首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
The cDNAs encoding two isoforms, S (slow) and F (fast), of alpha 1-antiproteinase (also referred to as alpha 1-antitrypsin or alpha 1-proteinase inhibitor) as well as contrapsin were obtained by screening lambda gt11 cDNA library prepared fro inflamed guinea pig liver. The sequence analyses of these cDNAs and NH2-terminal peptides of the purified proteins revealed that both isoforms of alpha 1-antiproteinase consist of 405 amino acid residues including a signal peptide of 24 residues and that contrapsin consists of 410 amino acid residues with the same length of the signal peptide. Guinea pig contrapsin had 89, 88, 62, 42, and 41% homology to its own alpha 1-antiproteinases F and S, rat alpha 1-antiproteinase, mouse and rat contrapsins, respectively. This suggests that guinea pig contrapsin is not orthologous to mouse and rat contrapsins and that it developed from a much later duplication of alpha 1-antiproteinase gene after the guinea pig had diverged from the murine lineage. The available data suggest that the reactive site region of alpha 1-antiproteinase can be categorized into orthodox and unorthodox types: the former has P3-P'3 consensus sequence of Xaa-Pro-Met-Ser-Xaa-Pro, where Xaa is Leu, Ile, Val, or Met, while the latter, which occurs in species having multiple alpha 1-antiproteinase isoforms, has the sequence whose P1 Met has changed to other amino acids. Thus, the reactive site region of the orthodox type, which occurs in all seven mammals examined to date, is highly conserved. This is in marked contrast to the fact that the same region is hypervariable among the paralogous proteins belonging to the serpin superfamily.  相似文献   

2.
Using a three-step procedure, we purified (79 and 51.6-fold to homogeneity) and characterized the two isoforms (a and b) of alpha1-proteinase inhibitor-like protein from carp seminal plasma. The isoforms have molecular masses of 55.5 and 54.0 kDa, respectively. These inhibitors formed SDS-stable complexes with cod and bovine trypsin, chymotrypsin and elastase. The thirty-three amino acids within the reactive loop SLPDTVILNRPFLVLIVEDTTKSILFMGKITNP were identified for isoform b. The same first ten amino acids were obtained for isoform a, and this sequence revealed 100% homology to carp alpha1-proteinase inhibitor (alpha1-PI) from perimeningeal fluid. Both isoforms of alpha1-PI are glycoproteins and their carbohydrate content was determined to be 12.6 and 12.1% for a and b, respectively. Our results indicated that alpha1-PI is one of the main proteins of carp seminal plasma. Using polyclonal anti-alpha1-PI antibodies, alpha1-PI was for the first time localized to the carp testis. The presence of alpha1-PI in testis lobules and in the area surrounding spermatides suggests that this inhibitor may be involved in the maintenance of testis connective tissue integrity, control of spermatogenesis or protection of tissue and spermatozoa against unwanted proteolysis. Since similar alpha1-PI has been identified in rainbow trout semen it can be suggested that the presence of alpha1-PI in seminal plasma is a common feature of cyprinid and salmonid fish.  相似文献   

3.
Rabbit liver cDNA coding for alpha-1-antiproteinase F has been isolated and sequenced. The protein sequence deduced from the nucleotide sequence consists of a 24 amino acid signal peptide and 389 amino acids of the mature polypeptide. Rabbit alpha-1-antiproteinase F showed 74 and 64% homology to human alpha-1-antiproteinase at the nucleotide and amino acid levels, respectively, but the N-terminal five amino acids are lacking in the rabbit protein. The sequences of alpha-1-antiproteinase F of rabbit, human, baboon, sheep, rat, and mouse show about 40% identity, and the reactive site (Met-Ser) is conserved. On the other hand, variable regions are located in the second half to the C-terminal as well as in the N-terminal region.  相似文献   

4.
Several clones encoding serine protease inhibitors were isolated from larval and adult flea cDNA expression libraries by immunoscreening and PCR amplification. Each cDNA contained an open reading frame encoding a protein of approximately 45 kDa, which had significant sequence similarity with the serpin family of serine protease inhibitors. The thirteen cDNA clones isolated to date encode serpin proteins, which share a primary structure that includes a nearly identical constant region of about 360 amino acids, followed by a C-terminal variable region of about 40-60 amino acids. The variable C-terminal sequences encode most of the reactive site loop (RSL) and are generated by mutually exclusive alternative exon splicing, which may confer unique protease selectivity to each serpin. Utilization of an alternative exon splicing mechanism has been verified by sequence analysis of a flea serpin genomic clone and adjacent genomic sequences. RNA expression patterns of the cloned genes have been examined by Northern blot analysis using variable region-specific probes. Several putative serpins have been overexpressed using the cDNA clones in Escherichia coli and baculovirus expression systems. Two purified baculovirus-expressed recombinant proteins have N-terminal amino acid sequences identical to the respective purified native mature flea serpins indicating that appropriate N-terminal processing occurred in the virus-infected insect cells.  相似文献   

5.
The serpin antithrombin is a slow thrombin inhibitor that requires heparin to enhance its reaction rate. In contrast, alpha1-proteinase inhibitor (alpha1PI) Pittsburgh (P1 Met --> Arg natural variant) inhibits thrombin 17 times faster than pentasaccharide heparin-activated antithrombin. We present here x-ray structures of free and S195A trypsin-bound alpha1PI Pittsburgh, which show that the reactive center loop (RCL) possesses a canonical conformation in the free serpin that does not change upon binding to S195A trypsin and that contacts the proteinase only between P2 and P2'. By inference from the structure of heparin cofactor II bound to S195A thrombin, this RCL conformation is also appropriate for binding to thrombin. Reaction rates of trypsin and thrombin with alpha1PI Pittsburgh and antithrombin and their P2 variants show that the low antithrombin-thrombin reaction rate results from the antithrombin RCL sequence at P2 and implies that, in solution, the antithrombin RCL must be in a similar canonical conformation to that found here for alpha1PI Pittsburgh, even in the nonheparin-activated state. This suggests a general, limited, canonical-like interaction between serpins and proteinases in their Michaelis complexes.  相似文献   

6.
Rabbit alpha-1-antiproteinases S and F were treated with trypsin, chymotrypsin, Staphylococcus aureus protease V8, and thermolysin, and the liberated peptides encompassing the reactive region of the respective inhibitors were separated and sequenced. The reactive center of the F form was methionine, and the residues from P3 to P'1 (Ile-Pro-Met-Ser) were the same as those of human alpha-1-antiproteinase. The S form, on the other hand, was found to be a mixture of two distinct proteins (S-1 and S-2), and their reactive centers (P1-P'1) were Ser-Ser and Tyr-Ser, respectively. Seven out of 17 amino acids in the F form and 7 out of 16 in the S-1 form were the same as the corresponding residues of human alpha-1-antiproteinase, while 5 of 10 residues in the S-2 form were the same as those of the human inhibitor. Ten out of 16 residues were the same between the F and the S-1 forms, whereas the sequence P1 to P'3 of the S-2 form (Tyr-Ser-Met-Pro) was the same as the corresponding residues of mouse alpha-1-antiproteinase.  相似文献   

7.
Trypsin inhibitor DE-3 from Erythrina latissima seeds contains 172 amino acids, including 4 half-cystine residues, and resembles the Kunitz-type inhibitors. Limited hydrolysis of DE-3 with trypsin at pH 3 produced two fragments, F1 and F2, containing 63 and 109 amino acids, respectively. Amino-terminal sequence studies revealed that F1 was the N-terminal and that F2 was the C-terminal fragment. The complete amino acid sequence of fragments F1 and F2 was then determined on peptides produced by enzymatic digestion with trypsin and Staphylococcus aureus V8 protease. The sequence of trypsin inhibitor DE-3 from E. latissima seeds shows a high degree of homology to those of Kunitz-type trypsin inhibitors from soybeans and winged bean seeds.  相似文献   

8.
Peterson FC  Gordon NC  Gettins PG 《Biochemistry》2000,39(39):11884-11892
A structural understanding of the nature and scope of serpin inhibition mechanisms has been limited by the inability so far to crystallize any serpin-proteinase complex. We describe here the application of [(1)H-(15)N]-HSQC NMR on uniformly and residue-selectively (15)N-labeled serpin alpha(1)-proteinase inhibitor (Pittsburgh variant with stabilizing mutations) to provide a nonperturbing and exquisitely sensitive means of probing the conformation of the serpin alone and in a noncovalent complex with inactive, serine 195-modified, bovine trypsin. The latter should be a good model both for the few examples of reversible serpin-proteinase complexes and for the initial Michaelis-like complex formed en route to irreversible covalent inhibition. Cleavage of the reactive center loop, with subsequent insertion into beta-sheet A, caused dramatic perturbation of most of the NMR cross-peaks. This was true for both the uniformly labeled and alanine-specifically labeled samples. The spectra of uniformly or leucine- or alanine-specifically labeled alpha(1)-proteinase inhibitor in noncovalent complex with unlabeled inactive trypsin gave almost no detectable chemical shift changes of cross-peaks, but some general increase in line width. Residue-specific assignments of the four alanines in the reactive center loop, at P12, P11, P9, and P4, allowed specific examination of the behavior of the reactive center loop. All four alanines showed higher mobility than the body of the serpin, consistent with a flexible reactive center loop, which remained flexible even in the noncovalent complex with proteinase. The three alanines near the hinge point for insertion showed almost no chemical shift perturbation upon noncovalent complex formation, while the alanine at P4 was perturbed, presumably by interaction with the active site of bound trypsin. Reporters from both the body of the serpin and the reactive center loop therefore indicate that noncovalent complex formation involves no conformational change in the body of the serpin and only minor perturbation of the reactive center loop in the region which contacts proteinase. Thus, despite the large size of serpin and serpin-proteinase complex, 45 and 69 kDa respectively, NMR provides a very sensitive means of probing serpin conformation and mobility, which should be applicable both to noncovalent and to covalent complexes with a range of different proteinases, and probably to other serpins.  相似文献   

9.
Three protease inhibitors (OTI-1-3) have been purified from onion (Allium cepa L.) bulbs. Molecular masses of these inhibitors were found to be 7,370.2, 7,472.2, and 7,642.6 Da by matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS), respectively. Based on amino acid composition and N-terminal sequence, OTI-1 and -2 are the N-terminal truncated proteins of OTI-3. All the inhibitors are stable to heat and extreme pH. OTI-3 inhibited trypsin, chymotrypsin, and plasmin with dissociation constants of 1.3 x 10(-9) M, 2.3 x 10(-7) M, and 3.1 x 10(-7) M, respectively. The complete amino acid sequence of OTI-3 showed a significant homology to Bowman-Birk family inhibitors, and the first reactive site (P1) was found to be Arg17 by limited proteolysis by trypsin. The second reactive site (P1) was estimated to be Leu46, that may inhibit chymotrypsin. OTI-3 lacks an S-S bond near the second reactive site, resulting in a low affinity for the enzyme. The sequence of OTI-3 was also ascertained by the nucleotide sequence of a cDNA clone encoding a 101-residue precursor of the onion inhibitor.  相似文献   

10.
The plasma protein alpha 2-antiplasmin is the main physiological inhibitor of the serine protease plasmin, which is responsible for the dissolution of fibrin clots. We have determined the primary structure of mature human alpha 2-antiplasmin by DNA sequencing of overlapping cDNA fragments prepared from human liver mRNA. cDNA clones were identified by hybridization with a 48-base pair deoxyoligonucleotide probe deduced from the sequence of a 16-amino acid peptide of alpha 2-antiplasmin. Mature human alpha 2-antiplasmin contains 452 amino acids. It is homologous (23-28%) with five other proteins belonging to the serine protease inhibitor (serpin) superfamily. Its reactive site, i.e. the peptide bond cleaved by reaction with its primary target enzyme, plasmin, consists of Arg364-Met365. This dipeptide corresponds to the reactive site Met358-Ser359 of the archetypal serpin, alpha 1-antitrypsin.  相似文献   

11.
Proteinase inhibitors in the serpin family form complexes with serine proteinases by interactions between the gamma-OH group at serine 195 of the enzyme and a specific peptide bond within the reactive site loop of the inhibitor. However, the type of complex formed (i.e. Michaelis, acyl, or tetrahedral) is unknown. Until now, 13C NMR spectroscopy studies have only been useful in examining complexes formed with either peptide-related or small protein inhibitors, where 13C-labeled amino acids can be inserted semi-synthetically. Recombinant DNA technology has, however, made it possible to specifically enrich larger proteins with 13C. In the case of serpins we have examined the structure of the complex formed between human alpha 1-proteinase inhibitor uniformally labeled with [13C]methionine and porcine pancreatic elastase. 13C NMR spectroscopic studies revealed a large upfield chemical shift of the carbonyl signal of Met-358 upon complex formation suggesting for the first time that a tetrahedral adduct is formed between a serpin inhibitor and a serine proteinase.  相似文献   

12.
Peptides derived from the reactive centre loop of alpha1-antitrypsin, a serpin, were screened as potential elastase inhibitors by mass spectrometry. An octapeptide, MFLEAIPM, formed a 'stable' ternary complex with porcine elastase: one MFLEAIPM molecule reacted covalently with loss of water, whilst an additional peptide was bound non-covalently. Kinetic analyses suggested that MFLEAIPM may act as an uncompetitive inhibitor and that the activity was associated with the four N-terminal residues.  相似文献   

13.
A cDNA containing the complete amino acid-coding region of wound-induced tomato Inhibitor II was constructed in the plasmid pUC9. The open reading frame codes for 148 amino acids including a 25-amino acid signal sequence preceding the N-terminal lysine of the mature Inhibitor II. The Inhibitor II sequence exhibits two domains, one domain having a trypsin inhibitory site and the other a chymotrypsin inhibitory site, apparently evolved from a smaller gene by a process of gene duplication and elongation. The amino acid sequence of tomato leaf Inhibitor II exhibits homology with two small proteinase inhibitors isolated from potato tuber and an inhibitor from eggplant. The small potato tuber inhibitors are homologous with 33 amino acids of the N-terminal domain and 19 amino acids from the C-terminal domain. Two identical nucleotide sequences of Inhibitor II cDNA in the 3' noncoding region were present that were also found in an Inhibitor I cDNA. These include an atypical polyadenylation signal, AATAAG, and a 10-base palindromic sequence, CATTATAATG, for which no function is yet known.  相似文献   

14.
Five protease inhibitors, I--V, in the molecular weight range 7000--8000 were purified from Tracy soybeans by ammonium sulfate precipitation, gel filtration on Sephadex G-100 and G-75, and column chromatography on DEAE-cellulose. In common with previously described trypsin inhibitors from legumes, I--V have a high content of half-cystine and lack tryptophan. By contrast with other legume inhibitors, inhibitor II contains 3 methionine residues. Isoelectric points range from 6.2 to 4.2 in order from inhibitor I to V. Molar ratios (inhibitor/enzyme) for 50% trypsin inhibition are I = 4.76, II = 1.32, III = 3.22, IV = 2.17, V = 0.97. Only V inhibit chymotrypsin significantly (molar ratio = 1.33 for 50% inhibition). The sequence of the first 16 N-terminal amino acid residued of inhibitor V is identical to that of the Bowman-Birk inhibitor; all other observations also indicate that inhibitor V and Bowman-Birk are identical. The first 20 N-terminal amino acid residues of inhibitor II show high homology to those of Bowman-Birk inhibitor, differing by 1 deletion and 5 substitutions. Immunological tests show that inhibitors I through IV are fully cross-reactive with each other but are distinct from inhibitor V.  相似文献   

15.
The Kunitz-type trypsin inhibitors, ETIa and ETIb, and chymotrypsin inhibitor ECI were isolated from the seeds of Erythrina variegata. The proteins were extracted from a defatted meal of seeds with 10 mM phosphate buffer, pH 7.2, containing 0.15 M NaCl, and purified by DEAE-cellulose and Q-Sepharose column chromatographies. The stoichiometry of trypsin inhibitors with trypsin was estimated to be 1:1, while that of chymotrypsin inhibitor with chymotrypsin was 1:2, judging from the titration patterns of their inhibitory activities. The complete amino acids of the two trypsin inhibitors were sequenced by protein chemical methods. The proteins ETIa and ETIb consist of 172 and 176 amino acid residues and have M(r) 19,242 and M(r) 19,783, respectively, and share 112 identical amino acid residues, which is 65% identity. They show structural features characteristic of the Kunitz-type trypsin inhibitor (i.e., identical residues at about 45% with soybean trypsin inhibitor STI). Furthermore, the trypsin inhibitors show a significant homology to the storage proteins, sporamin, in sweet potato and the taste-modifying protein, miraculin, in miracle fruit, having about 30% identical residues.  相似文献   

16.
An Apios americana trypsin inhibitor, AATI, was purified from Apios tubers by chromatography on DEAE Cellulofine A-500 and Sephadex G-50. The molecular mass of AATI was determined to be 6,437 Da by matrix-assisted laser desorption and ionization time-of-flight mass spectrometer (MALDI-TOF-MS). It showed strong inhibitory activity toward serine proteases, and the inhibition constants toward trypsin and chymotrypsin were 3.0 x 10(-9) M and 1.0 x 10(-6) M respectively. The inhibitory activity was not affected by heating at 80 degrees C for 2 h or by incubation at a wide range of pH values, suggesting that AATI has remarkable heat-stability and pH-stability. AATI cDNA consists of 552 nucleotides, and includes an open reading frame encoding a protein of 116 amino acids. The results of N-terminal amino acid sequencing of AATI and MALDI-TOF-MS analysis suggested that the deduced amino acid sequence had 50 and seven extra amino acids at the N- and C-termini respectively. Thus the mature AATI protein consists of 59 amino acid residues. Comparison of the amino acid sequence with those of the trypsin inhibitors from plants suggests that AATI belongs to the Bowman-Birk family and that it contains two possible reactive sites toward trypsin at Lys62 and Arg88.  相似文献   

17.
Most proteinase inhibitors from plant seeds are assumed to contribute to broad-spectrum protection against pests and pathogens. In oat (Avena sativa L.) grain the main serine proteinase inhibitors were found to be serpins, which utilize a unique mechanism of irreversible inhibition. Four distinct inhibitors of the serpin superfamily were detected by native PAGE as major seed albumins and purified by thiophilic adsorption and anion exchange chromatography. The four serpins OSZa-d are the first proteinase inhibitors characterized from this cereal. An amino acid sequence close to the blocked N-terminus, a reactive centre loop sequence, and the second order association rate constant (ka') for irreversible complex formation with pancreas serine proteinases at 24 degrees C were determined for each inhibitor. OSZa and OSZb, both with the reactive centre scissile bond P1-P1' Thr downward arrow Ser, were efficient inhibitors of pancreas elastase (ka' > 105M-1 s-1). Only OSZb was also an inhibitor of chymotrypsin at the same site (ka' = 0.9 x 105M-1 s-1). OSZc was a fast inhibitor of trypsin at P1-P1' Arg downward arrow Ser (ka' = 4 x 106M-1 s-1); however, the OSZc-trypsin complex was short-lived with a first order dissociation rate constant kd = 1.4 x 10-4 s-1. OSZc was also an inhibitor of chymotrypsin (ka' > 106M-1 s-1), presumably at the overlapping site P2-P1 Ala downward arrow Arg, but > 90% of the serpin was cleaved as substrate. OSZd was cleaved by chymotrypsin at the putative reactive centre bond P1-P1' Tyr downward arrow Ser, and no inhibition was detected. Together the oat grain serpins have a broader inhibitory specificity against digestive serine proteinases than represented by the major serpins of wheat, rye or barley grain. Presumably the serpins compensate for the low content of reversible inhibitors of serine proteinases in oats in protection of the grain against pests or pathogens.  相似文献   

18.
The primary structure of a 61-amino-acid residue peptide from the pancreas of the European eel (Anguilla anguilla) has been established as E E K S G(5)L Y R K P(10)S C G E M(15)S A M H A(20)C P M N F(25)A P V C G(30)T D G N T(35)Y P N E C(40)S L C F Q(45)R Q N T K(50)T D I L I(55)T K D D R(60)C. There was no indication of microheterogeneity. This peptide shows structural similarity to pancreatic secretory trypsin inhibitors from several mammalian species and to a cholecystokinin-releasing peptide isolated from rat pancreatic juice. A comparison of the amino acid sequences of the peptides has identified a domain in the central region of the molecules that has been strongly conserved during evolution. In contrast, the amino acid sequence in the region corresponding to the reactive centre of the mammalian trypsin inhibitors is very poorly conserved in the eel peptide. The P1-P1' reactive site lysine-isoleucine (or arginine-isoleucine) bond in the mammalian trypsin inhibitors is replaced by a methionine-asparagine bond. This region does, however, show limited homology to the reactive centre of human alpha 1-protease inhibitor suggesting that the eel peptide may function as an inhibitor of other proteolytic enzymes in the pancreas.  相似文献   

19.
The primary structure of the broad specificity proteinase inhibitor from dog submandibular glands was elucidated. The inhibitor consists of a single polypeptide chain of 117 amino acids which is folded into two domains (heads) connected by a peptide of three amino acid residues. Both domains I and II show a clear structural homology to each other as well as to the single-headed pancreatic secretory trypsin inhibitors (Kazal type). The trypsin reactive site (-Cys-Pro-Arg-Leu-His-Glx-Pro-Ile-Cys-) is located in domain I and the chymotrypsin reactive center (-Cys-Thr-Met-Asp-Tyr-Asx-Arg-Pro-Leu-Tyr-Cys-) in domain II, cf. the Figure. The inhibitor is thus double-headed with two independent reactive sites. Whereas head I is responsible for the inhibition of trypsin and plasmin, head II is responsible for the inhibition of chymotrypsin, subtilisin, elastase and probably also Aspergillus oryzae protease and pronase. Remarkably, the structural homology exists also to the single-headed acrosin-trypsin inhibitors from seminal plasma[12] and the Japanese quail inhibitor composed of three domains[13].  相似文献   

20.
Kallistatin is a serine proteinase inhibitor (serpin) that specifically inhibits tissue kallikrein. The inhibitory activity of kallistatin is abolished upon heparin binding. The loop between the H helix and C2 sheet of kallistatin containing clusters of basic amino acid residues has been identified as a heparin-binding site. In this study, we investigated the role of the basic residues in this region in tissue kallikrein inhibition. Kallistatin mutants containing double Ala substitutions for these basic residues displayed a 70-80% reduction of association rate constants, indicating the importance of these basic residues in tissue kallikrein inhibition. A synthetic peptide derived from the sequence between the H helix and C2 sheet of kallistatin was shown to suppress the kallistatin-kallikrein interaction through competition for tissue kallikrein binding. To further evaluate the function of this loop, we used alpha1-antitrypsin, a non-heparin-binding serpin and slow tissue kallikrein inhibitor as a scaffold to engineer kallikrein inhibitors. An alpha1-antitrypsin chimera harboring the P3-P2' residues and a sequence homologous to the positively charged region between the H helix and C2 sheet of kallistatin acquired heparin-suppressed inhibitory activity toward tissue kallikrein and exhibited an inhibitory activity 20-fold higher than that of the other chimera, which contained only kallistatin's P3-P2' sequence, and 2300-fold higher than that of wild-type alpha1-antitrypsin. The alpha1-antitrypsin chimera with inhibitory characteristics similar to those of kallistatin demonstrates that the loop between the H helix and C2 sheet of kallistatin is crucial in tissue kallikrein inhibition, and this functional loop can be used as a module to enhance the inhibitory activity of a serpin toward tissue kallikrein. In conclusion, our results indicate that a positively charged loop between the H helix and C2 sheet of a serpin can accelerate the association of a serpin with tissue kallikrein by acting as a secondary binding site.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号