology and promising leads for the further development of antibiofilm strategies.  相似文献   

4.
In previous studies workers determined that two lactic acid bacterium isolates, Lactococcus lactis subsp. lactis C-1-92 and Enterococcus durans 152 (competitive-exclusion bacteria [CE]), which were originally obtained from biofilms in floor drains, are bactericidal to Listeria monocytogenes or inhibit the growth of L. monocytogenes both in vitro and in biofilms at 4 to 37 degrees C. We evaluated the efficacy of these isolates for reducing Listeria spp. contamination of floor drains of a plant in which fresh poultry is processed. Baseline assays revealed that the mean numbers of Listeria sp. cells in floor drains sampled on six different dates (at approximately biweekly intervals) were 7.5 log(10) CFU/100 cm(2) for drain 8, 4.9 log(10) CFU/100 cm(2) for drain 3, 4.4 log(10) CFU/100 cm(2) for drain 2, 4.1 log(10) CFU/100 cm(2) for drain 4, 3.7 log(10) CFU/100 cm(2) for drain 1, and 3.6 log(10) CFU/100 cm(2) for drain 6. The drains were then treated with 10(7) CE/ml in an enzyme-foam-based cleaning agent four times in 1 week and twice a week for the following 3 weeks. In samples collected 1 week after CE treatments were applied Listeria sp. cells were not detectable (samples were negative as determined by selective enrichment culture) for drains 4 and 6 (reductions of 4.1 and 3.6 log(10) CFU/100 cm(2), respectively), and the mean numbers of Listeria sp. cells were 3.7 log(10) CFU/100 cm(2) for drain 8 (a reduction of 3.8 log(10) CFU/100 cm(2)), <1.7 log(10) CFU/100 cm(2) for drain 1 (detectable only by selective enrichment culture; a reduction of 3.3 log(10) CFU/100 cm(2)), and 2.6 log(10) CFU/100 cm(2) for drain 3 (a reduction of 2.3 log(10) CFU/100 cm(2)). However, the aerobic plate counts for samples collected from floor drains before, during, and after CE treatment remained approximately the same. The results indicate that application of the two CE can greatly reduce the number of Listeria sp. cells in floor drains at 3 to 26 degrees C in a facility in which fresh poultry is processed.  相似文献   

5.
Biofilms from drains in food processing facilities with a recent history of no detectable Listeria monocytogenes in floor drains were cultured for microorganisms producing antilisterial metabolites. A total of 413 microbial isolates were obtained from 12 drain biofilm samples and were assayed at 15 and 37°C for activities that were bactericidal or inhibitory to L. monocytogenes, by two agar plate assays. Twenty-one of 257 bacterial isolates and 3 of 156 yeast isolates had antilisterial activity. All 24 isolates which produced metabolites inhibitory to L. monocytogenes were assayed for antilisterial activity in coinoculated broth cultures containing tryptic soy broth with yeast extract (TSB-YE). A five-strain mixture of 103 CFU of L. monocytogenes/ml and 105 CFU of the candidate competitive-exclusion microorganism/ml was combined in TSB-YE and incubated at 37°C for 24 h, 15°C for 14 days, 8°C for 21 days, and 4°C for 28 days. Substantial inhibition of L. monocytogenes growth (4 to 5 log CFU/ml) was observed for nine bacterial isolates at 37°C, two at 15 and 8°C, and three at 4°C. The inhibitory isolates were identified as Enterococcus durans (six isolates), Lactococcus lactis subsp. lactis (two isolates), and Lactobacillus plantarum (one isolate). The anti-L. monocytogenes activity of these isolates was evaluated in biofilms of L. monocytogenes on stainless steel coupons at 37, 15, 8, and 4°C. Results revealed that two isolates (E. durans strain 152 and L. lactis subsp. lactis strain C-1-92) were highly inhibitory to L. monocytogenes (growth inhibition of >5 log10 CFU of L. monocytogenes/cm2). These two bacterial isolates appear to be excellent competitive-exclusion candidates to control L. monocytogenes in biofilms at environmental temperatures of 4 to 37°C.  相似文献   

6.
Contamination of food by Listeria monocytogenes is thought to occur most frequently in food-processing environments where cells persist due to their ability to attach to stainless steel and other surfaces. Once attached these cells may produce multicellular biofilms that are resistant to disinfection and from which cells can become detached and contaminate food products. Because there is a correlation between virulence and serotype (and thus phylogenetic division) of L. monocytogenes, it is important to determine if there is a link between biofilm formation and disease incidence for L. monocytogenes. Eighty L. monocytogenes isolates were screened for biofilm formation to determine if there is a robust relationship between biofilm formation, phylogenic division, and persistence in the environment. Statistically significant differences were detected between phylogenetic divisions. Increased biofilm formation was observed in Division II strains (serotypes 1/2a and 1/2c), which are not normally associated with food-borne outbreaks. Differences in biofilm formation were also detected between persistent and nonpersistent strains isolated from bulk milk samples, with persistent strains showing increased biofilm formation relative to nonpersistent strains. There were no significant differences detected among serotypes. Exopolysaccharide production correlated with cell adherence for high-biofilm-producing strains. Scanning electron microscopy showed that a high-biofilm-forming strain produced a dense, three-dimensional structure, whereas a low-biofilm-forming strain produced a thin, patchy biofilm. These data are consistent with data on persistent strains forming biofilms but do not support a consistent relationship between enhanced biofilm formation and disease incidence.  相似文献   

7.
Listeria monocytogenes is a highly pathogenic foodborne bacterium that is ubiquitous in the natural environment and capable of forming persistent biofilms in food processing environments. This species has a rich repertoire of surface structures that enable it to survive, adapt and persist in various environments and promote biofilm formation. We review current understanding and advances on how L. monocytogenes organizes its surface for biofilm formation on surfaces associated with food processing settings, because they may be an important target for development of novel antibiofilm compounds. A synthesis of the current knowledge on the role of Listeria surfactome, comprising peptidoglycan, teichoic acids and cell wall proteins, during biofilm formation on abiotic surfaces is provided. We consider indications gained from genome-wide studies and discuss surfactome structures with established mechanistic aspects in biofilm formation. Additionally, we look at the analogies to the species L. innocua, which is closely related to L. monocytogenes and often used as its model (surrogate) organism.  相似文献   

8.
单核细胞增生李斯特菌菌膜形成相关基因和调控因子的分离和鉴定是阐明其菌膜形成分子机理的基础。利用原生质体转化这一方式,将带有转座子Tn917的质粒pTV1OK成功地转进了单核细胞增生李斯特菌。通过诱导Tn917转座,得到单核细胞增生李斯特菌Tn917插入突变库,转座率为10-7。经96孔细胞培养板筛选发现,菌株LM49形成菌膜能力明显大于野生型。该菌株在细胞培养板中培养4d后形成的紫色圆环的颜色明显深于野生型。用Tn917特异引物进行PCR扩增,结果显示只有以该突变株的DNA为模板才能得到相应大小的扩增产物,证实该菌株基因组中有Tn917插入。Tn917的插入使菌株LM49的菌膜形成能力增强。  相似文献   

9.
The food-borne pathogen Listeria monocytogenes attaches to environmental surfaces and forms biofilms that can be a source of food contamination, yet little is known about the molecular mechanisms of its biofilm development. We observed that nonmotile mutants were defective in biofilm formation. To investigate how flagella might function during biofilm formation, we compared the wild type with flagellum-minus and paralyzed-flagellum mutants. Both nonmotile mutants were defective in biofilm development, presumably at an early stage, as they were also defective in attachment to glass during the first few hours of surface exposure. This attachment defect could be significantly overcome by providing exogenous movement toward the surface via centrifugation. However, this centrifugation did not restore mature biofilm formation. Our results indicate that it is flagellum-mediated motility that is critical for both initial surface attachment and subsequent biofilm formation. Also, any role for L. monocytogenes flagella as adhesins on abiotic surfaces appears to be either minimal or motility dependent under the conditions we examined.  相似文献   

10.
Listeria monocytogenes has the ability to form biofilms on food-processing surfaces, potentially leading to food product contamination. The objective of this research was to standardize a polyvinyl chloride (PVC) microtiter plate assay to compare the ability of L. monocytogenes strains to form biofilms. A total of 31 coded L. monocytogenes strains were grown in defined medium (modified Welshimer's broth) at 32 degrees C for 20 and 40 h in PVC microtiter plate wells. Biofilm formation was indirectly assessed by staining with 1% crystal violet and measuring crystal violet absorbance, using destaining solution. Cellular growth rates and final cell densities did not correlate with biofilm formation, indicating that differences in biofilm formation under the same environmental conditions were not due to growth rate differences. The mean biofilm production of lineage I strains was significantly greater than that observed for lineage II and lineage III strains. The results from the standardized microtiter plate biofilm assay were also compared to biofilm formation on PVC and stainless steel as assayed by quantitative epifluorescence microscopy. Results showed similar trends for the microscopic and microtiter plate assays, indicating that the PVC microtiter plate assay can be used as a rapid, simple method to screen for differences in biofilm production between strains or growth conditions prior to performing labor-intensive microscopic analyses.  相似文献   

11.
单增李斯特菌生物膜及其形成机制的研究进展   总被引:1,自引:0,他引:1  
单增李斯特菌(Lm)是重要的人兽共患食源性病原菌。Lm生物膜与其致病性和耐药性密切相关。影响Lm生物膜形成的关键因子有鞭毛糖蛋白、胞外基质和群体感应系统等。鞭毛糖蛋白能促进菌体聚集,从而直接影响生物膜的形成。胞外DNA参与Lm粘附和生物膜早期的形成,并与胞外多糖和胞外结合蛋白一起构成生物膜胞外基质。Lm的Agr群体感应系统正调控生物膜形成,是一种集合毒力因子、耐药因子和生物膜的整体水平调控网络体系。  相似文献   

12.
13.
Using a Vibrio harveyi reporter strain, we demonstrated that Listeria monocytogenes secretes a functional autoinducer 2 (AI-2)-like signal. A luxS-deficient mutant produced a denser biofilm and attached to a glass surface 19-fold better than the parent strain. Exogenous AI-2 failed to restore the wild-type phenotype to the mutant. It seems that an intact luxS gene is associated with repression of components required for attachment and biofilm formation.  相似文献   

14.
单核细胞增生李斯特菌(Listeria monocytogenes,LM)是重要的革兰氏阳性食源性致病菌,易在食品以及各种食品加工、运输和保藏设备的接触面形成生物被膜,从而具有更强的抗逆性而难以彻底清除,因此成为食品卫生安全的重要隐患.PrfA是LM毒力基因转录表达的重要调控因子,通过比较研究LM野生株(EGD和EGDe)、PrfA缺失株(EGDAprfA和EGDeAprfA)、无害李斯特菌(Listeria innocua,LI),携带组成性表达PrfA蛋白的重组无害李斯特菌(LI-pERL3-prfA*)以及重组单核细胞增生李斯特菌(EGDeΔprfA-pERL3-prfA*)生物被膜形成能力的差异,探讨LM重要的毒力调控蛋白PrfA对生物被膜形成的影响.实验结果显示:LM野生株具有较强的生物被膜形成能力,而LI形成生物被膜的能力最弱;PrfA的缺失能降低LM生物被膜的形成能力;组成性高量表达PrfA蛋白可以回复EGDeΔprfA的生物被膜形成能力,但对LI没有增强作用.以上实验结果表明:PrfA在LM生物被膜形成中具有重要的促进作用.  相似文献   

15.
16.
A constant-depth film fermenter (CDFF) was used to culture a steady-state multispecies biofilm consisting of one strain each of Listeria monocytogenes, Pseudomonas fragi and Staphylococcus xylosus. These bacteria were initially grown together in a conventional chemostat to achieve a steady state before being inoculated into the CDFF over an 18-h period. A dilute tryptone soya broth (TSB) medium was supplied to the CDFF and the biofilm allowed to develop over a 28-d period. This mature biofilm was then subjected to increasing levels of sodium hypochlorite solution to measure any antimicrobial effect. The three organisms were seen to reach a steady state after 6 d in the chemostat before being transferred to the CDFF where the mature multispecies biofilm reached steady state at 17 d. Listeria monocytogenes in both planktonic and biofilm growth stabilized at 1. 8 and 1.5%, respectively, of the total plate counts, while Ps. fragi and Staph. xylosus were the predominant organisms in the biofilm at 59% and 39.5%, respectively, of the total microbial population. Steady-state biofilms in the CDFF were exposed to increasing strengths of sodium hypochlorite; 200, 500 and 1000 p.p.m. free chlorine, but a substantial two-log cycle drop in bacterial numbers was only achieved at 1000 p.p.m. free chlorine. In planktonic culture all three organisms were completely eliminated when exposed to 10 p.p.m. free chlorine for a 30-s period.  相似文献   

17.
Biofilm formation capacity evaluated under identical conditions differs among Listeria monocytogenes lineages. The approach of using one set of factors or one variable at a time fails to explain why some lineages are more prevalent than others in certain environments. This study proposes the use of multivariate analysis to compare biofilm formation by various strains and describes the ecological niches of L. monocytogenes lineages. Nutrient availability, temperature, pH and water activity (aw) at three different levels were used to determine biofilm formation by 41 strains. Despite the high degree of similarity (≤ 80%), distinct lineage-associated biofilm formation patterns were identified. A linear regression model for each strain and a principal component analysis of regression coefficients indicated that Lineages I and III have different, but overlapping, ecological niches. This study is the first to report the use of multivariate analyses to compare biofilm formation by various isolates of L. monocytogenes.  相似文献   

18.
Helloin E  Jänsch L  Phan-Thanh L 《Proteomics》2003,3(10):2052-2064
The proteomes of Listeria monocytogenes expressed in suspension and biofilm state, in the presence and absence of a carbon source, were analysed by two-dimensional electrophoresis with the help of computer software. The up-regulated proteins in each case were identified by peptide sequencing using electrospray ionisation tandem mass spectrometry and a database search against the Listeria genome was performed. Relevant functions could be attributed to a number of the induced proteins which contribute to the understanding of the mechanisms of starvation survival of L. monocytogenes in planktonic state and in biofilm.  相似文献   

19.
The proteome of a Listeria monocytogenes strain isolated from a food plant was investigated to study the differential protein pattern expressed by biofilms and planktonic bacteria. The approach used in this study was a combination of two-dimensional electrophoresis, matrix-assisted laser desorption ionization-time of flight and database searches for the protein identification. Thirty-one proteins varied significantly between the two growth conditions. Twenty-two and nine proteins were up- and down-regulated respectively and nine proteins were successfully identified. The variations of the protein patterns indicated that the biofilm development is probably controlled by specific regulation of protein expression involved at various levels of cellular physiology.  相似文献   

20.
Chemiluminescence by Listeria monocytogenes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Listeria monocytogenes cells suspended in brain heart infusion broth or in carbonated saline solution emitted light (chemiluminescence) that could be detected by a liquid scintillation spectrometer. This chemiluminescence was inhibited by superoxide dismutase and catalase but not by the hydroxyl radical scavengers mannitol and benzoate; it was also dependent upon and proportional to the carbonate ion concentration in the medium. Organisms suspended in carbonated saline solution which had ceased to chemiluminesce immediately began to chemiluminesce again when acetaldehyde was added but not when glucose, sucrose, or xanthine was added. Acetaldehyde-induced chemiluminescence was inhibited by suproxide dismutase and catalase but not by allopurinol. Our data indicate that the superoxide anion, hydrogen peroxide, and the carbonate ion are involved in chemiluminescence by L. monocytogenes. Chemiluminescence is apparently initiated by the extracellular generation of superoxide anon by this organism. The mechanism for the production of the superoxide anion is not known, but xanthine oxidase does not appear to be involved.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号