首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Biosynthesis of the sex pheromone components (Z)-5-dodecenol and (Z,E)-5,7-dodecadienol in Dendrolimus punctatus was studied by topical application of deuterium-labeled fatty acids to pheromone glands and subsequent analysis of fatty acyl groups and pheromone components by gas chromatography-mass spectrometry. Our studies suggest that both (Z)-5-dodecenol and (Z,E)-5,7-dodecadienol can be biosynthetically derived from chain elongation of palmitate to stearate in the gland, and its subsequent Delta11 desaturation to produce (Z)-11-octadecenoate. After three cycles of 2-carbon chain-shortening, the pheromone glands produce (Z)-5-dodecenoate, which is then converted to (Z)-5-dodecenol by reduction. A second Delta11 desaturation of (Z)-9-hexadecenoate produces (Z,E)-9,11-hexadecadienoate, which is then chain shortened in two cycles of beta-oxidation and finally converted to (Z,E)-5,7-dodecadienol by reduction.  相似文献   

2.
(Z)-11-Hexadecenyl acetate, the main pheromone component of Sesamia nonagrioides sex pheromone, is biosynthesized from palmitic acid by Delta(11)-desaturation followed by reduction and acetylation. Production of (Z)-11-hexadecenyl acetate is regulated by the Pheromone Biosynthesis Activating Neuropeptide (PBAN). Transformation of (Z)-11-hexadecen-1-ol into the corresponding acetate is a target step for PBAN in the regulation of this biosynthetic sequence, thus being the first example of a PBAN-activated acetylation. The production of the minor component (Z)-11-hexadecenal is also stimulated by PBAN. The usefulness of pentafluorobenzyloxime-derivatives for the analysis of aldehyde pheromone constituents by gas chromatography coupled to mass spectrometry is also reported.  相似文献   

3.
Deuterium-labeled fatty acids have been used to elucidate the sex pheromone biosynthetic pathway in Spodoptera littoralis. Label from palmitic acid was incorporated during the scotophase into all the pheromone acetates and their corresponding fatty acyl intermediates. (Z,E)-9,11-tetradecadienyl acetate, the major component of the pheromone blend, is synthesized from palmitic acid via tetradecanoic acid, which, by the action of a specific (E)-11 desaturase and subsequently a (Z)-9 desaturase, is converted into (Z,E)-9,11-tetradecadienoate. By further reduction and acetylation, this compound leads to the dienne acetate. Deuterated precursors applied to the pheromone gland during the photophase were also incorporated into the pheromone. The percentage of labeled (Z,E)-9,11-tetradecadienyl acetate relative to natural compound was significantly higher during the light period. Label incorporation from different intermediates into the pheromone was stimulated by injection of brain-subesophageal ganglion extract during the photophase. The influence of the pheromone biosynthesis-activating neuropeptide on the biosynthetic pathway is discussed.  相似文献   

4.
In order to clarify the biochemical basis to the divergence of sex pheromones in the genus Ostrinia (Lepidoptera: Crambidae), the pheromone biosynthetic pathway in O. zaguliaevi, a close relative of the European corn borer O. nubilalis, was investigated. Deuterium-labeled hexadecanoic or tetradecanoic acids were topically applied to the surface of the pheromone gland, and the incorporation of the label into pheromone components and their putative precursors was determined. It was suggested that the two components shared by O. zaguliaevi and O. nubilalis, (E)-11- and (Z)-11-tetradecenyl acetates, are biosynthesized from hexadecanoic acid through one round of chain shortening, Delta11 desaturation, reduction, and acetylation. An additional component specifically found in O. zaguliaevi, (Z)-9-tetradecenyl acetate, is likely to be produced by delta11 desaturation of hexadecanoic acid, one round of chain shortening, reduction, and acetylation. Non-production of (Z)-9-tetradecenyl acetate in O. nubilalis was suggested to be due to the blockage of chain shortening from (Z)-11-hexadecenoate to (Z)-9-tetradecenoate.  相似文献   

5.
Biosynthesis of the sex pheromone components, (Z)-5-tetradecenyl acetate (Z5-14:OAc) and (Z)-7-tetradecenyl acetate (Z7-14:OAc), was investigated in the New Zealand tortricid moth Planotortrix excessana (Walker) by fatty acid methyl ester (FAME) analysis of base-methanolyzed extracts of lipids in the sex pheromone gland and through application of various labelled fatty acids. Analysis of the base-methanolyzed gland extracts revealed common FAMEs, including methyl oleate and methyl palmitoleate, as well as the FAMEs of the putative precursors, methyl (Z)-5-tetradecenoate and methyl (Z)-7-tetradecenoate. Application of labelled, saturated fatty acids, myristic, palmitic, and stearic did not result in any significant incorporation of label into either of the unsaturated pheromone components, although label was incorporated into tetradecyl acetate (14:OAc). In contrast, application of labelled oleic acid resulted in incorporation of label into Z5-14:OAc but not into Z7-14:OAc or into 14:OAc, whereas application of labelled palmitoleic acid resulted in incorporation of label into Z7-14:OAc but not into Z5-14:OAc or 14:OAc. These data support a route for biosynthesis of Z5-14:OAc and Z7-14:OAc in this species by limited β-oxidation of the common fatty acyl moieties, respectively, oleate (involving two cycles of 2-carbon chain-shortening) and palmitoleate (involving only one cycle of 2-carbon chain-shortening), and apparently involving no desaturase (other than the common Δ9) specific to sex pheromone biosynthesis. Interestingly, P. excessana females biosynthesize the same component (Z5-14:OAc) from an entirely different route from that of the related species Ctenopseustis obliquana (which biosynthesizes Z5-14:OAc by Δ5-desaturation of myristate). Additionally, the pheromone biosynthesis activating neuropeptide (PBAN) stimulates pheromone biosynthesis in this species. Arch. Insect Biochem. Physiol. 37:158–167, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

6.
Abstract 1 Chemical analyses of solvent extracts of pheromone glands of female western yellowstriped armyworm moths Spodoptera praefica (Grote) indicated the presence of (Z)‐7‐dodecenol (Z)‐7‐dodecenyl acetate (Z)‐9‐dodecenyl acetate (Z)‐9‐tetradecenyl acetate and (Z)‐11‐hexadecenyl acetate. 2 In field tests of combinations of these chemicals, small numbers of male S. praefica were captured in traps baited with (Z)‐7‐dodecenyl acetate. Numbers of males captured in traps were greatly increased in response to blends that included both (Z)‐7‐dodecenyl acetate with either (Z)‐9‐tetradecenyl acetate (Z)‐9‐dodecenyl acetate. The combination of (Z)‐7‐dodecenyl acetate and (Z)‐9‐tetradecenyl acetate provided the strongest sex attractant for use in trapping male S. praefica. 3 Males of the cabbage looper Trichoplusia ni (Hübner) were captured in traps baited with blends possessing (Z)‐7‐dodecenyl acetate, and were greatly reduced in traps baited with blends that included (Z)‐7‐dodecenol. 4 Multi‐component blends that included (Z)‐7‐dodecenol attracted males of the alfalfa looper Autographa californica (Speyer). 5 Males of Peridroma saucia (Hübner) and Mamestra configurata Walker were captured in traps that included (Z)‐9‐tetradecenyl acetate with (Z)‐11‐hexadecenyl acetate. 6 These responses by other species of moths to S. praefica pheromone components and blends may still complicate the use of any lure for S. praefica.  相似文献   

7.
Binary mixtures of deuterium-labeled palmitic acid and an excess of different fatty acids were applied to the sex pheromone gland of female Heliothis virescens and the effects on the terminal steps of pheromone biosynthesis, including incorporation of fatty acids into the glandular lipids, observed. Relative to labeled palmitic acid applied alone, application of all the binary mixtures resulted in decreased levels of the labeled pheromone component, (Z)-11-hexadecenyl acetate (Z11-16:OAc), but there was generally no decrease in the amounts of labeled pheromone precursor, (Z)-11-hexadecenoate, nor labeled palmitate in the glandular lipids. These data suggest that the excess of fatty acid in the gland inhibits Delta11-desaturation. However, in the case of excess myristoleic acid, the amount of labeled (Z)-11-hexadecenoate increased significantly, suggesting that this acid inhibited fatty acid reduction. Dose-response tests with certain of the fatty acids were consistent with the above interpretations and further indicated that the gland had a high capacity for rapidly activating and incorporating excess fatty acids into the glandular lipids. Finally, application of the various fatty acids resulted in increased levels of these acids in the gland and, in the cases of myristoleic, palmitoleic and myristic acids, it also resulted in increased levels of the corresponding aldehydes, which had previously been detected in the gland of female H. virescens. This suggests that the fatty acid reductase in H. virescens is not highly specific for the major component, and that the final ratio of pheromone components is determined in part by the availability of their corresponding fatty acids in the gland.  相似文献   

8.
The pheromone blend produced by the tobacco hornworm moth (Manduca sexta) (L.) female is unusually complex and contains two conjugated dienals and trienals together with two monounsaturated alkenals. Here, we describe the identification and construction of two genes encoding MsexKPSE and MsexAPTQ desaturases from a cDNA library prepared from the total RNA of the M. sexta pheromone gland. The MsexKPSE desaturase shares a high degree of similarity with Delta(9)-desaturases from different moth species. The functional expression of MsexAPTQ desaturase in Saccharomyces cerevisiae followed by a detailed GC-MS analysis of fatty acid methyl esters (FAME) and their derivatized products and gas-phase Fourier transform infrared (FTIR) spectroscopy of the extracted FAME confirms that this enzyme is a bifunctional Z-Delta(11)-desaturase. MsexAPTQ desaturase catalyses the production of Z11-hexadecenoate (Z11-16) and Z10E12- and E10E12-hexadecadienoates (Z10E12-16) via 1,4-desaturation of the Z11-16 substrate. The stereochemistry of 1,4-desaturation and formation of isomers is discussed.  相似文献   

9.
In this study, we have compared the release of sex pheromone from mating disruption dispensers exposed in the field for 12 months and from calling females. The main pheromone component of the grapevine moth, Lobesia botrana (D. and S.) (Lepidoptera: Tortricidae), is (E)‐7,(Z)‐9‐dodecadienyl acetate, and a minor component is (Z)‐9‐dodecenyl acetate. Aged dispensers from two different years emitted a much higher amount of both pheromone components than calling females. However, the summer temperature during field exposure influenced the release from mating disruption dispensers the following year. In the wind tunnel, male L. botrana were equally attracted to 12‐month, field‐exposed dispensers, a standard monitoring pheromone lure, and to synthetic (E)‐7,(Z)‐9‐dodecadienyl acetate sprayed at the rate of 0.6–60 ng h?1. Field trapping tests confirmed that aged dispensers from both years were at least as attractive to L. botrana males as a standard monitoring pheromone lure. The possible contribution of previously applied dispensers to the mating disruption efficacy during following applications is discussed.  相似文献   

10.
Sex pheromone titre in the tortricid moth Epiphyas postvittana follows a pattern commonly observed in other species of moths: an increase to a peak some time after eclosion (2-3days), and then a slow decline as the female ages. Previous work has shown that this decline is not regulated by the pheromone biosynthesis activating neuropeptide PBAN. Using in vivo and in vitro enzyme assays, and fatty acid methyl ester (FAME) analyses of pheromone precursors in the gland, we have investigated this senescent decline in pheromone titre. The enzyme assays have shown that in older females the fatty acid reductase and fatty acid synthesis enzyme systems decrease in activity (relative to younger females), whereas other enzyme systems involved in pheromone biosynthesis, including limited beta-oxidation (2-carbon chain-shortening), (E)-11-desaturation, and acetylation (by an acetyl transferase) remain unchanged in their activity. Of the two enzymatic processes involved, the more important one contributing to the decline appears to be the fatty acid reductase. This is consistent with FAME analyses of pheromone glands in old and young females, which show little difference in levels of saturated FAME, but a significant increase in the level of the putative precursor, (E)-11-tetradecenoate, of the sex pheromone component (E)-11-tetradecenyl acetate. Thus, this decline in fatty acid reductase activity results in a buildup of the precursor as the female ages. The near ubiquity of fatty acid reductases in moth sex pheromone systems suggests that this may be a common mechanism for the senescent decline of sex pheromone titre in moths.  相似文献   

11.
In the biosynthetic pathway of Spodoptera littoralis sex pheromone, (E,E)-10,12-tetradecadienoic acid is produced from (Z)-11-tetradecenoic acid by desaturation and concomitant migration of the precursor double bond. With the aim of identifying the enzyme involved in this biotransformation, yeast Deltaelo1/Deltaole mutants, which are both elongase 1 and Delta9 desaturase-deficient, were transformed with the S. littoralis Delta11 desaturase gene using a Cu+2 inducible expression vector. The transformants produced a recombinant polyhistidine-tagged Delta11 desaturase that could be detected by immunoblotting from cell lysates. Lipid analysis revealed that besides producing large quantities of C11-monounsaturated fatty acids, mainly (Z)-11-hexadecenoic acid, (E,E)-10,12-tetradecadienoic acid and minor amounts of (E,Z)-10,12-hexadecadienoic acid were also produced, as well as very low quantities of another tetradecadienoate, which was tentatively identified as the (E,Z)-10,12-tetradecadienoic isomer. None of these dienes was detected with the Delta11 desaturase gene of Trichoplusia ni, which does not produce conjugated dienes as pheromone components. We conclude that the Delta11 desaturase of S. littoralis is a bifunctional enzyme with both Delta11 and Delta10,12 desaturation activities. The relationship between the substrate structure and the stereochemical outcome of the reaction is discussed.  相似文献   

12.
The sex pheromone of Bombyx mori, bombykol [(10E,12Z)-10,12-hexadecadien-1-ol], can be biosynthesized in four steps: construction of a hexadecanoic moiety from acetyl CoA, ?-11-desaturation, .?-10,12-desaturation, and reduction of the acyl group. This biosynthesis is regulated by a hormone named the pheromone biosynthesis activating neuropeptide (PBAN). To examine the steps that are accelerated by this neurohormone, pheromone glands excised from decapitated females were incubated in vitro with either 14C-Iabeled sodium acetate or one of three fatty acids [hexadecanoic acid, (Z)-11-hexadecenoic acid, or (10E,12Z)-10,12-hexadecadienoic acid]. After analyzing the radioactivity that was incorporated from each precursor into bombykol and the biosynthetic precursors, it was observed that the first three steps proceeded in glands both treated and untreated with synthetic PBAN of B. mori; however, the last step proceeded only in the treated glands. From this in vitro experiment, it can be concluded that the main regulatory role of PBAN is in the reduction of the acyl group in B. mori, as was shown by our previous in vivo experiment.  相似文献   

13.
Analysis of sex pheromone glands of the apple leafroller Bonagota cranaodes Meyrick by gas chromatography coupled with mass spectrometry or electroantennographic detection showed the presence of 14 structurally related acetates and alcohols of the chain length 10-18, including the main pheromone component (E,Z)-3,5-dodecadienyl acetate (E3,Z5-12Ac). Male antennae responded to the main compound, its Z,Z isomer, (E,Z) -3,5-tetradecadienyl acetate (E3,Z5-14Ac), and the monoenes (Z)-5-dodecenyl acetate (Z5-12Ac) and (Z)-9-hexadecenyl acetate (Z9-16Ac). Traps baited with a four-component blend of E3,Z5-12Ac, Z5-12Ac, E3,Z5-14Ac, and Z9-16Ac in a 100:5:5:100 ratio were significantly more attractive than the main compound alone. This improved trap lure is more suitable for monitoring population densities of B. cranaodes, and for detection of the onset of the seasonal flight period. A more complete pheromone blend is of importance also with respect to current attempts to develop mating disruption for control of this major pest of apple in Brazil.  相似文献   

14.
《Journal of Asia》2020,23(4):935-941
Hellula undalis is a harmful insect pest of green mustard in the Mekong Delta of Vietnam. In order to establish a tool for a sustainable pest control program, the sex pheromone of H. undalis inhabiting the Mekong Delta was examined. GC-EAD and GC–MS analyses of pheromone gland extracts from the virgin females elucidated three new components, (Z)-11-tetradecenyl acetate (Z11-14:OAc), (Z)-11-hexadecenal (Z11-16:Ald), and (11E,13E)-11,13-hexadecadien-1-ol, in addition to the known pheromone component (11E,13E)-11,13-hexadecadienal (E11,E13-16:Ald). Double bond positions of the two monoenyl components were determined by GC–MS analysis of the pheromone extract treated with dimethyl disulfide. On the other hand, GC–MS analysis of the female body extract detected the unsaturated hydrocarbon (3Z,6Z,9Z)-3,6,9-tricosatriene (Z3,Z6,Z9-23:H). Field examinations of their synthetic compounds indicated the significant role of E11,E13-16:Ald as a major component and a clear synergistic effect of the two monoenyl compounds as a minor component. Although the 3:3:7 mixture of Z11-14:OAc, E11-16:Ald, and E11,E13-16:Ald captured the largest number of males among the tested mixtures, the activity was still quite a bit lower than that of virgin females. However, the 3:3:7:1 mixture, which was prepared by adding a small amount of Z3,Z6,Z9-23:H to the 3:3:7 ternary lure, succeeded in attracting males more powerfully than the females did. This strong synergistic effect was not observed when the triene was added to unmixed E11,E13-16:Ald, indicating important roles of not only the triene but also the two monoenyl compounds as natural pheromone components.  相似文献   

15.
Sex pheromone production in the female pine caterpillar moth, Dendrolimus punctatus is controlled by a PBAN-like substance located in the head of female moth. Pheromone titer was significantly decreased by decapitation of female moth, and restored by injection of either Hez-PBAN or head extract prepared from male or female moth. Stimulation of pheromone production by head extract followed a dose-dependent pattern from 0.5 to at least 4 head equivalent. A gland in vitro assay was used to study the relationship between gland incubation time and pheromone production as well as calcium involvement in the stimulation of pheromone production by head extract. Maximum pheromone production was occurred at 60 min after pheromone gland was incubated with two equivalents of head extracts. In vitro experiments showed that the presence of calcium in the incubation medium was necessary for stimulation of pheromone production. The calcium ionophore, A 23187, alone stimulated pheromone production. The pheromone components (Z,E)-5,7-dodecadienol and its acetate and propionate were produced in these experiments but in addition to the aldehyde, (Z,E)-5,7-dodecadienal was also found. This indicates that females are capable of producing four oxygenated functional groups. The PBAN-like substance control of the pheromone biosynthetic pathway was investigated by monitoring the incorporation of the labeled precursor into both pheromone and pheromone intermediates.  相似文献   

16.
The red clover casebearer, Coleophora deauratella Lienig & Zeller (Lepidoptera: Coleophoridae), is an invasive pest of Trifolium species (Fabaceae) in Canada. We identified candidate sex pheromone components from female pheromone gland extracts using coupled gas chromatographic–electroantennographic analysis detection. Three compounds elicited an electrophysiological response from antennae and were identified as: (Z)‐7‐dodecenyl acetate, (Z)‐5‐dodecenyl acetate, and (Z)‐7‐dodecen‐1‐ol. Field tests of the candidate pheromone components revealed that males were attracted to a binary mixture of (Z)‐7‐dodecenyl acetate and (Z)‐5‐dodecenyl acetate. Male moth trap capture was greatest in traps baited with lures containing 100:10 or 100:20 ratios of these pheromone components, respectively. Trap capture was reduced when (Z)‐5‐dodecenyl acetate was present below 10 or above 20% of (Z)‐7‐dodecenyl acetate. Equal numbers of male moths were captured in traps baited with 10, 100, and 1 000 μg of the attractive binary mixture. These findings allow for the development of a pheromone‐based monitoring system for this invasive pest of clover in Canada.  相似文献   

17.
Responses from pheromone‐specific receptor neurones in male Agrotis segetum (Denis & Schiffermüller) (Lepidoptera: Noctuidae) were recorded in a laboratory wind tunnel. Stimuli were: (1) rubber septum dispensers loaded with single components or a four‐component pheromone blend, (2) excised glands from female A. segetum, (3) constrained A. segetum females with extruded glands. Dose–response curves for three neurone‐types with different specificity were established. The neurones were specifically tuned to respond to either one of the two pheromone components (Z)‐5‐decenyl acetate and (Z)‐7‐dodecenyl acetate, or to the behavioural antagonist (Z)‐5‐decenol. In parallel, a behavioural dose–response curve with males flying upwind to a four‐component pheromone blend was established. There was a clear correlation between behavioural arrestment of upwind flight and maximum spiking activity in Z5–10:OAc‐specific neurones. The pheromone release rates of individual females and synthetic dispensers were compared. A load of 50–200 ng of Z5–10:OAc on a rubber septum elicited approximately the same neural response as one female gland.  相似文献   

18.
【目的】本研究旨在深入了解榆木蠹蛾Holcocerus vicarius(Walker)信息素通讯系统。【方法】在风洞中观察了榆木蠹蛾雄蛾对合成性信息素不同组分及其不同比例及剂量混合物的行为反应。【结果】单组分试验结果表明,仅有Z7-14:Ac能够引起少量雄蛾完成从兴奋到接触诱芯并出现预交尾的全部行为反应,其余4个单组分(E3-14:Ac,Z3E5-14:Ac,E3-14:OH和Z3-14:OH)只能引起雄蛾兴奋,均不能引起雄蛾向性信息素源定向飞行。二元混合物(Z7-14:Ac+E3-14:Ac)明显增加雄蛾完整的性行为反应比例,三元混合物(Z7-14:Ac+E3-14:Ac+Z3E5-14:Ac)比例为10∶4∶4,剂量为1 300μg时有71.7%雄蛾发生预交尾,剂量为1 000μg时有70.3%雄蛾发生预交尾,两者差异不显著(P0.05)。【结论】榆木蠹蛾风洞行为实验为进一步研究其性信息素相关生物学特性及应用性信息素对榆木蠹蛾进行综合防治奠定了基础。  相似文献   

19.
Athetis lepigone has been recorded in many countries in Europe and Asia, but it had never been documented as an agricultural pest until 2005. For the purpose of using the sex pheromone to control this pest, we conducted a study to identify the sex pheromone of A. lepigone by gas chromatography with an electroantennographic detector (GC‐EAD) and GC coupled with mass spectrometry (GC/MS) analyses. Three pheromone candidates were detected by GC‐EAD analysis in the extracts of the female sex pheromone gland, and two candidates were identified as (Z)‐7‐dodecenyl acetate (Z7‐12:OAc) and (Z)‐9‐tetradecenyl acetate (Z9‐14:OAc) in a ratio of 1:5 by mass spectral analysis of natural pheromone components and dimethyl disulphide adducts. In the field male trapping test, the traps baited with the binary blend captured high number of males, while traps with single component hardly caught males, indicating that the two components are essential for the male attractiveness. In addition, the optimum ratios of Z7‐12:OAc and Z9‐14:OAc were determined as 3:7–7:3, and the best doses for the binary blend (at ratio of 3:7 between Z7‐12:OAc and Z9‐14:OAc) were 0.25–0.5 mg/trap, based on the number of male catches. The identification of a highly attractive sex pheromone will help in developing efficient strategies for monitoring and control of A. lepigone.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号