首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We tested the two empirical models of the relationship between chlorophyll fluorescence and photosynthesis, previously published by Weis E and Berry JA 1987 (Biochim Biophys Acta 894: 198–208) and Genty B et al. 1989 (Biochim Biophys Acta 990: 87–92). These were applied to data from different species representing different states of light acclimation, to species with C3 or C4 photosynthesis, and to wild-type and a chlorophyll b-less chlorina mutant of barley. Photosynthesis measured as CO2-saturated O2 evolution and modulated fluorescence were simultaneously monitored over a range of photon flux densities. The quantum yields of O2 evolution (ØO2) were based on absorbed photons, and the fluorescence parameters for photochemical (qp) and non-photochemical (qN) quenching, as well as the ratio of variable fluorescence to maximum fluorescence during steady-state illumination (F'v/F'm), were determined. In accordance with the Weis and Berry model, most plants studied exhibited an approximately linear relationship between ØO2/qp (i.e., the yield of O2 evolution by open Photosystem II reaction centres) and qN, except for wild-type barley that showed a non-linear relationship. In contrast to the linear relationship reported by Genty et al. for qp×F'v/F'm (i.e., the quantum yield of Photosystem II electron transport) and ØCO2, we found a non-linear relationship between qp×F'v/F'm and ØO2 for all plants, except for the chlorina mutant of barley, which showed a largely linear relationship. The curvilinearity of wild-type barley deviated somewhat from that of other species tested. The non-linear part of the relationship was confined to low, limiting photon flux densities, whereas at higher light levels the relationship was linear. Photoinhibition did not change the overall shape of the relationship between qp×F'v/F'm and ØO2 except that the maximum values of the quantum yields of Photosystem II electron transport and photosynthetic O2 evolution decreased in proportion to the degree of photoinhibition. This implies that the quantum yield of Photosystem II electron transport under high light conditions may be similar for photoinhibited and non-inhibited plants. Based on our experimental results and theoretical analyses of photochemical and non-photochemical fluoresce quenching processes, we conclude that both models, although not universal for all plants, provide useful means for the prediction of photosynthesis from fluorescence parameters. However, we also discuss that conditions which alter one or more of the rate constants that determine the various fluorescence parameters, as well as differential light penetration in assays for oxygen evolution and fluorescence emission, may have direct effect on the relationships of the two models.Abbreviations F0 and F'0 fluorescence when all Photosystem II reaction centres are open in dark- and light-acclimated leaves, respectively - Fm and F'm fluorescence when all Photosystem II reaction centres are closed in dark and light, respectively - Fv variable fluorescence equal to Fm-F0 - Fs steady state level of fluorescence in light - F'v and F'm variable (F'm-F'0) and maximum fluorescence under steady state light conditions - HEPES N-2-hydroxyethylpiperazine-N-2-ethane-sulphonic acid - QA the primary, stabile quinone acceptor of Photosystem II - qN non-photochemical quenching of fluorescence - qp photochemical quenching of fluorescence - ØO2 quantum yield of CO2-saturated O2 evolution based on absorbed photons  相似文献   

2.
The relaxation of the non-photochemical quenching of chlorophyll fluorescence has been investigated in cells of the green alga Dunaliella following illumination. The relaxation after the addition of DCMU or darkening was strongly biphasic. The uncoupler NH4Cl induced rapid relaxation of both phases, which were therefore both energy-dependent quenching, qE. The proportion of the slow phase of qE increased at increasing light intensity. In the presence of the inhibitors rotenone and antimycin the slow phase of qE was stabilised for in excess of 15 min. NaN3 inhibited the relaxation of almost all the qE. The implications of these results are discussed in terms of the interpretation of the non-photochemical quenching of chlorophyll fluorescence in vivo and the mechanism of qE.Abbreviations PS II Photosystem II - qQ photochemical quenching of chlorophyll fluorescence - qNP non-photochemical quenching of chlorophyll fluorescence - qE energy-dependent quenching of chlorophyll fluorescence - F m maximum level of chlorophyll fluorescence for dark adapted cells - F m level of fluorescence at any time when qQ is zero  相似文献   

3.
Interspecific ecophysiological differences in response to different light environments are important to consider in regeneration behavior and forest dynamics. The diurnal changes in leaf gas exchange and chlorophyll fluorescence of two dipterocarps, Shorea leprosula (a high light-requiring) and Neobalanocarpus heimii (a low light-requiring), and a pioneer tree species (Macaranga gigantea) growing in open and gap sites were examined. In the open site, the maximum net photosynthetic rate (Pn), photosystem II (PSII) quantum yield (; F/Fm), and relative electron transport rate (r-ETR) through PSII at a given photosynthetic photon flux density (PPFD) was higher in S. leprosula and M. gigantea than in N. heimii, while non-photochemical quenching (NPQ) at a given PPFD was higher in N. heimii. The maximum values of net photosynthetic rate (Pn) in M. gigantea and S. leprosula was higher in the open site (8–11 mol m–2 s–1) than in the gap site (5 mol m–2 s–1), whereas that in N. heimii was lower in the open site (2 mol m–2 s–1) than in the gap site (4 mol m–2 s–1), indicating that N. heimii was less favorable to the open site. These data provide evidence to support the hypothesis that ecophysiological characteristics link with plants regeneration behavior and successional status. Although Pn and stomatal conductance decreased at midday in M. gigantea and S. leprosula in the open site, both r-ETR and leaf temperature remained unchanged. This indicates that stomatal closure rather than reduced photochemical capacity limited Pn in the daytime. Conversely, there was reduced r-ETR under high PPFD conditions in N. heimii in the open site, indicating reduced photochemical capacity. In the gap site, Pn increased in all leaves in the morning before exposure to direct sunlight, suggesting a relatively high use of diffuse light in the morning.  相似文献   

4.
The fluorescence kinetics of both intact needles and isolated chloroplasts of summer active and winter stressed Pinus sylvestris were measured at both room temperature and 77 K. It was confirmed that winter stress inhibited the photochemical capacity of photosystem II but also that winter stress caused the strongest inhibition of the electron transport at the site where the plastoquinone pool is reduced. Parallel analyses of the fluorescence characteristics of photosystem II (F693) and photosystem I (F729) during photosystem II trap closure furthermore revealed that the yield of spillover of excitation energy from photosystem II to photosystem I decreased upon winter stress. We suggest that this is because of an increased radiationless decay of excitation energy both at the reaction center and antennae levels of photosystem II. There is, however, also a possibility that the decreased yield of spill-over is accentuated by a partial detachment of the light harvesting chlorophyll a/b complex from photosystem II upon winter stress.Paper presented at the FESPP meeting in Strasbourg (1984).  相似文献   

5.
A detailed quantitative study of the kinetics of photochemical and non-photochemical quenching was achieved by a linear analysis of the yields of chlorophyll fluorescence and of oxygen evolution (as measured by the photoacoustic effect) by their responses to sinusoidal changes of actinic light. The results of this analysis were given in terms of the parameters of the kinetic phases obtained as a response to a step function change in the light intensity from a previous steady-state. Thus, it was possible to split the responses to a change in light intensity into six components which could be assigned to 6 time-constants (60 ms, 1.8 s, 2.5 s, 8 s, 150 s and 400 s). The comparison of the kinetics of responses induced by blue-light (approx. 400–500 nm) and by far-red (720 nm) light led to the assignment of the 1.8-s time-constant to the loading and discharge of the plastoquinone pool and of the 400-s time-constant to the state-transition controller which could be shown to be involved also in the adaptation to changes in light intensity and not only to changes in light quality (wavelength). The time-constant of 8 s, also occurring in 532-nm light-scattering was assigned to the high-energy state quenching (qE) of fluorescence. qE was paralleled by a decrease of the photoacoustic signal, demonstrating an high-energy state quenching of oxygen evolution as well. The 60-ms time-constant is suggested to be related to the redox state of the primary quinone acceptor of PS II, whereas the other two time-constants could not be identified. The calculation of the relative contributions of the photo-chemical and of the non-photochemical quenching in the individual components revealed that both quenching-mechanisms occur in all components except in the assumed fastest one.Abbreviations pa-signal photoacoustic signal - PS photosystem  相似文献   

6.
Photosynthesis-light response curves of Gelidium sesquipedale from the west coast of Portugal (Cape Espichel) were determined at four different depths, 3, 10, 15 and 22 m. Data acquisition using chlorophyll a fluorescence methodology and oxygen electrode measurements were compared. Response curves were determined over an increasing range of irradiance values (I), from darkness to 900 μmol photon m-2 s-1 PAR. In general, light response curves obtained for G. sesquipedale showed a similar pattern whether determined by the chlorophyll fluorescence method or by oxygen evolution. The photosynthetic capacity of G. sesquipedale decreased with depth, as expected, revealing a ‘sun’ and ‘shade’ acclimation pattern, between shallow and deeper waters. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

7.
Robert T. Furbank 《Planta》1988,176(4):433-440
The relationship between the redox state of the primary electron acceptor of photosystem II (QA) and the rate of O2 evolution in isolated mesophyll chloroplasts from Zea mays L. is examined using pulse-modulated chlorophyll a fluorescence techniques. A linear relationship between photochemical quenching of chlorophyll fluorescence (qQ) and the rate of O2 evolution is evident under most conditions with either glycerate 3-phosphate or oxaloacetate as substrates. There appears to be no effect of the transthylakoid pH gradient on the rate of electron transfer from photosystem II into QA in these chloroplasts. However, the proportion of electron transport occurring through cyclic-pseudocyclic pathways relative to the non-cyclic pathway appears to be regulated by metabolic demand for ATP. The majority of non-photochemical quenching in these chloroplasts at moderate irradiances appeared to be energy-dependent quenching.Abbreviations and symbols PSII photosystem II - Fm maximum fluorescence obtained on application of a saturating light pulse - Fo basal fluorescence recorded in the absence of actinic light (i.e. all PSII traps are open) - Fv Fm-Fo - qQ photochemical quenching - qNP non-photochemical quenching - qE energy-dependent quenching of chlorophyll fluorescence  相似文献   

8.
毛尖紫萼藓(Grimmia pilifera)多生长在裸岩表面且具有多种微生境,其生长过程受到水分、光照和温度等环境因素的交互影响,但其光合生理特征如何响应这种变化的环境条件尚不清楚。开展原位(荫蔽和向阳裸岩2种微生境)和室内模拟实验,分析了不同水分(模拟降水量和降水频次)、光照、温度及其复合梯度处理对毛尖紫萼藓叶绿素荧光特性的影响。原位实验结果显示荫蔽生境原位生长毛尖紫萼藓光化学效率显著高于向阳生境。在室内相同培养条件下,脱水过程中来自荫蔽生境植株有效光合效率保持时间比向阳生境明显缩短,表现出较低的脱水耐受性。水-光-温复合模拟实验显示,降水频次和光-温变化对毛尖紫萼藓光化学效率均有极显著影响且存在一定的交互作用,而降水量的影响相对较弱;弱光低温及1次/(2 d)的降水频率条件下毛尖紫萼藓具有最高的光合活性。总体来看,荫蔽生境、弱光低温条件及中等频次降水有利于毛尖紫萼藓生长,但向阳生境毛尖紫萼藓则具有更强的环境耐受性。  相似文献   

9.
The effect of ultraviolet light on thermoluminescence, oxygen evolution and the slow component of delayed light has been investigated in chloroplasts and Pothos leaves. All peaks including peak V (48°C) were inhibited by UV. However, the peak at 48°C which was induced by DCMU was enhanced following UV irradiation of chloroplasts at ambient temperature (23°C) whereas peak II (-12°C) and peak III (10°C) which were also induced by DCMU were inhibited. Chloroplasts treated with DCMU and dark incubated for several minutes at ambient temperature prior to recording of glow curves have also shown enhancement of peak at 48°C. A slow component of delayed light and photosystem II activity of chloroplasts were inhibited by UV whereas photosystem I activity was marginally affected. These results corroborate involvement of photosystem II in generating thermoluminescence and slow components of delayed light in photosynthetic materials.Abbreviations DCIP Dichlorophenol Indophenol - DCMU 3-(3,4-dichlorophenyl)-1,1-dimethylurea - DCQ 2,6 Dichloro-p-benzoquinone - DLE delayed light emission - MOPS Morpholino propane sulfonic acid - PSI Photosystem I - PS II Photosystem II - TL thermoluminescence  相似文献   

10.
The regulation of photosystem II (PSII) by light-, CO2-, and O2-dependent changes in the capacity for carbon metabolism was studied. Estimates of the rate of electron transport through PSII were made from gas-exchange data and from measurements of chlorophyll fluorescence. At subsaturating photon-flux density (PFD), the rate of electron transport was independent of O2 and CO2. Feedback on electron transport was observed under two conditions. At saturating PFD and low partial pressure of CO2, p(CO2), the rate of electron transport increased with p(CO2). However, at high p(CO2), switching from normal to low p(O2) did not affect the net rate of photosynthetic CO2 assimilation but the rate of electron-transport decreased by an amount related to the change in the rate of photorespiration. We interpret these effects as 1) regulation of ribulose-1,5-bisphosphatecarboxylase (RuBPCase, EC 4.1.1.39) activity to match the rate of electron transport at limiting PFD, 2) regulation of electron-transport rate to match the rate of RuBPCase at low p(CO2), and 3) regulation of the electron-transport rate to match the capacity for starch and sucrose synthesis at high p(CO2) and PFD. These studies provide evidence that PSII is regulated so that the capacity for electron transport is matched to the capacity for other processes required by photosynthesis, such as ribulose-bisphosphate carboxylation and starch and sucrose synthesis. We show that at least two mechanisms contribute to the regulation of PSII activity and that the relative engagement of these mechanisms varies with time following a step change in the capacity for ribulose-bisphosphate carboxylation and starch and sucrose synthesis. Finally, we take advantage of the relatively slow activation of deactivated RuBPCase in vivo to show that the activation level of this enzyme can limit the rate of electron transport as evidenced by increased feedback on PSII following a step change in p(CO2). As RuBPCase as activated, the feedback on PSII declined.Abbreviations and symbols JC electron-transport rate calculated from CO2-assimilation measurements - JF electron-transport rate calculated from fluorescence parameters - PFD photon-flux density - qE energy-dependent quenching - PSII photosystem II - qQ Q-dependent quenching - QY quantum yield - RuBPCase ribulose-1,5-bisphosphate carboxylase (EC 4.1.1.39) C.I.W. publication No. 1015  相似文献   

11.
Using 77 K chlorophyll a (Chl a) fluorescence spectra in vivo, the development was studied of Photosystems II (PS II) and I (PS I) during greening of barley under intermittent light followed by continuous light at low (LI, 50 μmol m−2 s−1) and high (HI, 1000 μmol m−2 s−1) irradiances. The greening at HI intermittent light was accompanied with significantly reduced fluorescence intensity from Chl b excitation for both PS II (F685) and PS I (F743), in comparison with LI plants, indicating that assembly of light-harvesting complexes (LHC) of both photosystems was affected to a similar degree. During greening at continuous HI, a slower increase of emission from Chl b excitation in PS II as compared with PS I was observed, indicating a preferred reduction in the accumulation of LHC II. The following characteristics of 77 K Chl a fluorescence spectra documented the photoprotective function of an elevated content of carotenoids in HI leaves: (1) a pronounced suppression of Soret region of excitation spectra (410–450 nm) in comparison with the red region (670–690 nm) during the early stage of greening indicated a strongly reduced excitation energy transfer from carotenoids to the Chl a fluorescing forms within PS I and PS II; (2) changes in the shape of the excitation band of Chl b and carotenoids (460–490 nm) during greening under continuous light confirmed that the energy transfer from carotenoids to Chl a within PS II remained lower as compared with the LI plants. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

12.
Chlorophyll fluorescence emission at 680 nm (F680) and the rate of CO2 fixation were measured simultaneously in sections along the length of wheat and maize leaves. These leaves possess a basal meristem and show a gradation in development towards the leaf tip. The redox state of the primary electron acceptor, Q, of photosystem II was estimated using a non-invasive method. Distal mature leaf sections displayed typical F680 induction curves which were generally anti-parallel with CO2 fixation and during which Q became gradually oxidised. In leaf-base sections net assimilation of CO2 was not detectable, F680 quenched slowly and monotonously without displaying any of the oscillations typical of mature tissue and Q remained relatively reduced. Sections cut from mid-regions of the leaf showed intermediate characteristics. There were no major differences between the wheat and maize leaf in the parameters measured. The results support the hypothesis that generation of the transthylakoid proton gradient and associated ATP production is not a major limitation to photosynthesis during leaf development in either C3 or C4 plants. Removal of CO2 from the mature leaf sections caused little change in steady-state F680 and produced about 50% reduction of Q. When O2 was then removed, F680 rose sharply and Q became almost totally reduced. In immature tissue unable to assimilate CO2, removal of O2 alone caused a similar large rise in F680 and reduction of Q whilst removal of CO2 had negligible effects on F680 and the redox state of Q. It is concluded that in leaf tissue unable to assimilate CO2, either because CO2 is absent or the tissue is immature, O2 acts as an electron acceptor and maintains Q in a partially oxidised state. The important implication that O2 may have a role in the prevention of photoinhibition of the photochemical apparatus in the developing leaf is discussed.Abbreviations F680 chlorophyll fluorescence emission at 680 nm - PSI photosystem I - PSII photosystem II - Q PSII primary electron acceptor - pH transthylakoid proton gradient  相似文献   

13.
A microscope for imaging of chlorophyll fluorescence kinetics was equipped with a chamber that allows the growth of an immobilised population of algae and their study under well-defined conditions. Single cells of the chlorococcal alga Scenedesmus quadricauda were grown and recorded for periods of whole cell cycles (up to 48 h) displaying a normal course of cell development. Heterogeneity in fluorescence yield among individual coenobia in the population and among different cells in one coenobium were analysed. Differences were observed both in the shape of Kautsky transients and in the modulation of fluorescence parameter values during the progress of the cell cycle. The extent of heterogeneity in fluorescence parameters was cell cycle dependent – in some phases of the cycle, the population was almost homogeneous, while distinct heterogeneity was observed, in particular between the protoplast division and the release of the daughter coenobia. The heterogeneity was not random but reflected developmental processes.  相似文献   

14.
Laminaria abyssalis fronds were either collected at the Brazilian costal area - 40 meters below sea level - or grown in the laboratory. The photochemical yield as defined by the Fv/Fm and the Fo - the dark fluorescence level when all PSII centers are open - varied with the distance from the stipe to the tip of the blade in wild grown fronds while it stayed constant in the laboratory grown plants. The chlorophyll a/c ratio levels decreased in the wild fronds from 12 (near the stipe) to 6 near the top. The chlorophyll c content increased from 0.8 to near 1.7 mg cm–2 in the wild fronds. The laboratory fronds did not show variations in their chlorophyll contents. The wild fronds pattern changed after 2 months kept in the laboratory, producing similar results to those grown in the laboratory. The results indicate that the levels of the antenna complex in the wild fronds increase from the stipe to the top of the blade, in a fashion similar of the sun/shade leaves. Also, results show, that this alga is able to adapt itself to new light conditions, possibly increasing its level of antenna complex and photosynthetic units.Abbreviations PSII Photosystem II - Fo Chlorophyll fluorescence when all PSII are opened - Fm Chlorophyll Fluorescence when all PSII are closed - Fv Variable Fluorescence (Fm-Fo) - Fv/Fm Quantum Yield for Photochemistry  相似文献   

15.
We devised recently a method to trap intact isolated chloroplasts on a solid support consisting of membrane filters made of cellulose nitrate (Cerovi et al., 1987, Plant Physiol. 84, 1249–1251). The addition of alkaline phosphatase to the reaction medium enabled continuous photosynthesis by spinach (Spinacia oleracea L.) chloroplasts to be sustained by hydrolysis of newly produced and exported triose phosphates and recycling of orthophosphate. In this system, simultaneous measurements of chlorophyll fluorescence and oxygen evolution were performed and their dependence on orthophosphate concentration was investigated. Optimal photosynthesis was obtained at a much higher initial orthophosphate concentration (2–4 mM) compared to intact chloroplasts in suspension. Secondary kinetics of chlorophyll fluorescence yield were observed and were shown to depend on the initial orthophosphate concentration.Abbreviations Chl chlorophyll - CSS intact isolated chloroplasts on solid support - ICS intact isolated chloroplasts in suspension - Pi orthophosphate - v rate of O2 evolution - PPFD photosynthetic photon flux density The authors wish to thank Dr. Marijana Plesniar, from the University of Novi Sad, for stimulating discussions. This work was supported by the Fond for Science of the Republic of Serbia. Z.G.C.'s visit to the Robert Hill Laboratory was supported by the British Council and the University of Sheffield.  相似文献   

16.
Abstract. The effect of chlorophyll fluoresence on the spectral light gradients within a model green leaf was examined under different light qualities (day-light, sunset, canopy) and different quantum efficiencies. Light fluxes within the leaf tissue are nearly doubled in the emission domain of fluorescence but the effect on the phytochrome photoequilibrium is very small.  相似文献   

17.
Henrik Laasch 《Planta》1987,171(2):220-226
Non-photochemical quenching of chlorophyll a fluorescence after short-time light, heat and osmotic stress was investigated with intact chloroplasts from Spinacia oleracea L. The proportions of non-photochemical fluorescence quenching (q N ) which are related (q E ) and unrelated (q I ) to the transthylakoid proton gradient (pH) were determined. Light stress resulted in an increasing contribution of q Ito total q N.The linear dependence of q. Eand pH, as seen in controls, was maintained. The mechanisms underlying this type of quenching are obviously unaffected by photoin-hibition. In constrast, q Ewas severely affected by heat and osmotic stress. In low light, the response of q Eto changes in pH was enhanced, whereas it was reduced in high light. The data are discussed with reference to the hypothesis that q Eis related to thermal dissipation of excitation energy from photosystem II. It is shown that q Eis not only controlled by pH, but also by external factors.Abbreviations and symbols 9-AA 9-aminoacridine - F o basic chlorophyll fluorescence - F o variable chlorophyll fluorescence - L 2 saturating light pulse - PS photosystem - q E pH-dependent, non-photochemical quenching of fluorescence - q I pH-independent, non-photochemical quenching - q N entire non-photochemical quenching - q Q photochemical quenching  相似文献   

18.
Water transport across plant cell membranes is difficult to measure. We present here a model assay, based on chlorophyll (Chl) a fluorometry, with which net water transport across the cell membrane of freshwater cyanobacterium Synechococcus sp. PCC7942 (S7942) can be followed kinetically with millisecond-time resolution. In cyanobacteria, the phycobilisome (PBS)-sensitized Chl a fluorescence increases when cells expand (e.g., in hypo-osmotic suspension) and decreases when cells contract (e.g., in hyper-osmotic suspension). The osmotically-induced Chl a fluorescence changes are proportional to the reciprocal of the suspension osmolality (ΔF ∝ Osm−1; Papageorgiou GC and Alygizaki-Zorba A (1997) Biochim Biophys Acta 1335: 1–4). In our model assay, S7942 cells were loaded with NaCl (passively penetrating solute) and shrunk in hyper-osmotic glycine betaine (nonpenetrating solute). Upon injecting these cells into hypo-osmotic medium, the PBS-sensitized Chl a fluorescence rose to a maximum due to the osmotically-driven water uptake. The rise of Chl a fluorescence (water uptake) was partially inhibited by HgCl2, at micromolar concentrations. Arrhenius plots of the water uptake rates gave activation energies of EA=4.9 kcal mol−1, in the absence of HgCl2, and EA=11.9 kcal mol−1 in its presence. These results satisfy the usual criteria for facilitated water transport through protein water pores of plasma membranes (aquaporins), namely sensitivity to Hg2+ ions and low activation energy.  相似文献   

19.
A new chamber was developed for a simultaneous measurement of fluorescence kinetics and oxygen exchange in filamentous and thallous algae as well as in small leaves of water plants. Algal filaments or thalli are kept by a stainless grid close to the bottom window of the chamber in the sample compartment. The grid separates the object from the electrode compartment with the oxygen electrode at the top. This compartment accommodates, in addition, a magnetic stirrer that provides efficient circulation of the medium between the sample and the electrode. This magnetic bar spins on a fixed axis and is driven by an electronically commutated magnetic field produced by four coils which are arranged around the chamber. This design yields a very favourable signal to noise ratio in the oxygen electrode records. Consequently, measurements can be performed even of algae with very low photosynthetic rates such as marine low-light red algae or algae under severe stress. For irradiation of the samples and for fluorescence measurements a fibre optic light guide is used facing the window of the chamber. The four branches of a commercially available light guide serve the following purposes: collection of sample fluorescence and supply of measuring, actinic, and saturating light, respectively.This revised version was published online in March 2005 with corrections to the page numbers.  相似文献   

20.
李杨  潘珉  何锋  宋任彬  杜劲松 《生态学报》2017,37(8):2809-2817
海菜花通常被认为是对富营养化水体较为敏感的沉水植物,但近年来研究认为其对富营养化水体也有较好的净化作用。目前,海菜花在滇池回植取得一定进展,但回植时能否直接利用富营养化湖泊底泥为底质或是需要添加养分含量较少的土壤改良底泥未有明确的结论。通过对比不同底质上海菜花的光合生理参数表明:种植40d时,在湖沙和大理洱海底泥上种植的海菜花光合能力最好,红壤上种植的海菜花净光合速率仅为洱海底泥上种植海菜花的63.6%,其最大荧光(Fm)和可变荧光(Fv)比洱海底泥上种植的海菜花分别降低52.5%和58.8%,反应中心捕获的用于电子传递的能量(Eto/RC)仅为洱海底泥上种植海菜花的59.7%,光系统Ⅱ(PSⅡ)最大光化学量子产量(Fv/Fm)、性能指数(PI_(ABS))和反应中心数量(RC/CSo)也最低,叶片的单位反应中心耗散的能量(DIo/RC)是洱海底泥上种植海菜花的2.48倍,表明在红壤上种植的海菜花叶片的光合能力较低。种植80d时,不同底质上种植的海菜花的光合生理指标发生了一定改变,其中红壤上种植的海菜花光合能力大幅提升,净光合速率和性能指数等均有提高,与洱海底泥上种植的海菜花已无明显差异;然而红壤上种植的海菜花虽然在80d时的光合性能恢复,但其叶片长度已受到影响,明显低于其他底质上的海菜花的叶片长度。与此同时湖沙上种植的海菜花的光合能力在其他底质上种植的海菜花均有所增加的情况下明显下降,其净光合速率明显低于其他底质上种植的海菜花,单位面积的活性反应中心数量显著降低。结合分析不同底质的理化性质,在种植初期红壤呈酸性可能是导致海菜花叶片光合能力低的原因,之后红壤长期处于厌氧环境使得土壤pH升高后光合能力恢复正常,但其叶片的长度在短期内未有明显增加,表明其光合产物的累积受到了影响;而湖沙上种植的海菜花后期光合能力减弱可能是由于后期水体中养分耗尽导致的。因此,在回植海菜花过程中,可直接利用富营养化湖泊中的底泥,养分含量丰富的底泥不会成为其生长的限制因素,而酸性土壤可能还会限制其生长。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号