共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
6.
7.
8.
9.
10.
11.
12.
13.
Regulation of delta-aminolaevulinic acid synthesis and protochlorophyllide regeneration in the leaves of dark-grown barley (Hordeum vulgare) seedlings. 总被引:1,自引:0,他引:1 下载免费PDF全文
Laevulinic acid (Lev) was used to control the rate of protocholorophyllide (PChl) regeneration in the leaves of dark-grown seedlings of barley (Hordeum vulgare) after a brief light treatment. In the leaves given Lev, at concentrations that severely block the resynthesis of protochlorophyllide, there was a massive overproduction of delta-aminolaevulinic acid (AmLev) that was well in excess of that required for the regeneration of PChl observed in the control leaves. Lev, at low concentrations, slightly delayed regeneration and held up, rather than inhibited, the utilization of the AmLev, which accumulated in the tissues. The overproduction and uncontrolled formation of AmLev also occurred in dark-grown leaves treated with a high concentration of Lev and given a light treatment of just sufficient energy to photoreduce only small quantities of the endogenous PChl. Experiments in which a high level of free PChl was induced by incubating the leaves in AmLev indicated that the active species of PChl was that associated with, and bound to, the PChl reductase protein. The results strongly demonstrate a close relationship between the PChl-protein complex and the ability of the leaves to synthesize AmLev. 相似文献
14.
We have previously shown that heat-shock in the dark evokes photomorphogenesis-like effects and circadian rhythmicity at the level of mRNAs when applied to emerging pea plantlets during several consecutive days [15]. Here we extend these findings by showing that a temperature shift to 10 °C above average and a single heat-shock are sufficient for induction of circadian rhythmicity and changes in morphogenesis. The maximum response to a single heat-shock occurs at days 2 to 3 after sowintreatments intensifies the morphogenetic effect. The heat-shocked plantlets have an elevated level of the xanthophyll lutein in the dark. Upon illumination of heat-shocked plantlets accumulation of chloroplast pigments as well as that of individual thylakoid membrane proteins and their corresponding mRNAs occur much faster than in the etiolated controls. This is reflected in an accelerated formation of grana stacks. Therefore, heat-shock seems to evoke a responsiveness of plantlets similar to that obtained earlier by other authors using pre-illumination. The working hypothesis is put forward that induction or synchronization of circadian rhythmicity by either light or heat-shock might be sufficient to explain the observed morphogenetic changes.Abbreviations CCI
reaction center I core
- CHS
cyclic heat-shock
- D1 protein
32 kDa psbA gene product
- ELIP
early light-inducible protein
- LHCP
light-harvesting chlorophyll a/b protein
- PCOR
protochlorophyllide oxidoreductase
- SSU
small subunit of ribulose-1,5-bisphosphate carboxylase
- WSP
proteins of the oxygen-evolving (water-splitting) complex 相似文献
15.
To understand the impact of water stress on the greening process, water stress was applied to 6-day-old etiolated seedlings of a drought-sensitive cultivar of rice (Oryza sativa), Pusa Basmati-1 by immersing their roots in 40 mm polyethylene glycol (PEG) 6000 (-0.69 MPa) or 50 mm PEG 6000 (-1.03 MPa) dissolved in half-strength Murashige and Skoog (MS)-nutrient-solution, 16 h prior to transfer to cool-white-fluorescent + incandescent light. Chlorophyll (Chl) accumulation substantially declined in developing water-stressed seedlings. Reduced Chl synthesis was due to decreased accumulation of chlorophyll biosynthetic intermediates, that is, glutamate-1-semialdehyde (GSA), 5-aminolevulinic acid, Mg-protoporphyrin IX monomethylester and protochlorophyllide. Although 5-aminolevulinic acid synthesis decreased, the gene expression and protein abundance of the enzyme responsible for its synthesis, GSA aminotransferase, increased, suggesting its crucial role in the greening process in stressful environment. The biochemical activities of Chl biosynthetic enzymes, that is, 5-aminolevulinic acid dehydratase, porphobilinogen deaminase, coproporphyrinogen III oxidase, porphyrinogen IX oxidase, Mg-chelatase and protochlorophyllide oxidoreductase, were down-regulated due to their reduced protein abundance/gene expression in water-stressed seedlings. Down-regulation of protochlorophyllide oxidoreductase resulted in impaired Shibata shift. Our results demonstrate that reduced synthesis of early intermediates, that is, GSA and 5-aminolevulinic acid, could modulate the gene expression of later enzymes of Chl biosynthesis pathway. 相似文献
16.
Abdullah Alaklabi Anis Ahamed Rahmah N. Al Qthanin Ibrahim A. Arif A. Panneerselvam Abdul Wali Al-Khulaidi 《Saudi Journal of Biological Sciences》2021,28(1):1123
An endangered and rare species Aloe pseudorubroviolacea from the plant family Asphodelaceae which is presently recorded as endangered in Saudi Arabia collected from Al-Baha region of Saudi Arabia its GPS Latitude and Longitude coordinates 19.8345, 41.5481. The chloroplast matK and rbcL gene was considered in this study based on molecular identification the size is about 571 and 664 bp respectively. From the sequence analysis the gene matK and rbcL confirm that this species is very much closely related with A. rubroviolacea and also inter related with the species Astroloba rubriflora, Chrysopogon gryllus, Chortolirion angolense shows about 98.7% sequence homology. The partial matK and rbcL gene sequence discriminate Aloe pseudorubroviolacea from the closely related plant species, A. rubroviolacea. The gene sequence of rbcL discriminates the species from Chrysopogon gryllus and Chortolirion angolense, demonstrates the nucleotide variations in 3 different sites (623C/T; 653C/T; 700C/A). This study showed that matK and rbcL sequence region of chloroplast gene used to authenticate the samples of A. pseudorubroviolacea and which provide to help in correct identification and conservation process of this medicinally valuable endangered plant species. 相似文献
17.
The photoreduction of protochlorophyllide (Pchl) in dark-grown leaves of barley (Hordeum vulgare) brings about the synthesis of delta-aminolaevulinic acid (AmLev). Manipulation of the Pchl level in the leaves by incubation in AmLev indicated that the production of AmLev was intimately related to the state of the Pchl reductase ternary complex. Free Pchl reductase that is unassociated with substrate/product appeared at first to be essential for the photoinduction of AmLev synthesis. Experiments on the photoreduction of Pchl in dark-grown leaves exposed to low-energy red-light, however, showed that photoreduction and AmLev synthesis would occur when the Pchl reductase, together with substrate, was maintained at relatively high endogenous concentration. Under such conditions the availability of free reductase protein would be negligible. An alternative scheme is presented, therefore, that can explain many, if not all, of the observations on AMLev synthesis and its close relationship to Pchl reduction, and which is based on a common supply of NADPH for the reduction of glutamate to AmLev and the synthesis of chorophyll(-ide). 相似文献
18.
We have characterized a nuclear mutant of barley, viridis-115, lacking photosystem II (PSII) activity and compared it to wild-type seedlings during light-induced chloroplast development. Chloroplasts isolated from wild-type and viridis-115 seedlings illuminated for 1 h synthesized similar polypeptides and had similar protein composition. After 16 h of illumination, however, mutant plastids exhibited reduced ability to radiolabel D1, CP47, and several low Mr membrane polypeptides, and by 72 h, synthesis of these proteins was undetectable. Immunoblot analysis showed that plastids of dark-grown wild-type barley lacked several PSII proteins (D1, D2, CP47, and CP43) and that 16 h of illumination resulted in the accumulation of these polypeptides. In contrast, these polypeptides did not accumulate in illuminated viridis-115 seedlings, although mutant plastids accumulated two PSII proteins that participate in oxygen evolution, oxygen-evolving enhancers 1 and 3. Northern analysis showed that the levels of psbA and psbB mRNA in mutant plastids were equal to or greater than levels in wild-type plastids throughout the developmental period examined here. These results indicate that the nuclear mutation present in viridis-115 affects the translation and stability of the chloroplast-encoded D1 and CP47 polypeptides and that its influence is expressed after the onset of light-induced chloroplast development. 相似文献
19.
20.
Protein synthesis in chloroplasts. VIII. Differential synthesis of chloroplast proteins during spinach leaf development 总被引:6,自引:0,他引:6
Excised primary leaves of spinach (Spinacia oleracea) incorporate [35S]-methionine into a number of chloroplast polypeptides. The ratio of incorporation of isotope into the large subunit of ribulose bisphosphate carboxylase relative to a thylakoid polypeptide (peak D) decreases during leaf development in whole leaves; this changing pattern of incorporation is also observed in isolated chloroplasts where these two polypeptides are the major products of protein synthesis. Chloroplast RNA prepared from developing leaves was translated in a reticulocyte lysate extract to yield full-length carboxylase large subunit and peak D polypeptides. The fidelity of translation of these two polypeptides was checked by partial protease digestion. Changes in the synthesis of the large subunit of the carboxylase and peak D in developing leaves are reflected in changes in the amount of translatable mRNA for these two polypeptides. 相似文献