首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Heat-stable and fructose-1,6-bisphosphate-activated L-lactate dehydrogenase (EC 1.1.1.27) has been purified from an extremely thermophilic bacterium, Thermus caldophilus GK24 [Taguchi, H., Yamashita, M., Matsuzawa, H. and Ohta, T. (1982) J. Biochem. (Tokyo) 91, 1343-1348]. N-terminal sequence analysis of the first 34 amino acids of the enzyme indicates that the N-terminal arm region (first 1-20 residues) known for the vertebrate L-lactate dehydrogenases is completely missing in the T. caldophilus enzyme, while there is a high homology of sequence between the regions which are considered to be part of the NAD-binding domain. The C-terminal amino acid of the enzyme was phenylalanine. Analysis of the amino acid composition showed that T. caldophilus enzyme contained much more arginine and fewer lysine than other bacterial and vertebrate L-lactate dehydrogenases. On modification reaction with 2,3-butanedione in the presence of NADH and oxamate, an enhanced activity of the T. caldophilus L-lactate dehydrogenase was obtained independently of fructose 1,6-bisphosphate, and the modified enzyme was desensitized to fructose 1,6-bisphosphate. Amino acid analysis indicated that such a desensitization in the active state was caused by the modification of only one arginine residue per the enzyme subunit. Desensitization of the enzyme was inhibited in the presence of fructose 1,6-bisphosphate. A similar desensitization was observed using 1,2-cyclohexanedione instead of 2,3-butanedione. The enzyme was irreversibly modified with 2,3-butanedione and characterized. The irreversibly modified enzyme also showed an enhanced activity independently of fructose 1,6-bisphosphate, and its pyruvate saturation curve was similar to that of the native enzyme measured in the presence of fructose 1,6-bisphosphate. Fructose 1,6-bisphosphate, which increases the thermostability of the native enzyme, did not affect that of the modified enzyme, while thermostability of the modified enzyme slightly decreased. Amino acid analysis indicated that only the arginine content was decreased by the modification. These results show that arginine residue(s) exist in the binding site for fructose 1,6-bisphosphate on the enzyme, and that the arginine residue(s) play some important role in the allosteric regulation of the enzyme activity.  相似文献   

2.
The conserved histidine-188 residue of the L-lactate dehydrogenase of Thermus caldophilus GK 24, which is allosterically activated by fructose 1,6-bisphosphate, has been exchanged to phenylalanine by site-specific mutagenesis. In the mutant enzyme the strong stimulatory effect of fructose 1,6-bisphosphate is abolished. The analysis of the pH dependence of the activity indicates that the positive charge of the conserved His-188 residue is important for the interaction of the enzyme with the allosteric effector.  相似文献   

3.
The polypeptide chain of the allosteric L-lactate dehydrogenase (EC 1.1.1.27) of Lactobacillus casei consists of 325 amino acid residues. Despite the strikingly different enzymatic characteristics of the allosteric L-lactate dehydrogenase of L. casei and of the non-allosteric vertebrate enzymes, the sequence of the allosteric enzyme shows a distinct homology with that of the non-allosteric vertebrate enzymes (average identity: 37%). An especially high sequence homology can be identified within the active center (average identity: 70%). A clear deviation of the L. casei enzyme from the vertebrate enzyme is the lack of the first 12 amino acid residues at the N terminus and an additional 7 amino acid residues at the C terminus. The localization of the binding site of the allosteric effector D-fructose 1,6-bisphosphate and pH and effector-induced changes of the spectroscopic properties are discussed on the basis of the primary structure.  相似文献   

4.
On modification of arginine residues with 2,3-butanedione, the Thermus caldophilus L-lactate dehydrogenase is converted to an activated form that is independent of an allosteric effector, fructose 1,6-bisphosphate (Fru-1,6-P2). The conformation of NAD+ bound to the modified enzyme in the absence of Fru-1,6-P2 was investigated by means of proton NMR, analyzing the time dependence of the transferred nuclear Overhauser effect (TRNOE) and TRNOE action spectra. The inter-proton distances determined on TRNOE analysis indicated that both the nicotinamide riboside moiety and the adenosine moiety of NAD+ were in the anti conformation, the ribose rings being in the C3'-endo form. This conformation was almost the same as that of NAD+ bound to the native enzyme-Fru-1,6-P2 complex, rather than that of NAD+ bound to the free native enzyme. These results suggest that the C3'-endo-anti form of the enzyme-bound NAD+ is essential for the activation of the T. caldophilus L-lactate dehydrogenase.  相似文献   

5.
The allosteric effect of fructose 1,6-bisphosphate (Fru-1,6-P2) on L-lactate dehydrogenase (L-lactate:NAD+ oxidoreductase, EC 1.1.1.27) from Thermus caldophilus GK24 was studied by means of 1H NMR analyses. The conformation of NAD+ as bound to the T. caldophilus enzyme was elucidated by analyses of the transferred nuclear Overhauser effects (TRNOE), in the presence and the absence of the allosteric effector, Fru-1,6-P2. Upon binding of Fru-1,6-P2 to the enzyme, the ribose ring of the adenosine moiety of NAD+ is converted from the C2'-endo form to the C3'-endo form. This C3'-endo form of the adenosine moiety is similar to that of NAD+ as bound to nonallosteric vertebrate enzymes. However, the anti conformation of the adenine-ribose bond of NAD+ as bound to the T. caldophilus enzyme is not affected by the binding of Fru-1,6-P2. In contrast, the syn conformation of the nicotinamide-ribose bond is converted to the anti form on the binding of Fru-1,6-P2, while the ribose ring remains in the C3'-endo form as found in the case of a nonallosteric enzyme. Such a conformational change of enzyme-bound NAD+ as found on TRNOE analysis is essentially involved in the allosteric regulation of the T. caldophilus enzyme by Fru-1,6-P2.  相似文献   

6.
The gene for L-lactate dehydrogenase (LDH) from Thermus aquaticus YT-1 was cloned in Escherichia coli, using the Thermus caldophilus LDH gene as a hybridization probe, and its complete nucleotide sequence was determined. The LDH gene comprised 930 base pairs, starting with a GTG initiation codon. Its sequence had high homology (85.8% identity) with the LDH gene of T. caldophilus. The G + C content of the T. aquaticus gene was 70.9%, higher than that of the chromosomal DNA (67.4%). In particular, that in the third position of the codons used was 91.0%, similar to the T. caldophilus gene. The primary structure of T. aquaticus LDH was deduced from the nucleotide sequence of the LDH gene. It comprises 310 amino acid residues, as does T. caldophilus LDH, and its molecular mass was calculated to be 33,210 daltons. The amino acid sequence of the T. aquaticus LDH had 87.1% identity with that of the T. caldophilus LDH. At 23 positions, the respective residues differed in charge and polarity. These differences must be related to the differences in kinetic properties between the two enzymes. The constructed plasmid overproduced the T. aquaticus LDH in E. coli.  相似文献   

7.
Lactobacillus casei allosteric L-lactate dehydrogenase (L-LDH) absolutely requires fructose 1,6-bisphosphate [Fru(1,6)P2] for its catalytic activity under neutral conditions, but exhibits marked catalytic activity in the absence of Fru(1,6)P(2) under acidic conditions through the homotropic activation effect of substrate pyruvate. In this enzyme, a single amino acid replacement, i.e. that of His205 conserved in the Fru(1,6)P(2)-binding site of certain allosteric L-LDHs of lactic acid bacteria with Thr, did not induce a marked loss of the activation effect of Fru(1,6)P(2) or divalent metal ions, which are potent activators that improve the activation function of Fru(1,6)P(2) under neutral conditions. However, this replacement induced a great loss of the Fru(1,6)P(2)-independent activation effect of pyruvate or pyruvate analogs under acidic conditions, consequently indicating an absolute Fru(1,6)P(2) requirement for the enzyme activity. The replacement also induced a significant reduction in the pH-dependent sensitivity of the enzyme to Fru(1,6)P(2), through a slight decrease and increase of the Fru(1,6)P(2) sensitivity under acidic and neutral conditions, respectively, indicating that His205 is also largely involved in the pH-dependent sensitivity of L.casei L-LDH to Fru(1,6)P(2). The role of His205 in the allosteric regulation of the enzyme is discussed on the basis of the known crystal structures of L-LDHs.  相似文献   

8.
嗜热菌的耐热L—乳酸脱氢酶的研究   总被引:3,自引:0,他引:3  
About 200 strains of extreme thermophilic bacteria were isolated from hot springs in Guandong province. A strain, HG25, was found to produce thermostable intracellular L-lactate dehydrogenase (EC. 1.1.1.27). It has the characteristic of Thermus sp. The cells were gram-negative, non-sporulating, nonmotile, aerobic rods containing yellow pigment. The optimum temperature for growth was between 65 degrees C to 75 degrees C, the maximum 85 degrees C, and minimum 40 degrees C. The generation time at the optimum was about 80 min. Starch was not hydrolyzed. Acid was not produced from glucose. The G+C content in DNA was 62-65 mol% (Tm). As the properties of strain HG25 is similar to those of Thermus aquaticus and T. thermophilus HB 8 belonging to the genus Thermus. The thermostable L-lactate dehydrogenase was partially purified by ammonium sulfate fractionation and DEAE-cellulose column chromatography. For pyruvate reduction, the optimum temperature of the enzyme was 60 degrees C and pH 8.0. After incubation in 0.1 mol/L phosphate buffer pH 7.4 at 70 degrees C for 10 min, the enzyme retained about 85% of its original activity. The half-live time (t1/2) at 85 degrees C was 10 min.  相似文献   

9.
10.
The gene for L-lactate dehydrogenase (LDH) (EC 1.1.1.27) of Thermus caldophilus GK24 was cloned in Escherichia coli using synthetic oligonucleotides as hybridization probes. The nucleotide sequence of the cloned DNA was determined. The primary structure of the LDH was deduced from the nucleotide sequence. The deduced amino acid sequence agreed with the NH2-terminal and COOH-terminal sequences previously reported and the determined amino acid sequences of the peptides obtained from trypsin-digested T. caldophilus LDH. The LDH comprised 310 amino acid residues and its molecular mass was determined to be 32,808. On alignment of the whole amino acid sequences, the T. caldophilus LDH showed about 40% identity with the Bacillus stearothermophilus, Lactobacillus casei and dogfish muscle LDHs. The T. caldophilus LDH gene was expressed with the E. coli lac promoter in E. coli, which resulted in the production of the thermophilic LDH. The gene for the T. caldophilus LDH showed more than 40% identity with those for the human and mouse muscle LDHs on alignment of the whole nucleotide sequences. The G + C content of the coding region for the T. caldophilus LDH was 74.1%, which was higher than that of the chromosomal DNA (67.2%). The G + C contents in the first, second and third positions of the codons used were 77.7%, 48.1% and 95.5% respectively. The high G + C content in the third base caused extremely non-random codon usage in the LDH gene. About half (48.7%) the codons in the LDH gene started with G, and hence there were relatively high contents of Val, Ala, Glu and Gly in the LDH. The contents of Pro, Arg, Ala and Gly, which have high G + C contents in their codons, were also high. Rare codons with U or A as the third base were sometimes used to avoid the TCGA sequence, the recognition site for the restriction endonuclease, TaqI. Two TCGA sequences were found only in the sequence of CTCGAG (XhoI site) in the sequenced region of the T. caldophilus DNA. There were three segments with similar sequences in the two 5' non-coding regions, probably the promoter and ribosome-binding regions, of the genes for the T. caldophilus LDH and the Thermus thermophilus 3-isopropylmalate dehydrogenase.  相似文献   

11.
The lactate dehydrogenase from Streptococcus faecalis is activated either by fructose 1,6-bisphosphate or by divalent cations such as Mn2+ or Co2+. With both types of activator, a lag is observed before attainment of the steady state rate of pyruvate reduction if the activator is added to the enzyme at the same time as the substrates. This lag can be largely abolished by preincubation of enzyme with activator before mixing with substrates. For fructose 1,6-bisphosphate (Fru(1,6)P2) as the activator, the rate constant for the lag phase showed a linear dependence on activator concentration but was independent of enzyme concentration. This suggests that binding of fructose 1,6-bisphosphate induces a conformational change in the enzyme which leads to increased activity, without association of enzyme subunits or dimers. With Co2+ as activator, the rate constant for the lag phase showed a hyperbolic dependence on Co2+ concentration and was also dependent on enzyme concentration. This suggests that activation by Co2+, in contrast to that by Fru(1,6)P2, involves association of enzyme dimers, followed by ligand binding.  相似文献   

12.
A lag is observed before the steady state during pyruvate reduction catalysed by lactate dehydrogenase from Streptococcus lactis. The lag is abolished by preincubation of enzyme with the activator fructose 1,6-bisphosphate before mixing with the substrates. The rate constants for the lag phase showed a linear dependence on fructose-1,6-bisphosphate concentration, with a second-order rate constant of 2.0 X 10(4) M-1 s-1, but were independent of enzyme concentration. Binding of fructose 1,6-bisphosphate produces a decrease in the protein fluorescence of the enzyme. The second-order rate constant for the fluorescence change is twice that for the lag in pyruvate reduction. The results suggest that binding of fructose 1,6-bisphosphate induces a conformational change in the enzyme, producing a form with reduced protein fluorescence and increased activity towards pyruvate reduction.  相似文献   

13.
1. The amino acid sequence of D-glyceraldehyde-3-phosphate dehydrogenase from the extreme thermophile Thermus aquaticus has been elucidated. 2. The polypeptide contains 332 amino acids and its sequence is 70% identical with that of the enzyme from the moderate thermophile Bacillus stearothermophilus. 3. In contrast to less thermostable forms of the enzymes from B. stearothermophilus, pig, lobster and yeast, the T. aquaticus enzyme has only one cysteine residue, namely cysteine-149 which is required for catalysis.  相似文献   

14.
In Lactobacillus plantarum non-allosteric L-lactate dehydrogenase (L-LDH), the highly conserved His188 residue, which is involved in the binding of an allosteric effector, fructose 1,6-bisphosphate [Fru(1,6)P2], in allosteric L-LDH is uniquely substituted by an Asp. The mutant L. plantarum L-LDH, in which Asp188 is replaced by a His, showed essentially the same Fru(1,6)P2-independent catalytic activity as the wild-type enzyme, except that the Km and Vmax values were slightly decreased. However, the addition of Fru(1,6)P2 induced significant thermostabilization of the mutant enzyme, as in the case of many allosteric L-LDHs, while Fru(1,6)P2 showed no significant effect on the stability of the wild-type enzyme, indicating that only the single-point mutation, G-->C, sufficiently induces the Fru(1,6)P2-binding ability of L. plantarum L-LDH. The mutant enzyme showed higher thermostability than the wild-type enzyme in the presence of Fru(1,6)P2. In the absence of Fru(1,6)P2, on the other hand, the mutant enzyme was more labile below 65 degrees C but more stable above 70 degrees C.  相似文献   

15.
Thermostable aldolase from Thermus aquaticus   总被引:4,自引:1,他引:3       下载免费PDF全文
Data are presented on the purification and properties of the thermostable fructose-1,6-diphosphate aldolase of Thermus aquaticus, a nonsporulating, extreme thermophile. The enzyme shows little activity at temperatures below 60 C and optimal activity at about 95 C. The enzyme was purified 43-fold by diethylaminoethyl cellulose column chromatography and Sephadex G-200 gel filtration. The enzyme is activated by high concentrations of NH(4) (+) and low concentrations of Fe(2+) and Co(2+) and is strongly inhibited by ethylenediaminetetraacetic acid (EDTA). The activation by Fe(2+) and Co(2+) and the inhibition by EDTA are both reversed by dialysis. The enzyme is greatly activated by cysteine and less so by other sulfhydryl compounds. Activation by cysteine is reversible by dialysis. The purified enzyme had a molecular weight as determined by Sephadex G-200 gel filtration of 140,000; after incubation of enzyme with cysteine, another molecular species was also found with a molecular weight of 70,000. The purified enzyme is stable at low protein concentrations to 97 C but is rapidly inactivated at 105 C. In cysteine the enzyme is more heat labile; heat inactivation in the presence of cysteine is prevented by substrate, although, in the absence of cysteine, substrate partially labilizes the enzyme to heat. The temperature optimum for enzyme activity is several degrees lower in the presence of cysteine than in its absence, and the K(m) is threefold lower. It is concluded that the T. aquaticus enzyme resembles some other aldolases of Rutter's class II, except for its extreme heat stability. The T. aquaticus enzyme is compared with that of Bacillus stearothermophilus, a moderate thermophile. Although the T. aquaticus enzyme is considerably more heat stable, the enzymes from the two thermophiles have many similarities. New data are presented which show that the B. stearothermophilus aldolase is metal ion-dependent, in disagreement with earlier reports.  相似文献   

16.
Fructose-1,6-bisphosphate aldolase from the thermophilic eubacteria, Thermus aquaticus YT-1, was cloned and sequenced. Nucleotide-sequence analysis revealed an open reading frame coding for a 33-kDa protein of 305 amino acids having amino acid sequence typical of thermophilic adaptation. Multiple sequence alignment classifies the enzyme as a class II B aldolase that shares similarity with aldolases from other extremophiles: Thermotoga maritima, Aquifex aeolicus, and Helicobacter pylori (49--54% identity, 76--81% homology). Taq FBP aldolase was overexpressed under tac promoter control in Escherichia coli and purified to homogeneity using heat treatment followed by two chromatographic steps. Yields of 40--50 mg of monodisperse protein were obtained per liter of culture. The quaternary structure is that of a homotetramer stabilized by an apparent 21-amino-acid insertion sequence. The recombinant protein is thermostable for at least 45 min at 80 degrees C with little residual activity below 60 degrees C. Kinetic characterization at 70 degrees C, the optimal growth temperature for T. aquaticus, indicates extreme negative subunit cooperativity (h = 0.32) with a limiting K(m) of 305 microM. The maximal specific activity (V(max)) is 46 U/mg at 70 degrees C.  相似文献   

17.
Lactate dehydrogenase (D-lactate:NAD+ oxidoreductase, EC 1.1.1.28) from the horseshoe crab, Limulus polyphemus, a dimeric enzyme stereospecific for D-lactate, has been purified by affinity chromatography. Maleyl tryptic peptides containing arginine residues isolated from the Limulus enzyme have been characterized and sequenced. The small peptides obtained from similarly treated L-lactate-specific enzyme homologs define major portions of the substrate and coenzyme binding regions and are virtually identical among L-lactate-specific enzymes. Although the six small peptides and free arginine isolated from the Limulus enzyme indicate that the small number of arginine tryptic peptides are located in a few discrete consecutive clusters similarly to the L-lactate dehydrogenases, the peptides nevertheless show no obvious sequence homology to the corresponding peptides from L-lactate dehydrogenases. These results indicate that this lactate dehydrogenase of altered substrate specificity either evolved with major rearrangements of the active site if it evolved from an L-lactate dehydrogenase, or that D-lactate dehydrogenases have evolved from a different protein. The results contradict proposed models which suggest that minor changes in the spatial orientation of pyruvate resulting from minimal rearrangement of the active site could accommodate the change in substrate specificity.  相似文献   

18.
Limited treatment of native pig kidney fructose-1,6-bisphosphatase (50 microM enzyme subunit) with [14C]N-ethylmaleimide (100 microM) at 30 degrees C, pH 7.5, in the presence of AMP (200 microM) results in the modification of 1 reactive cysteine residue/enzyme subunit. The N-ethylmaleimide-modified fructose-1,6-bisphosphatase has a functional catalytic site but is no longer inhibited by fructose 2,6-bisphosphate. The enzyme derivative also exhibits decreased affinity toward Mg2+. The presence of fructose 2,6-bisphosphate during the modification protects the enzyme against the loss of fructose 2,6-bisphosphate inhibition. Moreover, the modified enzyme is inhibited by monovalent cations, as previously reported (Reyes, A., Hubert, E., and Slebe, J.C. (1985) Biochem. Biophys. Res. Commun. 127, 373-379), and does not show inhibition by high substrate concentrations. A comparison of the kinetic properties of native and N-ethylmaleimide-modified fructose-1,6-bisphosphatase reveals differences in some properties but none is so striking as the complete loss of fructose 2,6-bisphosphate sensitivity. The results demonstrate that fructose 2,6-bisphosphate interacts with a specific allosteric site on fructose-1,6-bisphosphatase, and they also indicate that high levels of fructose 1,6-bisphosphate inhibit the enzyme by binding to this fructose 2,6-bisphosphate allosteric site.  相似文献   

19.
D.W. Meek  H.G. Nimmo   《FEBS letters》1983,160(1-2):105-109
Rat liver fructose 1,6-bisphosphatase can be protected against partial inactivation by N-ethylmaleimide by low concentrations of fructose 2,6-bisphosphate or high concentrations of fructose 1,6-bisphosphate. The partially inactivated enzyme has a much reduced sensitivity to high substrate inhibition and has lost the sigmoid component of the inhibition by fructose 2,6-bisphosphate; this compound is a simple linear competitive inhibitor of the modified enzyme. The results suggest that fructose 2,6-bisphosphate can bind to the enzyme at two distinct sites, the catalytic site and an allosteric site. High levels of fructose 1,6-bisphosphate probably inhibit by binding to the allosteric site.  相似文献   

20.
Chloroplast fructose-1,6-bisphosphatase (D-fructose 1,6-bisphosphate 1-phosphohydrolase, EC 3.1.3.11) isolated from spinach leaves, was activated by preincubation with fructose 1,6-bisphosphate. The rate of activation was slower than the rate of catalysis, and dependent upon the temperature and the concentration of fructose 1,6-bisphosphate. The addition of other sugar diphosphates, sugar monophosphates or intermediates of the reductive pentose phosphate cycle neither replaced fructose 1,6-bisphosphate nor modified the activation process. Upon activation with the effector the enzyme was less sensitive to trypsin digestion and insensitive to mercurials. The activity of chloroplast fructose-1,6-bisphosphatase, preincubated with fructose 1,6-bisphosphate, returned to its basal activity after the concentration of the effector was lowered in the preincubation mixture. The results provide evidence that fructose-1,6-bisphosphatase resembles other regulatory enzymes involved in photosynthetic CO2 assimilation in its activation by chloroplast metabolites.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号