首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We evaluated in a double-blind study the bronchodilatory properties of 2-decarboxy-2-hydroxymethyl prostaglandin E1 (PGE1-carbinol), described recently as a nonirritant bronchodilator in animals. Fifteen asthmatic patients received by inhalation single doses of 1, 10, and 30 micrograms PGE1-carbinol, 55 micrograms PGE2, and placebo (10% ethanol in normal saline, which was also used as diluent for the PGs). Such pulmonary function tests as forced expiratory volume in 1 second, forced vital capacity, and maximal expiratory flow were monitored during 2 hours following inhalation of each compound. 10 and 30 micrograms PGE1-carbinol produced significant but short-acting bronchodilation, similar to that caused by 55 micrograms PGE2. One-third of the patients reported mild cough and throat irritation during and shortly after inhalation of 30 micrograms PGE1-carbinol or 55 micrograms PGE2. Placebo and 1 microgram PGE1-carbinol produced minimal side effects, but neither agent caused bronchodilation. In an adjunctive, unblinded trial, the same patients received 400 micrograms fenoterol. Fenoterol caused greater bronchodilation 15 and 30 minutes after inhalation than did the PGs in the double-blind study.  相似文献   

2.
The forced expiratory volume in one second (F.E.V.1) was measured in healthy and asthmatic volunteers and the inhalation of prostaglandin E1 (PGE1) was compared with that of isoprenaline, using metered aerosols.In healthy volunteers PGE1, either as the free acid or the neutral triethanolamine salt, did not affect the F.E.V.1; the free acid was irritant to the upper respiratory tract. In five out of six asthmatic volunteers with reversible airways obstruction, inhalation of 55 μg of PGE1 (triethanolamine salt) produced an increase in F.E.V.1 comparable in both degree and duration to that produced by an inhalation of 550 μg. of isoprenaline sulphate.Though the triethanolamine salt was well tolerated in most of the asthmatic subjects studied, in one asthmatic subject this preparation caused coughing and there was a progressive reduction in the F.E.V.1 associated with bronchospasm.  相似文献   

3.
The contracting and relaxing potencies of anf interactions between a number of prostaglandins (PGs) were studied in vitro on spiral strips of small canine mesenteric arteries (outside diameter < mm). PGF2α and PGE2, the most potent contracting PGs, were nearly equal in potency (EC50 4 × 10?7M) and did not cause relaxation under our experimental conditions. PGI2 and PGE1 were equal and the most potent relaxing PGs (EC50 3 × 10?9M). PGE1 also caused contraction, but this effect was not consistent. PGI2 did not cause contraction in concentrations up to 3 × 10?6M. In higher concentrations, however, it caused abrupt and near maximal contraction. PGD2 was weak in both respect, causing incomplete relaxation and contraction or biphasic effects. Interaction studies showed that PGE1 and PGI2 mutually excluded the relaxing effects of each other. PGE1 also reversed the relaxing effect of isoproterenol. However, pre-exposure to PGD2 did not attenuate the relaxing effect of PGE1 or PGI2 nor was the relaxing effect of PGD2 changed by pre-exposure to PGE1. Two different orders of potency of PGs suggest two PG receptors subserving contraction and relaxation, respectively. Further, it appears that several PGs can act upon both receptors which may explain unusual interactions between the PGs and some of their atypical effects. Finally, the data also suggest that there may be subtypes of the PG receptors subserving contraction and relaxation.  相似文献   

4.
Isolated bovine, canine, and human coronary arteries exhibited dose dependent contractions to prostaglandin (PG) E2 and F (50 ng/ml to 10 μg/ml). The ED50 value for both PGE2 and PGF was 500 ng/ml in the bovine and human coronary arteries. Paradoxically, although PGE2 and PGF are vasoconstrictors, administration of their precursor, arachidonate (100 ng/ml to 10 μg/ml) caused relaxation of the bovine, canine and human coronary arteries. This observation suggests that arachidonate is not being converted by the coronary PG synthetase to PGE2 or PGF. However, the arachidonate induced coronary relaxation was inhibited by pretreatment with PG synthetase inhibitors, indomethacin, meclofenemate and aspirin. Indomethacin addition to the strips previously relaxed by arachidonate caused contraction. In contrast to other PGs (E2 and F), PGE1 (10 ng/ml to 10 μg/ml) caused dose dependent relaxation of the bovine coronary arteries (ED50 = 100 ng/ml). Indomethacin induced further relaxation of the blood vessels previously relaxed by PGE1. Since PGE1 cannot arise from arachidonate, the arachidonate coronary dilation and reversal by indomethacin must be independent of PGE1 formation. Linolenate (100 ng/ml to 10 μg/ml) and oleate (100 ng/ml to 10 μg/ml) also caused relaxation of the bovine coronary blood vessels both before and after indomethacin, thereby eliminating a direct non-specific fatty acid effect as the cause of the arachidonate relaxation. These results suggest that in isolated coronaries, arachidonate undergoes a novel conversion, possibly by PG synthetase, to a dilating substance which exerts different contractile effects than exogenously administered PGE2, PGF and PGE1.This work was supported by (USPHS) training grants NS 05221, RCDA (P.N.) HL-19586, HL-11771A, HL-14397 and SCOR grant HL-17646, HL-17646-0.  相似文献   

5.
To determine the influence of prostaglandins on cAMP metabolism in renal papillary collecting tubule (RPCT) cells, intracellular cAMP levels were measured after incubating cells with prostaglandins (PGs) alone or in combination with arginine vasopressin (AVP). PGE1, PGE2 and PGI2, but not PGD2 or PGF, increased intracellular cAMP concentrations. At maximal concentrations (10−5 tthe effects of PGE2 plus PGI2 (or PGE1), but not of PGI2 plus PGE1, were additive suggesting that at least two different PG receptors may be present in RPCT cell populations. Bradykinin treatment of RPCT cells caused an accumulation of intracellular cAMP which was blocked by aspirin and was quantitatively similar to that observed with 10−5 PGE2. PGs, when tested at concentrations (e.g. 10−9 ) which had no independent effect on intracellular cAMP levels, did not inhibit the AVP-induced accumulation of intracellular cAMP in RPCT cells. These results indicate that PGs do not block AVP-induced accumulation of intracellular cAMP in RPCT cells at concentrations of PGs which have been shown to inhibit the hydroosmatic effect of AVP on perfused collecting tubule segments. However, at higher concentrations of PGs (e.g. 10−5 ), the effects of AVP plus PGE1, PGE2, PGI2 or bradykinin on intracellular cAMP levels were not additive. Thus, under certain conditions, there is an interaction between PGs and AVP at the level of cAMP metabolism in RPCT cells.  相似文献   

6.
Intracerebroventricular administration of PGI2 or PGE2 reduced aconitine-induced cardiac arrhythmia in rats. PGF had no antiarrhythmic effect under the same conditions. The ED50 values of PGI2 and E2 were 0.25 μg/kg and 1.1 μg/kg, respectively. Central mechanisms may participate in the antiarrhythmic effect of these PGs.  相似文献   

7.
The effects of prostaglandins E2 (PGE2), I2 (PGI2) and F2α (PGF2α), arachidonic acid and indomethacin on pressor responses to norepinephrine were examined in conscious rats. Intravenously infused PGE2 (0.3, 1.25 μg/kg/min), PGI2 (50, 100 ng/kg/min), PGF2α (1.8, 5.4 μg/kg/min) and arachidonic acid (0.7, 1.4 mg/kg/min) did not change the basal blood pressure. Both PGE2 and PGI2 significantly attenuated pressor responses to norepinephrine, whereas PGF2α significantly potentiated them. Arachidonic acid, a precursor of the prostaglandins (PGs), significantly attenuated pressor responses to norepinephrine. Since the attenuating effect of arachidonic acid was completely abolished by the pretreatment with indomethacin (5 mg/kg), arachidonic acid is thought to exert an effect through its conversion to PGs. On the contrary, intravenously injected indomethacin (0.2–5.0 mg/kg) facilitated pressor responses to norepinephrine in a dose-related manner without any direct effect on the basal blood pressure. These results suggest that endogenous PGs may participate in the regulation of blood pressure by modulating pressor responses to norepinephrine in conscious rats.  相似文献   

8.
The ability of various prostaglandins (PGs) to affect the in vitro anamnestic immune response of keyhole limpet hemocyanin (KLH)-primed rabbit popliteal lymph node cells was investigated. Of the four PGs studied (PGA1, PGE2 and PGF), PGE1 was found to have a stimulatory effect, whereas PGA1, PGE2 and PGF were ineffective in stimulating or inhibiting the in vitro anamnestic response. Under the conditions studied, a 3.5-fold increase in antibody production was obtained in PGE1-treated, KLH-stimulated cultures. Maximum enhancement was obtained when 0.2 μg of PGE1 were added at the time of culture initiation and were allowed to remain in contact with the lymph node cells for 24 hours.  相似文献   

9.
Experiments were carried out in healthy male volunteers to investigate the effect of the inhalation of prostaglandin F2α (PGF2α) on airways resistance and the influence of the subsequent inhalation of prostaglandin E2 (PGE2). Airways resistance, which reflects the tone of smooth muscle in the larger airways in man, was measured by total body plethysmography.The inhalation of PGF2α (40-60 μg) caused an increase in airways resistance in all subjects. Both PGE2 (55 μg) and isoprenaline (550 μg) given by metered aerosol promptly reversed the bronchoconstriction induced by PGF2α, but isoprenaline was more effective in this respect.A role for these prostaglandins in the control of bronchial muscle tone is discussed.  相似文献   

10.
The activity of prostaglandins (PG) in producing vascular permeability was quantitated by dye extraction method in skin of anaesthetized rabbits. PGE1 and PGE2 (0.01–10 μg) produced increase in vascular permeability. Activity was approximately equal to that of histamine (Hist) and 120 of that of bradykinin (BK) on a weight basis. The activity of PGF and PGF was only 120 of that of PGE1 or PGE2.In spite of the relatively low potency of PGE1 and PGE2 in the rabbit, near threshold doses (0.1 or 1 μg) of PGE2 could potentiate permeability responses to bradykinin (0.1 μg) by 10 or 100-fold, respectively. Equivalent doses (0.1 or 1 μg) of histamine could not potentiate the bradykinin responses. Arachidonic acid (AA) at 1 μg, produced a 10-fold potentiation in the permeability response to bradykinin (0.1 μg). Pretreatment of the rabbits with indomethacin (20 mg/kg, i.p.) reduced the responses of BK (0.1 μg) + AA (1 μg) down to a similar magnitude of those seen with bradykinin alone. However, indomethacin did not block responses to either, BK alone, BK + PGE2, or BK + Hist. Various doses (1, 10, 100 and 300 μg) of arachidonic acid alone also produced increase in cutaneous vascular permeability, although its potency was only 1318 of that of PGE2. This activity of arachidonic acid was attributed in part to its bioconversion to PGE2, since its activity was significantly reduced by the prostaglandin antagonist, diphloretin phosphate (DPP) (60 mg/kg, i.v.) and by indomethacin (20 mg/kg, i.p.), which blocks conversion of arachidonic acid to prostaglandins. Arachidonic acid may owe some of its permeability increaseing effects to histamine release, since its effects were also reduced by the antihistamine, pyrilamine (2.5 mg/kg, i.v.).  相似文献   

11.
The effects of prostaglandin PGE2 on apoptosis and antioxidant enzyme activities were studied in two coelomocyte fractions of holothurian Eupentacta fraudatrix in vitro and in vivo. PGE2 (10?8–10?6M) modulated apoptosis in a time-and concentration-dependent manner in both fractions studied in vitro. In vivo, PGE2 induced apoptosis at concentrations of 0.1–1 μg/g in the fraction enriched with morula-like cells. Phagocytes were more sensitive to the regulating effect of PGE2. In this fraction, PGE2 induced apoptosis at concentrations from 0.01 to 1 μg/g, while PGE2 at 10 μg/g demonstrated an antiapoptotic effect. In all experiments, apoptosis development was accompanied by a disbalance of the antioxidant enzyme system, primarily, decreased catalase activity.  相似文献   

12.
Prolonged exposure (> 6 h) of cultured granulosa cells to Prostaglandin E2 (PGE2; 1 μg/ml) led to a near-total loss of the cyclic AMP response to subsequent addition of fresh hormone. Pre-treatment of the cells with concanavalin A (ConA; 2.0 μg/ml) for 1 h blocked the desensitizing action of PGE2, so that the decline in the response was reduced by 60% with the hormone at high concentration (1.0 μg/ml); a full response was preserved at submaximal concentration of PGE2 (0.1 – 0.3μg/ml). Other lectins (succinyl Con a, peanut agglutinin and, to a lesser extent, phytohemagglutinin and wheat germ agglutinin) had a stabilizing effect similar to that of Con A. Addition of alpha-methyl-mannoside either with Con A or various times following the addition of Con A to the cells prevented the protective effect of Con A. Concomitant treatment with colchicine or cytochalasin B abolished the ability of Con A to prevent PGE2-induced desensitization.  相似文献   

13.
Fifteen ewes were assigned as they came into estrus to the following randomized treatment groups: 1) Vehicle (1 ml corn oil + vehicle Na2CO3 buffer), 2) Estradiol-17β + vehicle and 3) Estradiol-17β + PGE2 (500 μg) in Na2CO3 buffer (5 ewes/treatment group). Prostaglandin E2 was given through an intrauterine cannula every four hours from days 8 through 15 postestrus. PGE2 prevented a luteolytic dose of estradiol-17β given on days 9 and 10 from causing a precious luteolysis. PGE2 maintained concentrations of progesterone in peripheral blood (days 8 through 15) and weights and concentrations of progesterone in corpora lutea on day 15 postestrus of ewes receiving estradiol-17β. It is concluded that chronic intrauterine infusions of PGE2 can prevent an estradiol-17β-induced premature luteolysis.  相似文献   

14.
Prostaglandins have been implicated in the process of uterine decidualization , but sites of action are uncertain. Since one of the earliest changes in endometrial stroma following induction of decidualization is an increase in alkaline phosphataseactivity, we have investigated the effects of PGs on stromal cell alkaline phosphatase activity . Immature rats were pretreated with hormones to sensitize their uteri for the decidual cell reaction. Endometrial stromal cells were isolated and cultured for up to 4 days with PGE2 (0–10 μg/ml) or PGF2 (0–10 μg/ml) Analysis of variance revealed a highly significant interaction between day of culture and concentration of PGE2 in medium (P<0.01). Stromal cell alkaline phosphatase activity decreased significantly with increasing culture duration (P<0.01). In the presence of PGE2, alkaline phosphatase activity was significantly higher (P<0.01) regardless of day of culture. In contrast, PGF had only a small and inconsistent effect. These data indicate that PGs, and in particular PGE2, can act directly upon stromal cells.  相似文献   

15.
Ten to 60 minutes following a single i.v. injection of PGE2 (500 μg/rat) into male rats of 30 to 35 days of age FSH concentration in the serum was raised significantly. The rise in FSH was maintained from 10 to 60 minutes after treatment, then at 90 minutes FSH had declined and was not significantly different from that of the control before treatment. Prostaglandin E1, E2 or F (670μg/rat) significantly increased the serum prolactin level 10 to 60 minutes after a single i.v. injection in spayed rats primed with estrogen and progesterone. And, rats primed with estrogen and progesterone. And, increases in prolactin in the serum were observed with as little as 2μg of PGE1 or E2, and 20μg of PGF. Twenty μg of PGE2, and 200μg of PGE1 or F gave the maximum stimulation. These results indicate that release of pituitary hormones is affected by prostaglandins.Prostaglandins (PGs) are widely distributed in mammalian tissues, and they have been reported to have an almost equally wide variety of endocrine and metabolic effects. It was recently postulated that PGs may be involved in the process of ovulation because ovulation was blocked by inhibitors of PG synthesis (1–5).  相似文献   

16.
A novel PGE2 analog (CL 116,069) was shown to be effective in dogs as a nasal decongestant. Threshold doses were approximately 0.1 μg/kg with intravenous administration and between 0.08 and 4 μg with topical administration. CL 116,069 was compared to 17-phenyl-trinor PGE2 (CL 116,147), a compound recently studied in humans, and xylometazoline, a well-known nasal decongestant. When given i.v., efficacious doses of xylometazoline tended to raise blood pressure and be shorter acting than the PGs, which did not affect blood pressure. When given topically, all three were long-acting. CL 116,069 usually had the lowest threshold and CL 116,147 usually induced the smallest response. All three agents were more effective than PGE1 or PGE2. A 30-day (b.i.d., topical) toxicity test with CL 116,069 produced no inflammation or nasal pathology and no loss in tissue sensitivity. Invitro examination of xylometazoline and CL 116,069 for vascoconstrictor activity on dog isolated mucosa revealed a response profile similar to that observed with these agents invivo; i.e., the magnitude of response was comparable for both agents but the t 12 was only 74 minutes for xylometazoline and greater that 6.5 hours for CL 116,069. The data suggest that CL 116,069 may provide a therapeutic alternative in which constriction of the nasal blood vessels need not be associated with a generalized vasoconstrictor liability.  相似文献   

17.
PGE1(50μg/animal) and PGF (250 μg/animal) caused a transient in serum LH at 5 min after injection. PGE1 (250 μg/animal) had a biphasic effect on serum LH. A small peak was obtained at 5 min, and a second, larger peak at 60 min after injection. It is suggested that the first peak is a result of the stress associated with injection of the PGs, whereas the second peak represents a physiological effect of PGE. Subcutaneous injection of PGE1 (1 mg in arachis oil b.i.d.) for 10 days did not affect the concentration of LH in serum, the function of the accessory sexual glands or the sexual activity. PGF, given at the same dose and in the same manner, increased the sexual activity but left all other variables unaffected. The pituitary responsiveness to LH-RH was unaltered by the treatment with PGE1 and PGF.  相似文献   

18.
Pretreatment of human lung fibroblasts with PGE2 but not PGF enhanced synthesis of prostaglandins (PGs). The effect of the pretreatment on PG synthesis was related to the concentration of PGE2 that was added to the culture medium. Pretreatment with PGE2 at 5 × 10−12M did not enhance PG synthesis whereas pretreatment with PGE2 at 5 × 10−6M induced a maximal effect. Production of PGs was increased following 1 day of pretreatment with PGE2 and was increased further following 3 days of pretreatment. The PGE2 treated cells showed only a slight increase in the bradykinin-induced release of radioactivity from cells prelabeled with [3H]arachidonic acid but showed a dramatic increase in the bradykinin-induced synthesis of radio-labeled PGs. The conversion of free arachidonate to PGs in both intact cells and in a cell-free preparation was increased by PGE2 pretreatment. The presence of cyclohexamide during the pretreatment did not inhibit the PGE2-induced activation of PG synthesis. Taken together, the results indicate that pretreatment of cells with PGE2 increased PG synthesis by augmenting the conversion of arachidonate to PGs.  相似文献   

19.
The influence on airway conductance of inhaled aerosols of prostaglandin F2α (PGF2α), histamine, and prostaglandin E2 (PGE2) was studied in 10 patients with spirometrically reversible bronchial asthma and in 10 healthy subjects with no history of lung disorder. Both groups responded with bronchoconstriction after inhalation of PGF2α but the asthmatic patients were about 8,000 times more sensitive to the compound than were the healthy controls. In the patients, but not in the controls, PGF2α often caused a long-standing decrease in airway conductance with symptoms resembling allergen-provoked asthmatic attacks. On the other hand, the patients showed less than a 10-fold increase in sensitivity to histamine, and the ratio of histamine: PGF2α doses causing a 50% decrease of airway conductance was 2·6:1 and 2,400:1 in controls and patients respectively. Inhalation of PGE2 while moderately but consistently increasing airway conductance in controls, had a variable—occasionally slight bronchoconstrictive—effect in patients. The decrease in airway conductance by a given dose of PGF2α was little modified by the simultaneous inhalation of a 100-times higher PGE2 dose. It is suggested that endogenous, locally formed PGF2α may play an important part in the pathogenesis of bronchial asthma.  相似文献   

20.
Prostaglandins (PG)I2, PGE2 and 6-keto PGF1α were infused directly into the gastric arterial supply at 10−9, 10−8 and 10−7 g/kg/min during an intra-gastric artery pentagastrin infusion in anesthetized dogs. 6-keto PGF1α was also infused at 10−6 g/kg/min. Gastric arterial blood flow was measured continuously with a non-cannulating electromagnetic flow probe and gastric acid collected directly from the stomach. PGI2 and PGE2 produced similar dose-dependent increases in blood flow with an increase of more than four-fold at the highest dose. Both PGs inhibited acid output over this dose range with PGE2 having 10 times the potency of PGI2. 6-keto PGF1α was at least 1000 times less active than PGI2 or PGE2 at increasing blood flow and failed to inhibit acid output even at 10−6 g/kg/min.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号