首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Steady-state rates of potassium ion and sodium ion absorption by excised barley roots accompanied by various anions were compared with the rates of anion absorption and the concomitant H+ and base release by the roots. The cation absorption rates were found to be independent of the identities, concentrations, and rates of absorption of the anions of the external solution, including bicarbonate. Absorption of the anion of the salt plus bicarbonate could not account for the cation absorption. H+ is released during cation absorption and base during anion absorption. The magnitude by which one or the other predominates depends on the relative rates of anion and cation absorption under various conditions of pH, cation and anion concentration, and inhibitor concentrations. The conclusion is that potassium and sodium ions are absorbed independently of the anions of the absorption solution in exchange for H+, while anions are exchanged for a base. The H+ release reflects a specificity between K+ and Na+ absorption such that it appears to be H+ exchanged in the specific rate-limiting reactions of the cation absorption.  相似文献   

2.
In this paper it is demonstrated that cross-correlated time modulation of isotropic chemical shifts (`conformational exchange') leads to differential relaxation of double- and zero-quantum coherences, respectively. Quantitative information can be obtained from the time dependence of the interconversion between the two two-spin coherences 2IxSx and 2IySy, induced by the differential relaxation. The effect is illustrated with an application to 13C,15N-labeled quail CRP2(LIM2), by studying 15N-1HN multiple-quantum relaxation. Significant cross-correlated fluctuations of isotropic chemical shifts were observed for residues which are part of a disordered loop region connecting two -strands in CRP2(LIM2). Differential 1HN and 15N exchange contributions to multiple-quantum relaxation observed at these sites illustrate the complex interplay between hydrogen bonding events and conformational reorientations in proteins.  相似文献   

3.
Simultaneous curve fitting for the ionization parameters of oxidized and reduced horse heart cytochrome c in 0.15M KCl and 20°C yields values for the ionization constants (as pK′) and the heats of ionization (ΔHi) which can reconstruct either the potentiometric or thermal titration curves. Reduced cytochrome c requires 8 sets of groups, whereas oxidized cytochrome c requires 10 sets of groups. The additional groups in the oxidized preparation appear to involve the ferriheme (pK′, 9.25; ΔHi, 13.7 kcal/mol) and a tyrosine (pK′ ? 10.24) that is not present in the reduced form. The potentiometric and thermal difference curves (reduced – oxidized) involve the appearance of 17 kcal/mol centered at pH 9.7 and 5.8 kcal/mol centered at pH 4.9. The carboxyl groups in both species appear to be normal for the hydrogen-bonded form. Only one histidine has normal ionization properties (pK′, 6.7; ΔHi, 7.5 kcal/mol), as do 17 of the lysine residues (pK′, 10.8; ΔHi, 11.5 kcal/mol).  相似文献   

4.
Polyhistidine-carboxylic acid systems are studied by ir spectroscopy. It is shown that OH ?N ? O?…H+N bonds formed between carboxylic groups and histidine residues are easily polarizable proton-transfer hydrogen bonds when the pKa of the protonated histidine residues is about 2.8 units larger than that of the carboxylic groups. From these results it bis concluded that OH ?N ? O? ?H+N bonds between glutamic or aspartic acid histidine residues in proteins may be easily polarizable proton-transfer bonds. Furthermore, it is demonstrated that water molecules shift the proton-transfer equilibria in these hydrogen bonds in favor of the polar structure, i.e., due to water or polar environments OH ?N ? O? ?H+N bonds with smaller ΔpKa values become easily polarizable proton-transfer hydrogen bonds. A consideration of the amide bands of polyhistidine shows that it can be present in five different conformations. It is shown that these conformational changes are strongly related to the degree of proton transfer. Hence, the degree of proton transfer, the degree of hydration, and conformation are not independent of each other, but are strongly coupled. Further proof for the interdependence of proton transfer and conformational changes are hysteresis effects, which are observed with studies of polyhistidine dependent on carboxylic acid, adsorption and desorption. OH ?N ? O? ?H+N bonds between aspartic and glutamic acid and histidine residues are present in hemoglobin, in ribonucleases, and in proteases, whereby this type of bond is preferentially found in the active centers of these enzymes. It is pointed out that hydrogen bonds with such interaction properties should be of great significance for structure and especially functions of proteins in which they are present.  相似文献   

5.
There are five oxidation-reduction states of horseradish peroxidase which are interconvertible. These states are ferrous, ferric, Compound II (ferryl), Compound I (primary compound of peroxidase and H2O2), and Compound III (oxy-ferrous). The presence of heme-linked ionization groups was confirmed in the ferrous enzyme by spectrophotometric and pH stat titration experiments. The values of pK were 5.87 for isoenzyme A and 7.17 for isoenzymes (B + C). The proton was released when the ferrous enzyme was oxidized to the ferric enzyme while the uptake of the proton occurred when the ferrous enzyme reacted with oxygen to form Compound III. The results could be explained by assuming that the heme-linked ionization group is in the vicinity of the sixth ligand and forms a stable hydrogen bond with the ligand.The measurements of uptake and release of protons in various reactions also yielded the following stoichiometries: Ferric peroxidase + H2O2 → Compound I, Compound I + e? + H+ → Compound II, Compound II + e? + H+ → ferric peroxidase, Compound II + H2O2 → Compound III, Compound III + 3e? + 3H+ → ferric peroxidase.Based on the above stoichiometries and assuming the interaction between the sixth ligand and heme-linked ionization group of the protein, it was possible to picture simple models showing structural relations between five oxidation-reduction states of peroxidase. Tentative formulae are as follows: [Pr·Po·Fe-(II) $?PrH+·Po·Fe(II)] is for the ferrous enzyme, Pr·Po·Fe(III)OH2 for the ferric one, Pr·Po·Fe(IV)OH? for Compound II, Pr(OH?)·Po+·Fe(IV)OH? for Compound I, and PrH+·Po·Fe(III)O2? for Compound III, in which Pr stands for protein and Po for porphyrin. And by Fe(IV)OH?, for instance, is meant that OH? is coordinated at the sixth position of the heme iron and the formal oxidation state of the iron is four.  相似文献   

6.
An experiment is presented which allows for the quantitative measurement of the relaxation interference between the 1HN CSA and 15N CSA interactions in 15N labeled proteins. A constant-time buildup scheme is used to measure the differential relaxation rate, , between double-quantum (DQ) and zero-quantum (ZQ) 1HN-15N coherences. The CSA/CSA experiment was recorded at three different Bo field strengths. The CSA(1HN)/CSA(15N) cross-correlation rate was obtained from the linear fit of the measured rate, , versus Bo 2 for 77 residues of the EH2 domain from mouse Eps15.  相似文献   

7.
Proton binding equilibria (pKa values) of ionizable groups in proteins are exquisitely sensitive to their microenvironments. Apparent pKa values measured for individual ionizable residues with NMR spectroscopy are actually population‐weighted averages of the pKa in different conformational microstates. NMR spectroscopy experiments with staphylococcal nuclease were used to test the hypothesis that pKa values of surface Glu and Asp residues are affected by pH‐sensitive fluctuations of the backbone between folded and locally unfolded conformations. 15N spin relaxation studies showed that as the pH decreases from the neutral into the acidic range the amplitudes of backbone fluctuations in the ps‐ns timescale increase near carboxylic residues. Hydrogen exchange experiments suggested that backbone conformational fluctuations promoted by decreasing pH also reflect slower local or sub‐global unfolding near carboxylic groups. This study has implications for structure‐based pKa calculations: (1) The timescale of the backbone's response to ionization events in proteins can range from ps to ms, and even longer; (2) pH‐sensitive fluctuations of the backbone can be localized to both the segment the ionizable residue is attached to or the one that occludes the ionizable group; (3) Structural perturbations are not necessarily propagated through Coulomb interactions; instead, local fluctuations appear to be coupled through the co‐operativity inherent to elements of secondary structure and to networks of hydrogen bonds. These results are consistent with the idea that local conformational fluctuations and stabilities are important determinants of apparent pKa values of ionizable residues in proteins. Proteins 2014; 82:3132–3143. © 2014 Wiley Periodicals, Inc.  相似文献   

8.
The protein BBL undergoes structural transitions and acid denaturation between pH 1.2 and 8.0. Using NMR spectroscopy, we measured the pKa values of all the carboxylic residues in this pH range. We employed 13C direct-detection two-dimensional IPAP (in-phase antiphase) CACO NMR spectroscopy to monitor the ionization state of different carboxylic groups and demonstrated its advantages over other NMR techniques in measuring pKa values of carboxylic residues. The two residues Glu161 and Asp162 had significantly lowered pKa values, showing that these residues are involved in a network of stabilizing electrostatic interactions, as is His166. The other carboxylates had unperturbed values. The pH dependence of the free energy of denaturation was described quantitatively by the ionizations of those three residues of perturbed pKa, and, using thermodynamic cycles, we could calculate their pKas in the native and denatured states as well as the equilibrium constants for denaturation of the different protonation states. We also measured 13Cα chemical shifts of individual residues as a function of pH. These shifts sense structural transitions rather than ionizations, and they titrated with pH consistent with the change in equilibrium constant for denaturation. Kinetic measurements of the folding of BBL E161Q indicated that, at pH 7, the stabilizing interactions with Glu161 are formed mainly in the transition state. We also found that local interactions still exist in the acid-denatured state of BBL, which attenuate somewhat the flexibility of the acid-denatured state.  相似文献   

9.
Carr-Purcell-Meiboom-Gill (CPMG) relaxation dispersion NMR experiments are extremely powerful for characterizing millisecond time-scale conformational exchange processes in biomolecules. A large number of such CPMG experiments have now emerged for measuring protein backbone chemical shifts of sparsely populated (>0.5%), excited state conformers that cannot be directly detected in NMR spectra and that are invisible to most other biophysical methods as well. A notable deficiency is, however, the absence of CPMG experiments for measurement of 1Hα and 13Cα chemical shifts of glycine residues in the excited state that reflects the fact that in this case the 1Hα, 13Cα spins form a three-spin system that is more complex than the AX 1Hα13Cα spin systems in the other amino acids. Here pulse sequences for recording 1Hα and 13Cα CPMG relaxation dispersion profiles derived from glycine residues are presented that provide information from which 1Hα, 13Cα chemical shifts can be obtained. The utility of these experiments is demonstrated by an application to a mutant of T4 lysozyme that undergoes a millisecond time-scale exchange process facilitating the binding of hydrophobic ligands to an internal cavity in the protein.  相似文献   

10.
NMR titration curves have been recorded for all the 13C resonances of cis and transN-acetyl-dl-proline in 2H2O. the measured pK2H values are 3.4 ± 0.8 and 4.13 ± 0.08 respectively; the free energy of ionization for the trans isomer being (3.8 kJ/mole) greater than for the cis. The ionization shifts of the two isomers differ significantly only at the acetyl carbonyl and Cγ positions. It is suggested that these are related to conformational changes which stabilize the trans form at low p2H.  相似文献   

11.
Cellulases are of economic significance, particularly in the detergent and textile industries, where they are subjected to a wide range of operating conditions affecting their stability. To increase our insight into the properties of this class of enzymes, we have carried out a study of the stability and folding behavior of the 413-residue endoglucanase I (Ce17B) from Humicola insolens. Data from chemical denaturation in guanidinium chloride agree satisfactorily with calorimetric measurements, revealing an optimum stability of ca. 20 kcal mol?1 around pH 7 and a peak half-width of 3 -4 pH units. Stability and activity show very similar pH-profiles, but this is probably fortuitous. Judging from equilibrium m-values (the dependence of the log of the equilibrium unfolding constant on the denaturant concentration), the denatured state becomes significantly more compact outside pH 6–9.

Folding and unfolding proceed very slowly with relaxation half times up to 6h. Single- and double-jump kinetic data at pH 7 suggest a folding scheme involving two intermediates with native-like secondary structure but varying degrees of tertiary structure.  相似文献   

12.
In this article we propose a model of spin-vibronic relaxation in K6[VIV15As6O42(H2O)]·8H2O, the so called V15 cluster exhibiting the unique layered structure. The work is motivated by the recent observation of the Rabi oscillation [1] in this system and aimed to elucidate the nature of the relaxation processes. The model assumes that the spin-phonon coupling arises as a result of modulation of the isotropic and antisymmetric (Dzyaloshinsky-Moriya) exchange interactions in the central triangular layer of vanadium ions by the acoustic lattice vibrations. Within the pseudo-angular momentum representation the selection rules for the direct (one-phonon) transitions between Zeeman levels are derived and a special role of the antisymmetric exchange is underlined. The relaxation times related to one-phonon transitions in different ranges of the field are estimated within the Debye model for the lattice vibrations.  相似文献   

13.
The molecular characteristics of thiamin (T) transport were studied in the small intestinal and renal brush border membrane vesicles of rats, using [3H]T at high specific activity. The effects of various chemical modifiers (amino acid blockers) on T uptake were examined and their specificity assessed. Treatment with the carboxylic specific blockers 1-cyclohexyl-3-(2-morpholinoethyl) carbodiimide metho-p-toluene sulfonate, (1-ethyl-3-[3-(dimethylamino)propyl]-carbodiimide hydrochloride and N-ethyl-5-phenylisoaxolium-3′-sulfonate (Woodward’s Reagent K) and with the sulfhydryl specific blocker p-chloromercuribenzene sulfonate inhibited T transport in both types of vesicles. Phenylglyoxal, but not ninhydrin, both reagents for arginine residues, and diethylpyrocarbonate, a reagent for histidine residues, specifically decreased T transport only in renal and small intestinal vesicles respectively. Similarly 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole reacted, but not N-acetylimidazole, both of which are reagents for tyrosine residues. However, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole inhibition was aspecific. Acetylsalicylic acid, a reagent for lysine and serine residues, decreased T transport, but the lysine effect was aspecific. Acetylsalicylic acid serine blockage also eliminated T/H+ exchange in small intestinal vesicles. Taken together, these results suggest that for T transport carboxylic and sulfhydryl groups and serine residues are essential in both renal and small intestinal brush border membrane vesicles. In addition, arginine and histidine residues are also essential respectively for renal and small intestinal transporters. Serine was essential for the T/H+ antiport mechanism.  相似文献   

14.
NMR titration curves have been recorded for all the 13C resonances of cis and transN-acetyl-dl-proline in 2H2O. the measured pK2H values are 3.4 ± 0.8 and 4.13 ± 0.08 respectively; the free energy of ionization for the trans isomer being (3.8 kJ/mole) greater than for the cis. The ionization shifts of the two isomers differ significantly only at the acetyl carbonyl and Cγ positions. It is suggested that these are related to conformational changes which stabilize the trans form at low p2H.  相似文献   

15.
The dynamic behavior of the polypeptide backbone of a recombinant anti-digoxin antibody VL domain has been characterized by measurements of 15N T1 and T2 relaxation times, 1H–15N NOE values, and 1H–2H exchange rates. These data were acquired with 2D inverse detected heteronuclear 1H–15N NMR methods. The relaxation data are interpreted in terms of model free spectral density functions and exchange contributions to transverse relaxation rates R2 (= 1/T2). All characterized residues display low-amplitude picosecond timescale librational motions. Fifteen residues undergo conformational changes on the nanosecond timescale, and 24 residues have significant R2 exchange contributions, which reflect motions on the microsecond to millisecond timescale. For several residues, microsecond to millisecond motions of nearby aromatic rings are postulated to account for some or all of their observed R2 exchange contributions. The measured 1H–2H exchange rates are correlated with hydrogen bonding patterns and distances from the solvent accessible surface. The degree of local flexibility indicated by the NMR measurements is compared to crystallographic B-factors derived from X-ray analyses of the native Fab and the Fab/digoxin complex. In general, both the NMR and X-ray data indicate enhanced flexibility in the turns, hypervariable loops, and portions of β-strands A, B, and G. However, on a residue-specific level, correlations among the various NMR data, and between the NMR and X-ray data, are often absent. This is attributed to the different dynamic processes and environments that influence the various observables. The combined data indicate that certain regions of the VL domain, including the three hypervariable loops, undergo dynamic changes upon VL:VH association and/ or complexation with digoxin. Overall, the 26–10 VL domain exhibits relatively low flexibility on the ps–ns timescale. The possible functional consequences of this result are considered. © 1993 Wiley-Liss, Inc.  相似文献   

16.
A phenylthiophenyl-bearing Ru(II) complex of [Ru(bpy)2(Hbptip)](PF6)2 {bpy?=?2,2′-bipyridine, Hbptip?=?2-(4-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline} was synthesized and characterized by elemental analysis, 1H NMR spectroscopy, and electrospray ionization mass spectrometry. The ground- and excited-state acid–base properties of the complex were studied by UV–visible absorption and photoluminescence spectrophotometric pH titrations and the negative logarithm values of the ground-state acid ionization constants were derived to be pK a1?=?1.31?±?0.09 and pK a2?=?5.71?±?0.11 with the pK a2 associated deprotonation/protonation process occurring over 3 pK a units more acidic than thiophenyl-free parent complex of [Ru(bpy)2(Hpip)]2+ {Hpip?=?2-phenyl-1H-imidazo[4,5-f][1,10]phenanthroline}. The calf thymus DNA-binding properties of [Ru(bpy)2(Hbptip)]2+ in Tris–HCl buffer (pH 7.1 and 50?mM NaCl) were investigated by DNA viscosities and density functional theoretical calculations as well as UV–visible and emission spectroscopy techniques of UV–visible and luminescence titrations, steady-state emission quenching by [Fe(CN)6]4?, DNA competitive binding with ethidium bromide, DNA melting experiments, and reverse salt effects. The complex was evidenced to bind to the DNA intercalatively with binding affinity being greater than those for previously reported analogs of [Ru(bpy)2(Hip)]2+, [Ru(bpy)2(Htip)]2+, and [Ru(bpy)2(Haptip)]2+ {Hip?=?1H-imidazo[4,5-f][1,10]phenanthroline, Htip?=?2-thiophenimidazo[4,5-f][1,10]phenanthroline, Haptip?=?2-(5-phenylthiophen-2-yl)-1H-imidazo[4,5-f][1,10]phenanthroline}.  相似文献   

17.
Homodimeric H+-pyrophosphatase (H+-PPase; EC 3.6.1.1) is a unique enzyme playing a pivotal physiological role in pH homeostasis of organisms. This novel H+-PPase supplies energy at the expense of hydrolyzing metabolic byproduct, pyrophosphate (PPi), for H+ translocation across membrane. The functional unit for the translocation is considered to be a homodimer. Its putative active site on each subunit consists of PPi binding motif, Acidic I and II motifs, and several essential residues. In this investigation structural mapping of these vital regions was primarily determined utilizing single molecule fluorescence resonance energy transfer. Distances between two C termini and also two N termini on homodimeric subunits of H+-PPase are 49.3 ± 4.0 and 67.2 ± 5.7 Å, respectively. Furthermore, putative PPi binding motifs on individual subunits are found to be relatively far away from each other (70.8 ± 4.8 Å), whereas binding of potassium and substrate analogue led them to closer proximity. Moreover, substrate analogue but not potassium elicits significant distance variations between two Acidic I motifs and two His-622 residues on homodimeric subunits. Taken together, this study provides the first quantitative measurements of distances between various essential motifs, residues, and putative active sites on homodimeric subunits of H+-PPase. A working model is accordingly proposed elucidating the distance variations of dimeric H+-PPase upon substrate binding.  相似文献   

18.
p-Hydroxyphenylglyoxal reacts with arginine residues in proteins to give a single product which can be quantitated spectrophotometrically. The reaction takes place under mild conditions, pH 7–9 and 25°C. Under these conditions up to complete modification of Nα-citraconyl-l-arginine was obtained within 60 min with less than 5% modification of other common amino acid side chains. The extent of modification in a protein can be determined at 340 nm using the molar absorption coefficient of 1.83 × 104m?1 cm?1 for the product at pH 9.0 and 25°C following removal of excess reagent by gel filtration. Several proteins, previously shown to have essential arginines, were modified by p-hydroxyphenylglyoxal and the losses in arginines were determined spectrophotometrically. These results were in close agreement with those of previous investigators. Rhea ovomucoid, a glycoprotein without arginines but containing an essential lysine, was relatively unaffected.  相似文献   

19.
The acoustic absorption of protein solutions in the presence of phosphate and other buffering ions has been studied in the physiological pH range. Buffers containing hydroxyl residues as titratable groups cause a pronounced increase of protein sound absorption, which is attributed to relaxation processes of proton transfer reactions between buffer ions and accessible imidazole and -amino groups of the protein surface. Amino group based buffers like Good's buffers do not induce additional sound absorption. Measurement of the ultrasonic absorption as a function of pH and of buffer concentration, and corresponding parameter fitting of the equation describing proton transfer relaxation processes has been used to evaluate equilibrium parameters. For the imidazole group of the amino acid histidine a pK value of 6.22 and for the imidazole group of the protein lysozyme a pK value of 5.71 have been determined. In hemoglobin the ligand-linked pK changes have been monitored by recording ultrasonic titration curves.  相似文献   

20.
The nature of hydrogen bonds formed between carboxylic acid residues and histidine residues in proteins is studied by ir spectroscopy. Poly(glutamic acid) [(Glu)n] is investigated with various monomer N bases. The position of the proton transfer equilibrium OH…?N ? O?…?H+N is determined considering the bands of the carboxylic group. It is shown that largely symmetrical double minimum energy surfaces are present in the OH…?N ? O?…?H+N bonds when the pKa of the protonated N base is two values larger than that of the carboxylic groups of (Glu)n. Hence OH…?N ? O?…?H+N bonds between glutamic and aspartic acid residues and histidine residues in proteins may be easily polarizable proton transfer hydrogen bonds. The polarizability of these bonds is one to two orders of magnitude larger than usual electron polarizabilities; therefore, these bonds strongly interact with their environment. It is demonstrated that water molecules shift these proton transfer equilibria in favor of the polar proton boundary structure. The access of water molecules to such bonds in proteins and therefore the position of this proton transfer equilibrium is dependent on conformation. The amide bands show that (Glu)n is α-helical with all systems. The only exception is the (Glu)n-n-propylamine system. When this system is hydrated (Glu)n is α-helical, too. When it is dried, however, (Glu)n forms antiparallel β-structure. This conformational transition, dependent on degree of hydration, is reversible. An excess of n-propylamine has the same effect on conformation as hydration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号