首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Prostate cancer has a propensity to metastasize to the bone. Currently the only effective systemic treatment for these patients is androgen ablation therapy. However, the tumor will invariably progress to an androgen-independent stage and the patient will succumb to his disease within approximately 2 years. The earliest indication of hormonal progression is the rising titer of serum prostate specific antigen. Current evidence implicates the androgen receptor (AR) as a key factor in maintaining the growth of prostate cancer cells in an androgen-depleted state. Under normal conditions, binding of ligand activates the receptor, allowing it to effectively bind to its respective DNA element. However, AR is also transformed in the absence of androgen (ligand-independent activation) in prostate cells via multiple protein kinase pathways and the interleukin-6 (IL-6) pathway that converge upon the N-terminal domain of the AR. This domain is the main region for phosphorylation and is also critical for normal coregulator recruitment. Here we discuss evidence supporting the role of the AR, IL-6 and other protein kinase pathways in the hormonal progression of prostate cancer to androgen independence and the mechanisms involved in activation of the AR by these pathways. Receptor-targeted therapy, especially potential drugs targeting the N-terminal domain, may effectively prevent or delay the hormonal progression of AR-dependent prostate cancer.  相似文献   

2.
3.
It has been shown previously that the unfolded N-terminal domain of the prion protein can bind up to six Cu2+ ions in vitro. This domain contains four tandem repeats of the octapeptide sequence PHGGGWGQ, which, alongside the two histidine residues at positions 96 and 111, contribute to its Cu2+ binding properties. At the maximum metal-ion occupancy each Cu2+ is co-ordinated by a single imidazole and deprotonated backbone amide groups. However two recent studies of peptides representing the octapeptide repeat region of the protein have shown, that at low Cu2+ availability, an alternative mode of co-ordination occurs where the metal ion is bound by multiple histidine imidazole groups. Both modes of binding are readily populated at pH 7.4, while mild acidification to pH 5.5 selects in favour of the low occupancy, multiple imidazole binding mode. We have used NMR to resolve how Cu2+ binds to the full-length prion protein under mildly acidic conditions where multiple histidine co-ordination is dominant. We show that at pH 5.5 the protein binds two Cu2+ ions, and that all six histidine residues of the unfolded N-terminal domain and the N-terminal amine act as ligands. These two sites are of sufficient affinity to be maintained in the presence of millimolar concentrations of competing exogenous histidine. A previously unknown interaction between the N-terminal domain and a site on the C-terminal domain becomes apparent when the protein is loaded with Cu2+. Furthermore, the data reveal that sub-stoichiometric quantities of Cu2+ will cause self-association of the prion protein in vitro, suggesting that Cu2+ may play a role in controlling oligomerization in vivo.  相似文献   

4.
5.
The androgen receptor (AR) ligand-binding domain (LBD) binds FXXLF motifs, present in the AR N-terminal domain and AR-specific cofactors, and some LXXLL motifs of nuclear receptor coactivators. We demonstrated that in the context of the AR FXXLF motif many different amino acid residues at positions +2 and +3 are compatible with strong AR LBD interaction, although a preference for E at +2 and K or R at +3 was found. Pairwise systematic analysis of F/L swaps at +1 and +5 in FXXLF and LXXLL motifs showed: 1) F to L substitutions in natural FXXLF motifs abolished AR LBD interaction; 2) binding of interacting LXXLL motifs was unchanged or increased upon L to F substitutions; 3) certain noninteracting LXXLL motifs became strongly AR-interacting FXXLF motifs; whereas 4) other nonbinders remained unaffected by L to F substitutions. All FXXLF motifs, but not the corresponding LXXLL motifs, displayed a strong preference for AR LBD. Progesterone receptor LBD interacted with some FXXLF motifs, albeit always less efficiently than corresponding LXXLL motifs. AR LBD interaction of most FXXLF and LXXLL peptides depended on classical charge clamp residue K720, whereas E897 was less important. Other charged residues lining the AR coactivator-binding groove, K717 and R726, modulated optimal peptide binding. Interestingly, these four charged residues affected binding of individual peptides independent of an F or L at +1 and +5 in swap experiments. In conclusion, F residues determine strong and selective peptide interactions with AR. Sequences flanking the core motif determine the specific mode of FXXLF and LXXLL interactions.  相似文献   

6.
7.
Upon hormone binding, a hydrophobic coactivator binding groove is induced in the androgen receptor (AR) ligand-binding domain (LBD). This groove serves as high affinity docking site for alpha-helical FXXLF motifs present in the AR N-terminal domain and in AR cofactors. Study of the amino acid requirements at position +4 of the AR FXXLF motif revealed that most amino acid substitutions strongly reduced or completely abrogated AR LBD interaction. Strong interactions were still observed following substitution of Leu+4 by Phe or Met residues. Leu+4 to Met or Phe substitutions in the FXXLF motifs of AR cofactors ARA54 and ARA70 were also compatible with strong AR LBD binding. Like the corresponding FXXLF motifs, interactions of FXXFF and FXXMF variants of AR and ARA54 motifs were AR specific, whereas variants of the less AR-selective ARA70 motif displayed increased AR specificity. A survey of currently known AR-binding proteins revealed the presence of an FXXFF motif in gelsolin and an FXXMF motif in PAK6. In vivo fluorescence resonance energy transfer and functional protein-protein interaction assays showed direct, efficient, and specific interactions of both motifs with AR LBD. Mutation of these motifs abrogated interaction of gelsolin and PAK6 proteins with AR. In conclusion, we have demonstrated strong interaction of FXXFF and FXXMF motifs to the AR coactivator binding groove, thereby mediating specific binding of a subgroup of cofactors to the AR LBD.  相似文献   

8.
Prostate cancer may progress by circumventing ablation therapy due to mutations in the androgen receptor (AR) gene. The most intensively studied is the T877A mutation in the ligand binding domain (LBD), which causes the AR to become promiscuous, i.e., respond to a number of different ligands. Our investigations have shown that the T877A mutation alters the inverse relationship between CAG repeat length and transactivation in a noticeable albeit minor manner, while increasing N/C terminal interactions. In the presence of beta-catenin, a coactivator over-expressed in prostate cancer, the inverse relationship between CAG repeat length and transactivation is reversed for the wild type (wt) AR as well. We have also used molecular modeling with the AR and FXXLF and LXXLL peptides to investigate N/C terminal and coactivator interactions. In T877A, this approach revealed an increase in the flexibility of amino acid residues in the activation function 2 (AF-2) domain in the LBD, and a larger solvent accessible surface in T877A compared to the wt AR AF-2 domain. Thus, the improved induced fit of the AR N-terminal domain FXXLF-containing peptide into the T877A LBD could be due to the increased flexibility and solvent accessibility of the AF-2 domain. These new observations suggest that the AR CAG effect can be overridden by prostate cancer mutations, and also further our understanding of hormone-refractory prostate cancer by helping to explain the promiscuity of the T877A mutation.  相似文献   

9.
Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker binding activity with the W-box compared to the C-terminal domain. The DNA-binding activity of the WRKY domain was abolished by o-phenanthroline and this inhibition was recovered specifically by Zn2+. Substitution of the conserved cysteine and histidine residues of the plant-specific C2H2-type zinc finger-like motif in the WRKY domain abolished the DNA binding. In addition, mutations in the invariable WRKYGQK sequence at the N-terminal side of the zinc finger-like motif also significantly reduced the DNA-binding activity, suggesting that these residues are required for proper folding of the DNA-binding zinc finger.  相似文献   

10.
Coactivator recruitment by activation function 2 (AF2) in the steroid receptor ligand binding domain takes place through binding of an LXXLL amphipathic alpha-helical motif at the AF2 hydrophobic surface. The androgen receptor (AR) and certain AR coregulators are distinguished by an FXXLF motif that interacts selectively with the AR AF2 site. Here we show that LXXLL and FXXLF motif interactions with steroid receptors are modulated by oppositely charged residues flanking the motifs and charge clusters bordering AF2 in the ligand binding domain. An increased number of charged residues flanking AF2 in the ligand binding domain complement the two previously characterized charge clamp residues in coactivator recruitment. The data suggest a model whereby coactivator recruitment to the receptor AF2 surface is initiated by complementary charge interactions that reflect a reversal of the acidic activation domain-coactivator interaction model.  相似文献   

11.
12.
13.
Androgen receptor (AR) is a major therapeutic target that plays pivotal roles in prostate cancer (PCa) and androgen insensitivity syndromes. We previously proposed that compounds recruited to ligand-binding domain (LBD) surfaces could regulate AR activity in hormone-refractory PCa and discovered several surface modulators of AR function. Surprisingly, the most effective compounds bound preferentially to a surface of unknown function [binding function 3 (BF-3)] instead of the coactivator-binding site [activation function 2 (AF-2)]. Different BF-3 mutations have been identified in PCa or androgen insensitivity syndrome patients, and they can strongly affect AR activity. Further, comparison of AR x-ray structures with and without bound ligands at BF-3 and AF-2 showed structural coupling between both pockets. Here, we combine experimental evidence and molecular dynamic simulations to investigate whether BF-3 mutations affect AR LBD function and dynamics possibly via allosteric conversation between surface sites. Our data indicate that AF-2 conformation is indeed closely coupled to BF-3 and provide mechanistic proof of their structural interconnection. BF-3 mutations may function as allosteric elicitors, probably shifting the AR LBD conformational ensemble toward conformations that alter AF-2 propensity to reorganize into subpockets that accommodate N-terminal domain and coactivator peptides. The induced conformation may result in either increased or decreased AR activity. Activating BF-3 mutations also favor the formation of another pocket (BF-4) in the vicinity of AF-2 and BF-3, which we also previously identified as a hot spot for a small compound. We discuss the possibility that BF-3 may be a protein-docking site that binds to the N-terminal domain and corepressors. AR surface sites are attractive pharmacological targets to develop allosteric modulators that might be alternative lead compounds for drug design.  相似文献   

14.
Four cDNA clones of tobacco that could code for polypeptides with two WRKY domains were isolated. Among four NtWRKYs and other WRKY family proteins, sequence similarity was basically limited to the two WRKY domains. Glutathione S-transferase fusion proteins with the C-terminal WRKY domain of four NtWRKYs bound specifically to the W-box (TTGACC), and the N-terminal WRKY domain showed weaker binding activity with the W-box compared to the C-terminal domain. The DNA-binding activity of the WRKY domain was abolished by o-phenanthroline and this inhibition was recovered specifically by Zn2+. Substitution of the conserved cysteine and histidine residues of the plant-specific C2H2-type zinc finger-like motif in the WRKY domain abolished the DNA binding. In addition, mutations in the invariable WRKYGQK sequence at the N-terminal side of the zinc finger-like motif also significantly reduced the DNA-binding activity, suggesting that these residues are required for proper folding of the DNA-binding zinc finger.  相似文献   

15.
16.
17.
18.
19.
We describe a mechanism for protein phosphatase 2A (PP2A) targeting to the androgen receptor (AR) and provide insight into the more general issue of kinase and phosphatase interactions with AR. Simian virus 40 (SV40) small t antigen (ST) binding to N-terminal HEAT repeats in the PP2A A subunit induces structural changes transduced to C-terminal HEAT repeats. This enables the C-terminal HEAT repeats in the PP2A A subunit, including HEAT repeat 13, to discriminate between androgen- and androgen antagonist-induced AR conformations. The PP2A-AR interaction was used to show that an AR mutant in prostate cancer cells (T877A) is activated by multiple ligands without acquiring the same conformation as that induced by androgen. The correlation between androgen binding to AR and increased phosphorylation of the activation function 1 (AF-1) region implies that changes in AR conformation or chaperone composition are causal to kinase access to phosphorylation sites. However, AF-1 phosphorylation sites are kinase accessible prior to androgen binding. This suggests that androgens can enhance the phosphorylation state of AR either by negatively regulating the ability of the ligand-binding domain to bind phosphatases or by inducing an AR conformation that is resistant to phosphatase action. SV40 ST subverts this mechanism by promoting the direct transfer of PP2A onto androgen-bound AR, resulting in multisite dephosphorylation.  相似文献   

20.
Defects of the androgen receptor cause a wide spectrum of abnormalities of phenotypic male development, ranging from individuals with mild defects of virilization to those with complete female phenotypes. In parallel with this phenotypic spectrum, a large number of different mutations have been identified that alter the synthesis or functional activity of the receptor protein. In many instances, the genetic mutations identified lead to an absence of the intact, full-length receptor protein. Such defects (splicing defects, termination codons, partial or complete gene deletions) invariably result in the phenotype of complete androgen insensitivity (complete testicular feminization). By contrast, single amino acid substitutions in the androgen receptor protein can result in the entire phenotypic spectrum of androgen resistant phenotypes and provide far more information on the functional organization of the receptor protein. Amino acid substitutions in different segments of the AR open-reading frame disturb AR function by distinct mechanisms. Substitutions in the DNA binding domain of the receptor appear to comprise a relatively homogeneous group. These substitutions impair the capacity of the receptor to bind to specific DNA sequence elements and to modulate the function of responsive genes. Amino acid substitutions in the hormone-binding domain of the receptor have a more varied effect on receptor function. In some instances, the resulting defect is obvious and causes an inability of the receptor to bind hormone. In other instances, the effect is subtler, and may result in the production of a receptor protein that displays qualitative abnormalities of hormone binding or from which hormone dissociates more rapidly. Often it is not possible to correlate the type of binding defect with the phenotype that is observed. Instead, it is necessary to measure the capacity of the receptor that is synthesized in functional assays in order to discern any type of correlation with phenotype. Finally, two types of androgen receptor mutation do not fit such a categorization. The first of these—the glutamine repeat expansion that is observed in spinal and bulbar muscular atrophy—leads to a reduction of receptor function that can be measured in heterologous cells or in fibroblasts established from such patients. The expression of ARs containing such expanded repeats in men is associated with a degeneration of motor neurons in the spinal cords of affected patients. Likewise, the alterations of androgen receptor structure that have been detected in advanced forms of prostate cancer also behave as gain-of-function mutations. In this latter type of mutation, the exquisite specificity of the normal androgen receptor is relaxed and the mutant receptors can be activated by a variety of steroidal and non-steroidal ligands.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号