首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of the cGMP-dependent channel present in membrane vesicles prepared from intact isolated bovine rod outer segments (ROS) were investigated with the optical probe neutral red. The binding of neutral red is sensitive to transport of cations across vesicular membranes by the effect of the translocated cations on the surface potential at the intravesicular membrane/water interface (Schnetkamp, P. P. M. J. Membr. Biol. 88: 249-262). Only 20-25% of ROS membrane vesicles exhibited cGMP-dependent cation fluxes. The cGMP-dependent channel in bovine ROS carried currents of alkali and earth alkali cations, but not of organic cations such as choline and tetramethylammonium; little discrimination among alkali cations (K greater than Na = Li greater than Cs) or among earth alkali cations (Ca greater than Mn greater than Sr greater than Ba = Mg) was observed. The cation dependence of cGMP-induced cation fluxes could be reasonably well described by a Michaelis-Menten equation with a dissociation constant for alkali cations of about 100 mM, and a dissociation constant for Ca2+ of 2 mM. cGMP-induced Na+ fluxes were blocked by Mg2+, but not by Ca2+, when the cations were applied to the cytoplasmic side of the channel. cGMP-dependent cation fluxes showed a sigmoidal dependence on the cGMP concentration with a Hill coefficient of 2.1 and a dissociation constant for cGMP of 92 microM. cGMP-induced cation fluxes showed two pharmacologically distinct components; one component was blocked by both tetracaine and L-cis diltiazem, whereas the other component was only blocked by tetracaine.  相似文献   

2.
H Rottenberg  R E Koeppe 《Biochemistry》1989,28(10):4361-4367
Gramicidin and the truncated derivatives desformylgramicidin (desfor) and des(formylvalyl)gramicidin (desval) stimulate monovalent cation transport in rat liver mitochondria. Cation fluxes were compared indirectly from the effect of cations on the membrane potential at steady state (state 4) or from the associated stimulation of electron transport. Rb+ transport was measured directly from the uptake of 86Rb. The truncated gramicidins show enhanced selectivity for K+ and Rb+ when compared to gramicidin. Moreover, the pattern of selectivity within the alkali cation series is altered, i.e., Rb+ greater than K+ greater than Cs+ greater than Na+ greater than Li+ for desfor and desval as compared to Cs+ greater than Rb+ greater than K+ = Na+ greater than Li+ for gramicidin. The cation fluxes through the truncated derivatives are more strongly dependent on the cation concentration. The presence of high concentrations of permeating cation enhances the transport of other cations through the truncated derivative channels, suggesting that cations are required for stabilizing the channel structure. In high concentrations of KCl, desfor and desval are nearly as effective as gramicidin in collapsing the mitochondrial membrane potential, and, consequently, in the uncoupling of oxidative phosphorylation and enhancement of ATP hydrolysis. Preliminary experiments with liposomes show that 86Rb exchange is stimulated by desfor and desval almost to the same extent as gramicidin. These results strongly suggest that the truncated gramicidins form a novel conducting channel which differs from the gramicidin head-to-head, single-stranded beta 6.3-helical dimer ("channel") in its conductance characteristic and its structure.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

3.
Akali monovalents, Li, Na, K, Cs, and organic monovalents of molecular cross section less than 20 A2, ammonium, methylammonium, hydrazinium, guanidinium, are shown to have a measurable conductance through Ca channels of muscle transverse tubules reconstituted into planar bilayers. For the alkali series, single channel conductances follow the sequence Cs approximately equal to K greater than Na greater than Li with a conductance ratio [g(Cs)/g(Li)] = 1.7. For permeability ratios, the sequence is Li greater than Na greater than K approximately equal to Cs with [P(Li)/P(Cs)] = 1.5. Monovalent current is only unmasked when Ba ions are not present. In mixtures of Cs and Ba, single channel current reverses close to the Ba equilibrium potential and more than 100 mV away from the Cs equilibrium potential. A cutoff in conduction is found for organic cations larger than trimethylammonium; this suggests an apparent pore aperture of about 5 X 5 A. Even in such a large pore, the fact that the alkali cation permeability sequence and conductance sequence are inverted rules out molecular sieving as the mechanism of selection among monovalents.  相似文献   

4.
The effects of alkali metal cations on the rates at which Ca2+ and phosphatidic acid were cotransported from aqueous to hydrocarbon medium were examined. The alkali metal cations remained in the aqueous phase yet specifically influenced the transport of Ca2+ into the hydrocarbon solvent. For the physiological cations, Na+ and K+, there were critical concentration ranges in which small changes in concentration effected sharp changes in transport rates. The maximal rate observed with Na+ was an order of magnitude greater than that with K+; however, unlike Na+, K+ promoted low levels of transport below the critical concentration range. Li+ effected only low levels of transport even at high concentrations, whereas Rb+ and Cs+ induced transport at rates proportional to their concentrations. These results are discussed in terms of a classical ionophore model for the complex composed of a neutral phosphatidic acid dimer bridged by Ca2+.  相似文献   

5.
We studied the effects of alkali metal cations on the terminal stages of complement lysis of human and sheep HK erythrocytes. Sensitized erythrocytes (EA) were reacted with limited amounts of complement for 1 hr at 37 degrees C in buffer containing 147 mM NaCl (Na buffer), which resulted in 10-40% lysis. The unlysed cells were washed with Na buffer at 0-2 degrees C and incubated for 1 hr at 37 degrees C in buffers containing 147 mM of the various alkali metal cations. Although additional lysis (25 to 65%) occurred with K, Rb, or Cs buffer, only minor degrees developed with Na or Li buffer, only minor degrees developed with Na or Li buffer. Intermediate levels occurred with 100 mM of the divalent alkali cations. Halogen ions and SCN-(147 MM), Ca++ (0.15mM), and Mg++ (0.5 mM) did not alter the effect of the alkali metal cations. Lysis occurring in K+, Rb+ or Cs+ proceeded without lag, was temperature dependent with an optimum of 43 degrees C, and had a pH optimum of 6.5. Lysis in K and Na buffers was unaffected by 10(-3) to 10(-5) M ouabain. Experiments with mixtures of cations indicated that Na+ had a mild inhibitory effect that could be totally overcome by K+, partially by Rb+, and not at all by Cs+. Li+ had a strong inhibitory effect, 6 X 10(-5) M causing 50% inhibition in buffers containing 147 mM K+, Rb+, or Cs+. By using intermediate complexes of EA and purified complement components we demonstrated that K+ enhances the lytic action of C8 on EAC1-7 as well as that of C9 on EAC1-8. It was known that Li+ facilitates lysis when acting on the entire complement reaction. We found that Li+ enhanced the lytic action of C8 on EAC1-7, with a kinetic that differed from that of the K+ effect. In addition, Li+ inhibited the enhancing effect of K+ upon lysis of EAC1-8 by C9. This occurred at concentration of Li+ similar to those which inhibited the additional lysis by K+, Rb+, and Cs+ of cells that were pretreated in Na buffer with the entire complement sequence. We propose that the major effects of alkali metal cations on complement lysis are due to their interaction with C8 and/or membrane constitutes.  相似文献   

6.
The interactions of monovalent cations and of the K+-specific ionophore, valinomycin, with the Ca2+-ATPase of skeletal muscle of sarcoplasmic reticulum have been studied in the absence of cation gradients by their effects on enzyme turnover and on the ATP plus Ca2+-dependent enhanced fluorescence of the ATP analogue, 2',3'-O-(2,4,6-trinitrocyclohexyldienylidine)-adenosine 5'-triphosphate (TNP-ATP) (Watanabe, T., and Inesi, G. (1982) J. Biol. Chem. 257, 11510-11516). Monovalent cations decreased turnover-dependent TNP-ATP fluorescence in the series K+ greater than Rb+ approximately equal to Cs+ greater than Na+ greater than Li+ (K0.5 = 49, 73, 75, 94, and 246 mM, respectively), consistent with the known specificity of the monovalent cation binding site that stimulates turnover and E-P hydrolysis. Valinomycin (200 nmol/mg), in the absence of monovalent cations, decreased ATPase activity by 30% and abolished the stimulatory effects of 150 mM KCl or NaCl on turnover. The ionophore alone enhanced TNP-ATP fluorescence by 20% and altered the specificity and affinity of the site that inhibited TNP-ATP fluorescence to Cs+ greater than Rb+ greater than K+ approximately equal to Na+ greater than Li+ (K0.5 = 79, 111, 134, 136, and 270 mM, respectively), which follows the Hofmeister series for effectiveness of monovalent lyotropic cations. TNP-ATP binding was not affected by either monovalent cations or valinomycin. Inhibition of turnover-dependent TNP-ATP fluorescence appears to be a useful parameter for monitoring monovalent cation binding to the Ca2+-ATPase. It is concluded that the ionophore interacts directly with the Ca2+-ATPase, independent of its K+ conductance effects on the lipid bilayer, and modifies the affinity and specificity of the monovalent cation site, either by direct interaction or by the formation of a valinomycin-monovalent cation-enzyme complex.  相似文献   

7.
Single Na+ channels from rat skeletal muscle were inserted into planar lipid bilayers in the presence of either 200 nM batrachotoxin (BTX) or 50 microM veratridine (VT). These toxins, in addition to their ability to shift inactivation of voltage-gated Na+ channels, may be used as probes of ion conduction in these channels. Channels modified by either of the toxins have qualitatively similar selectivity for the alkali cations (Na+ approximately Li+ greater than K+ greater than Rb+ greater than Cs+). Biionic reversal potentials, for example, were concentration independent for all ions studied. Na+/K+ and Na+/Rb+ reversal potentials, however, were dependent on the orientation of the ionic species with respect to the intra- or extracellular face of the channel, whereas Na+/Li+ biionic reversal potentials were not orientation dependent. A simple, four-barrier, three-well, single-ion occupancy model was used to generate current-voltage relationships similar to those observed in symmetrical solutions of Na, K, or Li ions. The barrier profiles for Na and Li ions were symmetric, whereas that for K ions was asymmetric. This suggests the barrier to ion permeation for K ions may be different than that for Na and Li ions. With this model, these hypothetical energy barrier profiles could predict the orientation-dependent reversal potentials observed for Na+/K+ and Na+/Rb+. The energy barrier profiles, however, were not capable of describing biionic Na/Li ion permeation. Together these results support the hypothesis that Na ions have a different rate determining step for ion permeation than that of K and Rb ions.  相似文献   

8.
Na+- and cGMP-induced Ca2+ fluxes in frog rod photoreceptors   总被引:2,自引:1,他引:1       下载免费PDF全文
We have examined the Ca2+ content and pathways of Ca2+ transport in frog rod outer segments using the Ca2+-indicating dye arsenazo III. The experiments employed suspensions of outer segments of truncated, but physiologically functional, frog rods (OS-IS), intact isolated outer segments (intact OS), and leaky outer segments (leaky OS with a plasma membrane leaky to small solutes, but with sealed disk membranes). We observed the following. Intact OS or OS-IS isolated and purified in Percoll-Ringer's solution contained an average of 2.2 mM total Ca2+, while leaky OS contained 2.0 mM total Ca2+. This suggests that most of the Ca2+ in OS-IS is contained inside OS disks. Phosphodiesterase inhibitors increased the Ca2+ content to approximately 4.2 mM in intact OS or OS-IS, whereas the Ca2+ content of leaky OS was not altered. Na-Ca exchange was the dominant pathway for Ca2+ efflux in both intact and leaky OS/OS-IS. The rate of Na-Ca exchange in intact OS/OS-IS was half-maximal between 30 and 50 mM Na+; at 50 mM Na+, this amounted to 5.8 X 10(7) Ca2+/OS X s or 0.05 mM total Ca2+/s. This is much larger than the Ca2+ component of the dark current. Other alkali cations could not replace Na+ in Na-Ca exchange in either OS-IS or leaky OS. They inhibited the rate of Na-Ca exchange (K greater than or equal to Rb greater than Cs greater than or equal to Li greater than TMA) and, as the inhibition became greater, a delay developed in the onset of Na-Ca exchange. The inhibition of Na-Ca exchange by alkali cations correlates with the prolonged duration of the photoresponse induced by these cations (Hodgkin, A. L., P. A. McNaughton, and B. J. Nunn. 1985. Journal of Physiology. 358:447-468). In addition to Na-Ca exchange, disk membranes in leaky OS showed a second pathway of Ca2+ transport activated by cyclic GMP (cGMP). The cGMP-activated pathway required the presence of alkali cations and had a maximal rate of 9.7 X 10(6) Ca2+/OS X s. cGMP caused the release of only 30% of the total Ca2+ from leaky OS. The rate of Na-Ca exchange in leaky OS amounted to 1.9 X 10(7) Ca2+/OS X s.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

9.
Complexation of alkali cation picrates with cyclogentiotetraose peracetate (CGD4Ac) have been studied by 1H-N.M.R. spectroscopy in acetone d6 and nitromethane d3. We determined the stability constants directly from the observed change of the chemical shifts of H-4 and H-6 pro S protons of CGD4Ac at constant ligand concentration with increasing amounts of alkali salt. The stability constants have also been determined by multinuclear n.m.r. spectroscopies, from the observed change of the chemical shifts of Lithium-7, Sodium-23, Potassium-39, Rubidium-87 and Cesium-133 at constant alkali salt concentration with increasing amount of CGD4Ac. The stabilities of the complexes varied in the order Cs+ greater than Rb+ greater than K+ greater than Na+ greater than Li+. The complexation of CGD4Ac with Cs+ induced conformational change, the gg conformer being predominant at the complexed state. In most cases the cationic exchanges between the free and complexed sites were rapid. However in the CsPic-CGD4Ac-Acetone system the exchange was slow enough to observe below 288 K two 133Cs+ resonances.  相似文献   

10.
The rates of calcium transport and Ca2+-dependent ATP hydrolysis by rabbit skeletal muscle sarcoplasmic reticulum were stimulated by monovalent cations. The rate of decomposition of phosphoprotein intermediate of the Ca2+-dependent ATPase of sarcoplasmic reticulum was also increased by these ions to an extent that is sufficient to account for the stimulation of calcium transport and Ca2+-dependent ATPase activity. The order of effectiveness of monovalent cations tested at saturating concentrations in increasing rate of phosphoprotein decomposition is: K+, Na+ greater than Rb+, NH4+ greater than Cs+ greater than Li+, choline+, Tris+.  相似文献   

11.
Careful examination of effects of solvent substitution on excitable membranes offers the theoretical possibility of identifying those aspects of the gating and translocation processes which are associated with significant changes in solvent order. Such information can then be used to develop or modify moire detailed models. We have examined the effects of heavy water substitution in Cs+-and K+-dialyzed Myxicola giant axons. At temperatures of 4-6 degrees C, the rates of Na+, K+, and Na+ inactivation during a maintained depolarization were all showed by approximately 50% in the presence of D2O. In contrast, the effects of solvent substitution on the time-course of prepulse inactivation and reactivation were much larger, with slowing averaging 160%. Studies at higher temperatures yielded Q10's for Na+ activation and K+ activation which were essentially comparable (0.72) and slightly but significantly smaller than that for inactivation during a maintained depolarization (0.84). In contrast, the Q10 for the D2O effect on prepulse inactivation was approximately 0.48. Heavy water substitution decrease Gk to a significantly greater extent than G(Na), while the decrease in the conductance of the Na+ channel caused by D2O was independent of whether the current-carrying species was Na+ or Li+. Sodium channel selectivity to the alkali metal cations and NH4+ was not changed by D2O substitution.  相似文献   

12.
Ion exchangers with various capacities (0.1-0.2 mg-equiv/g of dry gel) are synthesized by means of immobilization of DNA in polyacrylamide gel. Exchanges of alkali metal cations and ammonium are studied on these exchangers and selectively coefficients are determined. The following selectivity series of immobilized DNA in reference to the above-mentioned cations is stated: Li+ greater than or equal to NH4+ greater than or equal to Cs+ greater than Rb+ greater than K+ greater than or equal to Na+. The peculiar properties of Li+ and NH4+ in this series are noted and a possible explanation of this fact is offered. A supposition regarding the reduced activity of water in the polyacrylamide gel containing DNA is made.  相似文献   

13.
As in our previous report (Kamino, Uyesaka & Inouye, J. Membrane Biol. 17:13 1974), the absorbance changes of murexide caused by Ca2+ and followed up by a dual wavelength spectrophotometer were applied to measure synaptosomal Ca2+-binding in the presence of cations such as Rb+, Mn2+ or La3+. All the cations tested showed a significant inhibition of synaptosomal Ca2+-binding except Li+. The inhibitory effects could be divided into the following three categories: (1) noncompetive, co-operative K+-type, which includes alkali metal ions. The potency of inhibition is K+ greater than Rb+ greater than Cs+ greater than Li+, Na+ =0; (2) competitive Mn2+ -type which includes many divalent cations. The inhibitory potency was found to be in the following order: Mn2+ greater than Sr2+ greater than Cd2+, Ba2+ greater than Mg2+; (3) nonspecific, noncompetitive La3+ -type; among the cations tested, La3+ and Ce3+ were found to markedly reduce the Ca-binding capacity of synaptosomal particles, resulting in a noncompetitive inhibition, at least in the range of Ca2+ concentration used.  相似文献   

14.
The purpose of these experiments is to test whether the differences between normal and tetrodotoxin-resistant Na+ channels reside in the selectivity filter. To do this, we have compared the selectivity of batrachotoxin-activated channels for alkali cations, organic cations, and nonelectrolytes in two neuroblastoma clonal cell lines: N18, which has normal tetrodotoxin (TTX) sensitivity, and C9, which is relatively TTX-resistant. We have also studied the effect of H+ on Na+ permeability and on the interaction between TTX and its receptor site in both cell lines. There is no qualitative difference between the two cell lines in any of these properties. In both cell lines the batrachotoxin-activated Na+ channels have a selectivity sequence of Tl+ greater than Na+ greater than K+, guanidinium greater than Rb+ greater than Cs+, methylamine. Also, in both cell lines H+ blocks Na+ channels with a pKa of 5.5 and inhibits the action of TTX with the same pKa. These observations indicate that the selectivity filters of the Na+ channels in C9 and N18 do not differ significantly despite the 100-fold difference in TTX-affinity. Our selectivity studies of batrachotoxin-activated Na+ channels for both cell lines suggest that these toxin-activated Na+ channels have a limiting pore size of 3.8 x 6.0 A, as compared to a pore size of 3.0 x 5.0 A for potential-activated Na+ channels.  相似文献   

15.
The analysis of the 23Na-NMR signal shape variations in the presence of vesicles of light sarcoplasmic reticulum (SR) shows the existence of sodium sites on the membranes with Kd values of about 10 mM. Other monovalent cations displace Na+ from SR fragments in a competitive manner according to the row K+ greater than Rb+ greater than Cs+ greater than Li+. Calcium ions also reduce Na+ binding, the Na+ desorption curve being of a two-stage nature, which, as suggested, indicates the existence of two types of Ca(2+)-sensitive Na+ binding sites (I and II). Sites of type I and II are modified by Ca2+ in submicromolar and millimolar concentrations, respectively. Analysis of sodium (calcium) desorption produced by calcium (sodium) allowed us to postulate the competition of these two cations for sites I and identity of these sites to high-affinity Ca(2+)-binding ones on the Ca(2+)-ATPase. Sites I weakly interact with Mg2+ (KappMg approximately 30 mM). Reciprocal effects of sodium and calcium on binding of each other to sites II cannot be described by a simple competition model, which indicates nonhomogeneity of these sites. A portion of sites I (approximately 70%) interacts with Mg2+ (KappMg = 3-4 mM). The pKa value of sites II is nearly 6.0. The number of sites II is three times greater than that of sites I. In addition, sites with intermediate affinity for Ca2+ were found with Kd values of 2-5 microM. These sites were revealed due to the reducing of the sites II affinity for Na+ upon Ca2+ binding to SR membranes. It can thus be concluded that in nonenergized SR there are binding sites for monovalent cations of at least three types: (1) sites I (which also bind Ca2+ at low concentrations), (2) magnesium-sensitive sites II and (3) magnesium-insensitive sites II.  相似文献   

16.
Relative permeabilities to the alkali cations were determined, from the reversal potential (VRev), for the Na channel of internally perfused voltage-clamped Myxicola giant axons. PLi/PNa and PK/PNa are 0.94 and 0.076, respectively. Rb and Cs are not measurably permeant. VRev vs. the internal Na activity was well described by the constant field equation over a 300-fold range of internal Na concentrations. In agreement with findings on squid axons, the PK/PNa was found to increase when the K content of the internal perfusate was reduced (equivalent per equivalent substitution with TMA). Internal Rb and Cs also decreased the PK/PNa. The order of effectiveness of internal K, Rb, and Cs in increasing the Na selectivity of the Na channel was Cs greater than Rb greater than or equal to K. External Li increases the PK/PNa but this may be due to the formation of LiF internally. It may be that substances do not have to traverse the channel in order to affect the selectivity filter. Evidence is presented which suggests that the selectivity of the Na channel may be higher for Na in intact as compared to perfused giant axons. It was concluded that the channel selectivity properities do not reflect only some fixed structural features of the channel, but the selectivity filter has a labile organization.  相似文献   

17.
Monovalent cation selectivity has been characterized for the 3',5'-cyclic guanosine monophosphate (cGMP)-activated channel in vertebrate photoreceptor outer segment plasma membranes without divalent cations. Macroscopic currents in excised, inside-out patches were activated with saturating concentrations of cGMP (200 microM). Using a bi-ionic protocol with symmetrical 120 mM ion concentrations across the membrane, alkali metal ions and certain organic cations were substituted for sodium on the cytoplasmic face. The relative permeabilities, determined from shifts in the reversal potential (Erev), were NH4 much greater than Na greater than guanidinium greater than K greater than Li greater than Rb greater than Cs (3.34: 1.0: 0.97: 0.93: 0.92: 0.74: 0.50, respectively). Erev's were also measured as a function of [Na], [NH4], and [Cs], and the slope of the relation was -59.8, -52.1, and -49.1 mV/decade, respectively. The slopes for NH4 and Cs differ significantly from the Nernst-Planck prediction of -58.2 mV/decade expected for a single ion channel. Relative permeabilities were also determined for the alkali metal series of ions with 20 mM ionic concentrations on both sides of the membrane. The permeability sequence at 20 mM was unchanged, but the relative permeability for NH4 and Cs deviated significantly from the measurements at 120 mM with 1.46 and 0.75 ratios, respectively. The dependence of Erev on absolute concentrations and the deviation from Nernst-Planck predictions are best explained by multi-ion occupancy of the cGMP-activated channel. Selectivity was also examined by comparing the conductance ratios as a function of potential.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

18.
Ionic selectivity of Nitella flexilis plasmalemma cation channels is studied by voltage-clamp method with consecutive replacing of cations in the bathing medium. The selectivity sequence received by measuring the ionic current reversal potentials, psi alpha is: Ba++ approximately equal to Sr++ approximately equal to Ca++ greater than Mg++ greater than Cs+ approximately equal to K+ greater than Na+ greater than Li+. An analysis of results based on the three-barrier channel model suggests that when ions of the same valency are compared, the channel selectivity is determined by specific interactions between the ion and the nearest water molecules, which is possible both in a narrow and wide pore. On the other hand, when monovalent and divalent ions are compared the effects of ions binding in the channel or near the membrane surface prevail, thus causing the channel preference for divalent cations.  相似文献   

19.
The permeability of the lysosomal membrane to small anions and cations was studied at 37 degrees C and pH 7.0 in a lysosomal-mitochondrial fraction isolated from the liver of untreated rats. The extent of osmotic lysis following ion influx was used as a measure of ion permeancy. In order to preserve electroneutrality, anion influx was coupled to an influx of K+ in the presence of valinomycin, and cation influx was coupled to an efflux of H+ using the protonophore 3-tert-butyl-5,2'-dichloro-4'-nitrosalicilylanilide. Lysosomal lysis was monitored by observing the loss of latency of two lysosomal hydrolases. The order of permeability of the lysosomal membrane to anions was found to be SCN- greater than I- greater than CH3COO- greater than Cl- approximately Pi greater than SO24- and that to cations Cs+ greater than K+ greater than Na+ greater than H+. These orders are largely in agreement with the lyotropic series of anions and cations. The implications of these findings for the mechanism by means of which a low intralysosomal pH is produced and maintained are discussed.  相似文献   

20.
Competition for solvent glycerol and solute phthalic acid by the alkali metal cations Li+, Na+, K+, Rb+ and Cs+ in cationization fast atom bombardment spectra is quantitated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号