首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Fifteen ewes were assigned as they came into estrus to one of three randomized treatment groups: 1. Sham IUD + Vehicle, 2. IUD + Vehicle or 3. IUD + PGE1 in vehicle. An IUD was inserted adjacent to the luteal-bearing ovary on day 3 postestrus. Prostaglandin E1 (500 micrograms) in vehicle (Na2CO3) or vehicle was given intrauterine through an indwelling uterine cannula every four hours from day 3 postestrus until ewes returned to estrus. Precocious estrus was induced in both the sham IUD and IUD groups receiving vehicle. Prostaglandin E1 prevented an IUD-induced premature luteolysis based on daily concentrations of progesterone in peripheral blood and the interestrous interval. It is concluded that an IUD-induced premature luteolysis is not necessarily via physical distention by the IUD. It is also concluded that chronic intrauterine infusions of PGE1 can prevent an IUD-induced premature luteolysis.  相似文献   

2.
Fifteen ewes were assigned as they came into estrus to the following randomized treatment groups: 1) Vehicle (1 ml corn oil + vehicle Na2CO3 buffer), 2) Estradiol-17β + vehicle and 3) Estradiol-17β + PGE2 (500 μg) in Na2CO3 buffer (5 ewes/treatment group). Prostaglandin E2 was given through an intrauterine cannula every four hours from days 8 through 15 postestrus. PGE2 prevented a luteolytic dose of estradiol-17β given on days 9 and 10 from causing a precious luteolysis. PGE2 maintained concentrations of progesterone in peripheral blood (days 8 through 15) and weights and concentrations of progesterone in corpora lutea on day 15 postestrus of ewes receiving estradiol-17β. It is concluded that chronic intrauterine infusions of PGE2 can prevent an estradiol-17β-induced premature luteolysis.  相似文献   

3.
The objective of this study was to determine whether prostaglandin E1 (PGE1) or prostaglandin E2 (PGE2) prevents premature luteolysis in ewes when progesterone is given during the first 6 days of the estrous cycle. Progesterone (3 mg in oil, im) given twice daily from Days 1 to 6 (estrus = Day 0) in ewes decreased (P < 0.05) luteal weights on Day 10 postestrus. Plasma progesterone concentrations differed (P < 0.05) among the treatment groups; toward the end of the experimental period, concentrations in jugular venous blood decreased (P < 0.05) compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + progesterone were greater (P < 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 or PGE2 + progesterone. Chronic intrauterine treatment with PGE1 or PGE2 prevented (P < 0.05) decreases in plasma progesterone concentrations, luteal weights, and the proportion of luteal unoccupied and occupied LH receptors on Day 10 postestrus in ewes given exogenous progesterone, but did not affect (P > 0.05) concentrations of PGF in inferior vena cava blood. Progesterone given on Days 1 to 6 in ewes advanced (P < 0.05) increases in PGF in inferior vena cava blood. We concluded that PGE1 or PGE2 prevented progesterone-induced premature luteolysis by suppressing loss of luteal LH receptors (both unoccupied and occupied).  相似文献   

4.
Fifteen ewes were assigned as they came into estrus to the following randomized treatment groups: 1) Vehicle (1 ml corn oil + vehicle Na2CO3 buffer), 2) Estradiol-17 beta + vehicle and 3) Estradiol-17 beta + PGE2 (500 micrograms) in Na2CO3 buffer (5 ewes/treatment group). Prostaglandin E2 was given through an intrauterine cannula every four hours from days 8 through 15 postestrus. PGE2 prevented a luteolytic dose of estradiol-17 beta given on days 9 and 10 from causing a precocious luteolysis. PGE2 maintained concentrations of progesterone in peripheral blood (days 8 through 15) and weights and concentrations of progesterone in corpora lutea on day 15 postestrus of ewes receiving estradiol-17 beta. It is concluded that chronic intrauterine infusions of PGE2 can prevent an estradiol-17 beta-induced premature luteolysis.  相似文献   

5.
The objective of this study was to determine whether PGE1 or PGE2 prevents a premature luteolysis when oxytocin is given on Days 1 to 6 of the ovine estrous cycle. Oxytocin given into the jugular vein every 8 hours on Days 1 to 6 postestrus in ewes decreased (P ≤ 0.05) luteal weights on Day 8 postestrus. Plasma progesterone differed (P ≤ 0.05) among the treatment groups; toward the end of the experimental period, concentrations of circulating progesterone in the oxytocin-only treatment group decreased (P ≤ 0.05) when compared with the other treatment groups. Plasma progesterone concentrations in ewes receiving PGE1 or PGE1 + oxytocin were greater (P ≤ 0.05) than in vehicle controls or in ewes receiving PGE2 or PGE2 + oxytocin and was greater (P ≤ 0.05) in all treatment groups receiving PGE1 or PGE2 than in ewes treated only with oxytocin. Chronic intrauterine treatment with PGE1 or PGE2 also prevented (P ≤ 0.05) oxytocin decreases in luteal unoccupied and occupied LH receptors on Day 8 postestrus. Oxytocin given alone on Days 1 to 6 postestrus in ewes advanced (P ≤ 0.05) increases in PGF in inferior vena cava or uterine venous blood. PGE1 or PGE2 given alone did not affect (P ≥ 0.05) concentrations of PGF in inferior vena cava and uterine venous blood when compared with vehicle controls or oxytocin-induced PGF increases (P ≤ 0.05) in inferior vena cava or uterine venous blood. We concluded that PGE1 or PGE2 prevented oxytocin-induced premature luteolysis by preventing a loss of luteal unoccupied and occupied LH receptors.  相似文献   

6.
The role of progesterone in regulation of uteroovarian venous concentrations of prostaglandins F2 α (PGF2α) and E2 (PGE2) during days 13 to 16 of the ovine estrous cycle or early pregancy was examined. At estrus, ewes were either mated to a fertile ram or unmated. On day 12 postesturus, ewes were laparotomized and a catheter was inserted into a uteroovarian vein. Six mated and 7 unmated ewes received no further treatment. Fifteen mated and 13 unmated ewes were ovariectomized on day 12 and of these, 7 mated and 5 unmated ewes were given 10 mg progesteron sc and an intravaginal pessary containing 30 mg of progesterone. Uteroovarian venous samples were collected every 15 min for 3 h on days 13 to 16 postestrus. Mating resulted in higher mean daily concentrations of PGE2 in the uterovarian vein than in unmated ewes. Ovariectomy prevented the rise in PGE2 with day in mated ewes but had no effect in unmated ewes. Progesterone treatment restored PGE2 in ovariectomized, mated ewes with intact embros. Mating had no effect on mean daily concentrations of PGF2α or the patterns of the natural logarithm (ln) of the invariance of PGF2α. Ovariectomy resulted in higher mean concentrations and ln invariances of PGF2α on day 13 and lower mean concentrations and ln invariances of PGF2α on days 15 and 16. Replacement with progesterone prevented these changes in patters of mean concentrations and ln variances of PGF2α following ovariectomy. It is concluded that progesterone regulates the release of PGF2α from the uterus, maintaining high concentrations while also preventing the occurrence of the final peaks of PGF2α which are seen with falling concentrations of progesterone. This occurs in both pregnant and non-pregnant ewes. Progesterone is also needed to maintain increasing concentrations of PGE2 in mated ewes.  相似文献   

7.
Prostaglandin E1 (PGE1) of 5 mg/kg body weight was found to be ineffective to induce luteolysis in 100% of the test animals when injected either, on day 3, day 5 or day 7 of pregnancy. While, conversely the same dose schedule was absolutely potent in the induction of luteolysis and resorption of fetuses, placentae when tested on day 10 or day 13 of pregnancy. Progesterone alongwith PGE1 consistently prevented the abortifacient efficacy of PGE1. Moreover, it was observed that PGE1 could also successfully terminate pseudopregnant state in the bilaterally hysterectomized rats between fortyeight and ninetysix hours after the injection. It was suggested that the luteolytic or abortifacient efficacy of PGE1 is not the exclusive reflection of an augmented activity of uterine musculature.  相似文献   

8.
Twelve crossbred gilts, 8 to 9 months of age, were used to study the effects of prostaglandin E2 (PGE2) on luteal function during the estrous cycle. Intrataurine and jugular vein catheters were surgically placed before day 7 of the treatment estrous cycle and gilts were randomly assigned to 1 or 3 treatment groups. Groups I and II received constant intrauterine infusion of vehicle (6.0 ml/24 hr) or PGE2 (2400 μg/day; 6.0 ml/24 hr) respectively; while group III was given intrauterine infusions of 400 μg PGE2 every 4 hr. All infusions were initiated on day 7 and continued until estrus or through day 23. Jugular blood samples were collected twice daily from days 7 to 30 for progesterone analysis. Intrauterine infusion of PGE2 at the dose and frequencies given in this study delayed the decline in jugular plasma progesterone and resulted in prolongation of the estrous cycle length. The results of this study have shown that PGE2 at the dosage and frequency of administration used was capable of extending corpus luteum function.  相似文献   

9.
Effects of PGE1 or PGE2 on luteal function were studied in 163 pseudopregnant rats. PGE1 (10, 100, or 300μg) given intrauterine every 6 hr did not shorten pseudopregnancy (P < 0.05), however, the same doses of PGE2 given intrauterine every 6 hr advanced luteolysis (P < 0.05). PGE1 (100 or 300μg) given every 4 hr intramuscular maintained levels of progesterone in peripheral blood above controls (P < 0.05) while 100 or 300μg of PGE2 hastened the decline in progesterone (P < 0.05). The antiluteolytic effect of PGE1 was not via an inhibition of PGF secretion (P < 0.05) by the uterus or by induction of ovulation in treated animals. Moreover, PGE1 (100, 200, or 500μg) given intramuscular every 4 hr from day 4 of pseudopregnancy until the next proestrus delayed luteal regression around 3 days (P < 0.05). PGE2 at doses of 100, 200, or 500μg every 4 hr given intramuscular consistently shortened pseudopregnancy (P < 0.05). Lower doses were without effect (P < 0.05). Based on the above data it is concluded that PGE2 is consistently luteolytic whereas PGE1 is not luteolytic in pseudopregnant rats and that PGE1 may be an antiluteolysin.  相似文献   

10.
Loss of luteal progesterone secretion at the end of the ovine estrous cycle is via uterine PGF2α secretion. However, uterine PGF2α secretion is not decreased during early pregnancy in ewes. Instead, the embryo imparts a resistance to PGF2α. Prostaglandins E (PGE; PGE1 + PGE2) are increased in endometrium and uterine venous blood during early pregnancy in ewes to prevent luteolysis. Chronic intrauterine infusion of PGE1 or PGE2 prevents spontaneous or IUD, estradiol-17β, or PGF2α-induced premature luteolysis in nonbred ewes. The objective was to determine whether chronic intrauterine infusion of PGE1 or PGE2 affected mRNA for LH receptors, occupied and unoccupied receptors for LH in luteal and caruncular endometrium, and luteal function. Ewes received Vehicle, PGE1, or PGE2 every 4 h from days 10 to 16 of the estrous cycle via a cathether installed in the uterine lumen ipsilateral to the luteal-containing ovary.Jugular venous blood was collected daily for analysis of progesterone and uterine venous blood was collected on day-16 for analysis of PGF2α and PGE. Corpora lutea and caruncular endometrium were collected from day-10 preluteolytic control ewes and day-16 ewes treated with Vehicle, PGE1 or PGE2 for analysis of the mRNA for LH receptors and occupied and unoccupied receptors for LH. Luteal weights on day-16 in ewes treated with PGE1 or PGE2 and day-10 control ewes were similar (P  0.05), but were greater (P  0.05) than in day-16 Vehicle-treated ewes. Progesterone profiles on days 10–16 differed (P  0.05) among treatment groups: PGE1 > PGE2 > Vehicle-treated ewes. Concentrations of PGF2α and PGE in uterine venous plasma on day-16 were similar (P  0.05) in the three treatment groups. Luteal mRNA for LH receptors and unoccupied and occupied LH receptors were similar (P  0.05) in day-10 control ewes and day-16 ewes treated with PGE2 and were lower (P  0.05) in day-16 Vehicle-treated ewes. PGE2 prevented loss (P  0.05) of day-16 luteal mRNA for LH receptors and occupied and unoccupied LH receptors. Luteal and caruncular tissue mRNA for LH receptors and occupied and unoccupied LH receptors were greater (P  0.05) on day-16 of PGE1-treated ewes than any treatment group. mRNA for LH receptors and occupied and unoccupied receptors for LH in caruncules were greater (P  0.05) in day-16 Vehicle or PGE2-treated ewes than in day-10 control ewes. It is concluded that PGE1 and PGE2 share some common mechanisms to prevent luteolysis; however, only PGE1 increased luteal and endometrial mRNA for LH receptors and occupied and unoccupied LH receptors. PGE2 prevents a decrease in luteal mRNA for LH receptors and occupied and unoccupied receptors for LH without altering endometrial mRNA for LH receptors or occupied and unoccupied receptors for LH.  相似文献   

11.
Endometrial concentrations of prostaglandins F2α (PGF2α) and E2 (PGE2) were measured by specific radioimmunoassay in sheep, on day 14 of estrous cycle or pregnancy, during luteolysis (Day 16 of the cycle), and after implantation (Day 23 of pregnancy) : concentrations observed on day 14 of cycle and pregnancy were similar. During luteolysis, on day 16 of cycle, a consistent drop was noticed. If luteal regression did not occur, as a consequence of the presence of an embryo, endometrial concentrations of PGF2α on day 23, were twice those of day 14, and PGE2 remained unchanged. 2 hour incubations of endometrial caruncular tissue from 14 days cyclic or pregnant ewes resulted in de novo synthesis of PG which could be increased by Arachidonic Acid and inhibited by Indomethacin; during the first 30 min of incubation, the PGF2α synthesis was comparable for both endometrial tissues, whereas PGE2 synthesis was twice as great in pregnant endometrium. Fourteen and 23 day conceptuses had high PGF2α and PGE2 concentrations which were not due to maternal PG sequestration : PG synthesis which could be inhibited by Indomethacin was observed in incubated 14 day old embryos. Treatment of pregnant ewes from day 7 to day 22 after mating, either with Indomethacin (300 mg s.c. daily) or with Acetylsalicylic Acid (1 g I.V. daily) resulted in a sharp diminution of endometrial PG concentration and release, with no apparent effect on the establishment of pregnancy. These results tend to ascribe a less important role to PG during early pregnancy in sheep as compared with rodents, in terms of embryonic growth and implantation.  相似文献   

12.
Adenosine or vehicle; dibutyryl c-AMP, a c-AMP analogue, or vehicle in two separate experiments were infused through an indwelling cannula every four hours around the ovarian vascular pedicle of ewes unilaterally ovariectomized on day 8 postestrus. Adenosine or vehicle was infused from day 8 through 22 postestrus and dibutyryl-cAMP was infused from day 8 through 20 postestrus or until the ewes returned to estrus. Interestrous intervals were greater (p less than or equal to 0.05) in ewes receiving adenosine (27.3 +/- 2.4 days) than in control ewes (17.2 +/- 1.3 days). The length of the estrous cycle of ewes receiving dibutyryl c-AMP was greater (22.4 +/- 1.1; p less than or equal to 0.05) than in control ewes which averaged 16.7 +/- 0.6 days. Profiles of progesterone were different (p less than or equal to 0.05) for ewes receiving adenosine or dibutyryl c-AMP when compared to their respective controls. In addition, the overall mean concentrations of progesterone were greater (p less than or equal to 0.05) in dibutyryl c-AMP or adenosine-treated ewes than in controls. In a third experiment, infusions of adenosine or dibutyryl c-AMP intrauterine every 4 hours through a cannula from day 8 through 22 postestrus had no effect (p less than or equal to 0.05) on the interestrous interval or profiles of progesterone. It is concluded that dibutyryl c-AMP or adenosine in vivo can delay luteolysis and adenosine and c-AMP may play roles in luteal secretion of progesterone in sheep but are probably not the uterine embryonic antiluteolysin of early pregnancy in sheep.  相似文献   

13.
Prostaglandin E2 and F infusions have been tested for their ability to reduce the arrhythmias associated with occlusion of the left descending coronary artery in the anaesthetised dog. At 1 μg/kg/min both PGs reduced the incidence of premature ventricular contractions occurring during 25-min occlusions, while not reducing the incidence of ventricular fibrillation occurring on occlusion release. When infused for 5-min periods at 1 to 16 μg/kg/min, neither PGE2 nor PGF effectively reduced the frequency of ventricular arrhythmias occurring 24 hr after a permanent coronary occlusion.  相似文献   

14.
Intrauterine insertion of a 0.5 cm long Silastic-PVP tube containing 750 μg PGE2 (lyophilized sodium salt) caused midterm abortion in hamsters within 48 hours. An earlier study using a similar Silastic-PVP tube delivery system showed that 200 μg of PGF (Tham) was sufficient to induce abortion in 100% of pregnant hamsters (18). Prostaglandin E2 is, therefore, about 3.5–4 times less potent than PGF as an abortifacient in the hamster. The release of 3H-PGE2 from Silastic-PVP tube and is also described. It is suggested that an increase in LH release might be one of the factors leading to luteolysis; and that either PGE2 exerts a direct luteolytic effect or this effect is manifested after its being converted to PGF.  相似文献   

15.
Prostaglandin E1 receptor sites were measured in homogenates of NG108-15 neuroblastoma-glioma hybrid cells after exposure of intact cells to PGE1. Scatchard analysis of competitive binding studies showed that incubation of NG108-15 cells in the presence of 2.5 μM PGE1 for 16 h resulted in a loss of PGE1 receptors and an increase in the dissociation constant of the remaining receptors. Thus, cells challenged with PGE1 not only lose adenylate cyclase activity, but also lose PGE1 receptors and decreased the affinity of the remaining receptors for PGE1.  相似文献   

16.
Twenty crossbred gilts with at least 2 consecutive estrous cycles of 18 to 21 days in length were used to study the effects of prostaglandins E2 and F2α (PGE2 and PGF2α) on luteal function in indomethacin (INDO) treated cycling gilts. Intrauterine and jugular vein catheters were surgically palced before day 7 of the treatment estrous cycle and gilts were randomly assigned to 1 of 5 treatment groups (4/groups). With exception of the controls (Group I) all gilts received 3.3 mg/kg INDO every 8 h, Groups III, IV and V received 2.5 mg PGF2; 2.5 mg PGF2α + 400 μg PGE2 every 4 hr, or 400μg PGE2 every 4 h, respectively. All treatments were initiated on day 7 and continued until estrus or day 23. Jugular blood for progesterone analysis was collected twice daily from day 7 to 30. Estradiol-17β (E2-17β) concentrations were dtermined in samples collected twice daily, from 2 d before until 2 d following the day of estrus onset. When compared to pretreatment values, estrous cycle length was unaffected (P>0.05) in Group I, prolonged (P<0.05) in Groups II, IV and V; and shortened (P<0.05) in Group III. The decline in plasma progesterone concentration that normally occurs around day 15 was unaffected (P>.05) in Group I; delayed (P<0.05) in Groups II, IV and V; and occurred early (P<0.05) in Group III. Mean E2-17β remained high (31.2 ± 4.9 to 49.3 ± 3.1 pg/ml) in Groups III and IV, while the mean concentrations in Groups III and V varied considerably (17.0 ± 2.0 to 52.2 ± 3.5 pg/ml). The results of this study have shown that PGE2 will counteract the effects of PGF2α in INDO treated cycling gilts. The inclusion of PGF2α appeared to either stimulate E2-17β secretion or maintain it at a higher level than other treatments.  相似文献   

17.
Friesian heifers (n = 10) were assigned randomly to receive an intravenous injection of estradiol-17β (E2; 3 mg) or saline: ethanol vehicle solution (6 ml; 1:1) on day 13 of the estrous cycle. Blood was collected collected from the jugular vein by venipuncture into heparinized vacutainer tubes at 30 minute intervals for 2 hours (h) preinjection, 10.5 h postinjection and then at 3 h intervals until estrus. Repeated hormone measurements of 15-keto-13,14-dihydro-PGF (PGFM) and progesterone (P4) were evaluated by split-plot analysis of variance. Mean concentration of PGFM for the 12.5 h acute sampling phase was 164.1 ± .14 pg/ml. A treatment by time interaction was detected (P < .01). After treatment with E2, PGFM concentrations began to increase at approximately 3.5 h, reached a mean peak of 330.4 ± 44.5 pg/ml (n = 5) at 5.5 ± .3 h, and returned to basal concentration by 9.0 ± .6 h. Vehicle treatment did not alter concentrations of PGFM. Injections of E2 on day 13 of the estrous cycle caused luteolysis (P4 concentration < 1 ng/ml) to occur earlier following injection (96.9 ± 10.6 h < 153.6 ±17.7 h; P, 0.05) than did the vehicle control treatment. During the chronic sampling phase of 3 h intervals, 39 of 606 samples (6.4%) were classified as PGFM spikes (323.0 ± 50.0 pg/ml); 21 (53%) of the spikes occurred at a mean interval of 18.9 ± 3.86 h before the time of completed luteolysis. Exogenous E2 induced an acute increase in PGFM that may be indicative of uterine PGF production. Peaks of PGFM in plasma were temporally associated with luteolysis on a within cow basis.  相似文献   

18.
We have investigated the direct effects of prostaglandins E1, E2, F and D2 on renin release from rabbit renal cortical slices. Prostaglandin E1 (PGE1) was the most potent stimulant of renin release, while PGE2 was 20–30 fold less active. PGF was found not to be an inhibitor of renin release as reported by others, but rather a weak agonist. PGD2 up to a concentration of 10 μg/ml had no activity in this system. That the stimulation of renin release by PGE1 is a direct effect is supported by the finding that PGE1-induced release is not blocked by L-propranolol or by Δ5,8,11,14-eicosatetraynoic acid (ETYA), a prostaglandin synthesis is inhibitor. The fatty acid precursor of PGE1, Δ8,11,14-eicosatrienoic acid, also stimulated renin release, an effect which was blocked by ETYA. In addition to the above findings, ethanol, a compound frequently used to dissolve prostaglandins, was shown to inhibit renin release.  相似文献   

19.
Intravaginal pessaries impregnated with 20 mg fluorogestone acetate (FGA) were inserted into fifteen does at various intervals after the end of estrus. After resumption of cyclical activity following withdrawal of the intravaginal pessaries, the does were divided into six groups and treated with prostaglandin F2α. Each doe received 15 mg Prostaglandin F2α administered intramusuclarly 2, 4, 6, 12, 14 or 16 days after the end of estrus. The animals were bred naturally on the first estrus following prostaglandin treatment. Jugular blood samples were collected from each doe throughout the experimental period. The plasma samples were assayed for progesterone. Intravaginal fluorogestone acetate treatment in does had no effect on the function of the corpus luteum, however, overt estrus was postponed during treatment and for a few days after removal of the pessaries. Prostaglandin injection into does, 4, 6, 12, 14 or 16 days after the end of estrus induced luteolysis and subsequent ovulatory estrus within 2 to 3 days. Fertility at PGF2α induced estrus in these does was 77%. Prostaglandin treatment two days after the end of estrus had no effect on the corpus luteum function. It is concluded that prostaglandin is luteolytic when administered into does anytime beyond four days after the end of estrus.  相似文献   

20.
The present study compares the effects of PGE1 and PGA1 on ventricular arrhythmias following coronary artery occlusion. The left anterior descending coronary artery (LAD) was occluded abruptly in 55 cats anesthetized with α-chloralose. Lead II of the ECG along with arterial blood pressure were monitored for one hour after occlusion. Either vehicle or prostaglandin was infused into the left atrium (LA) or femoral vein (IV) 15 min prior to and for 1 hour after LAD occlusion at a rate of 0.15 ml/min. Prostaglandin was infused at either a high dose (1.0 μg/kg/min) or a low dose (0.1 μg/kg/min). Infusion of either PGE1 or PGA1 produced a marked fall in blood pressure and heart rate which returned toward control before occlusion. Abrupt occlusion of the LAD produced ventricular arrhythmia in all cats ranging from ventricular premature beats to ventricular fibrillation (VF). The control animals had a 38% incidence of VF. VF occurred in 75% of the animals in which PGE1 was administered into the LA at either the high or low dose while the occurrence in those administered PGA1 was 67% and 50%, respectively. Intravenous administration of the high dose of PGE1 or PGA1 resulted in VF in 13% and 67% of the animals after LAD occlusion, respectively. These data indicate that the IV administration of PGE1 may protect the heart from VF while the infusion of PGE1 or PGA1 into the LA may enhance VF after LAD occlusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号