首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 9 毫秒
1.
Hoyos ME  Zhang S 《Plant physiology》2000,122(4):1355-1364
Reversible protein phosphorylation/dephosphorylation plays important roles in signaling the plant adaptive responses to salinity/drought stresses. Two protein kinases with molecular masses of 48 and 40 kD are activated in tobacco cells exposed to NaCl. The 48-kD protein kinase was identified as SIPK (salicylic acid-induced protein kinase), a member of the tobacco MAPK (mitogen-activated protein kinase) family that is activated by various other stress stimuli. The activation of the 40-kD protein kinase is rapid and dose-dependent. Other osmolytes such as Pro and sorbitol activate these two kinases with similar kinetics. The activation of 40-kD protein kinase is specific for hyperosmotic stress, as hypotonic stress does not activate it. Therefore, this 40-kD kinase was named HOSAK (high osmotic stress-activated kinase). HOSAK is a Ca(2+)-independent kinase and uses myelin basic protein (MBP) and histone equally well as substrates. The kinase inhibitor K252a rapidly activates HOSAK in tobacco cells, implicating a dephosphorylation mechanism for HOSAK activation. Activation of both SIPK and HOSAK by high osmotic stress is Ca(2+) and abscisic acid (ABA) independent. Furthermore, mutation in SOS3 locus does not affect the activation of either kinase in Arabidopsis seedlings. These results suggest that SIPK and 40-kD HOSAK are two new components in a Ca(2+)- and ABA-independent pathway that may lead to plant adaptation to hyperosmotic stress.  相似文献   

2.
3.
Mutations within the WNK1 (with-no-K[Lys] kinase-1) gene cause Gordon's hypertension syndrome. Little is known about how WNK1 is regulated. We demonstrate that WNK1 is rapidly activated and phosphorylated at multiple residues after exposure of cells to hyperosmotic conditions and that activation is mediated by the phosphorylation of its T-loop Ser382 residue, possibly triggered by a transautophosphorylation reaction. Activation of WNK1 coincides with the phosphorylation and activation of two WNK1 substrates, namely, the protein kinases STE20/SPS1-related proline alanine-rich kinase (SPAK) and oxidative stress response kinase-1 (OSR1). Small interfering RNA depletion of WNK1 impairs SPAK/OSR1 activity and phosphorylation of residues targeted by WNK1. Hyperosmotic stress induces rapid redistribution of WNK1 from the cytosol to vesicular structures that may comprise trans-Golgi network (TGN)/recycling endosomes, as they display rapid movement, colocalize with clathrin, adaptor protein complex 1 (AP-1), and TGN46, but not the AP-2 plasma membrane-coated pit marker nor the endosomal markers EEA1, Hrs, and LAMP1. Mutational analysis suggests that the WNK1 C-terminal noncatalytic domain mediates vesicle localization. Our observations shed light on the mechanism by which WNK1 is regulated by hyperosmotic stress.  相似文献   

4.
The phosphatidylinositol 3-kinase (PI3K)/Akt pathway tightly regulates adipose cell differentiation. Here we show that loss of Akt1/PKBα in primary mouse embryo fibroblast (MEF) cells results in a defect of adipocyte differentiation. Adipocyte differentiation in vitro and ex vivo was restored in cells lacking both Akt1/PKBα and Akt2/PKBβ by ectopic expression of Akt1/PKBα but not Akt2/PKBβ. Akt1/PKBα was found to be the major regulator of phosphorylation and nuclear export of FoxO1, whose presence in the nucleus strongly attenuates adipocyte differentiation. Differentiation-induced cell division was significantly abrogated in Akt1/PKBα-deficient cells, but was restored after forced expression of Akt1/PKBα. Moreover, expression of p27Kip1, an inhibitor of the cell cycle, was down regulated in an Akt1/PKBα-specific manner during adipocyte differentiation. Based on these data, we suggest that the Akt1/PKBα isoform plays a major role in adipocyte differentiation by regulating FoxO1 and p27Kip1.  相似文献   

5.
Caspase 9 is a critical component of the mitochondrial or intrinsic apoptotic pathway and is activated by Apaf-1 following release of cytochrome c from mitochondria in response to a variety of stimuli. Caspase 9 cleaves and activates effector caspases, mainly caspase 3, leading to the demise of the cell. Survival signaling pathways can impinge on this pathway to restrain apoptosis. Here, we have identified Ser144 of human caspase 9as an inhibitory site that is phosphorylated in a cell-free system and in cells in response to the protein phosphatase inhibitor okadaic acid. Inhibitor sensitivity and interactions with caspase 9 indicate that the predominant kinase that targets Ser144 is the atypical protein kinase C isoform zeta (PKCzeta). Prevention of Ser144 phosphorylation by inhibition of PKCzeta or mutation of caspase 9 promotes caspase 3 activation. Phosphorylation of serine 144 in cells is also induced by hyperosmotic stress, which activates PKCzeta and regulates its interaction with caspase 9, but not by growth factors, phorbol ester, or other cellular stresses. These results indicate that phosphorylation and inhibition of caspase 9 by PKCzeta restrain the intrinsic apoptotic pathway during hyperosmotic stress. This work provides further evidence that caspase 9 acts as a focal point for multiple protein kinase signaling pathways that regulate apoptosis.  相似文献   

6.
The conditions under which Pb(II) promotes dephosphorylation of nucleotides have been studied with the Pb(II) complexes of several isomers of AMP, dAMP, GMP, and dGMP. A number of factors which together control the dephosphorylation reaction have been identified. These include the tendency of Pb(II)-induced nucleotide base stacking, as evidenced by large enhancement in ultraviolet circular dichroism, to occur in the complexes and limit the reaction; hydroxylation of the metal, either with weakening of the lead-nucleotide binding, or eventually with displacement of the nucleotide; and the solubility of the complexes, which limits the reaction, but is increased by raising the temperature and by hydroxylation of the complexes. The pH range in which both base stacking and metal hydrolysis are minimized can define a "reaction window" for the complexes.  相似文献   

7.
1. Nuclei of the calf uterus are endowed with an activity inactivating crude oestrogen-receptor complex. This activity has been partially purified. It shows a very high affinity for the oestrogen-receptor complex (Km = 0.8 X 10(-9) mol of specific [3H]oestradiol-17 beta-binding sites/l) as well as for the oestrogen-free receptor (Km = 1.5 X 10(-9) mol of specific [3H]oestradiol-17 beta binding sites/l). 2. The nuclear receptor-inactivating activity is enhanced by dithiothreitol and inhibited by several phosphatase inhibitors as well as by 4-nitrophenyl phosphate, as well known phosphatase substrate. This inhibition shows that a dephosphorylation process is required for the receptor inactivation. 3. The purified nuclear activity also inactivates pure receptor and phosphatase inhibitors prevent this inactivation. From these observations it appears that receptor inactivation is due to a nuclear phosphatase directly acting on the oestrogen receptor. 4. The nuclear localization of the receptor-inactivating activity, its high affinity for specific oestrogen binding sites and, as previously reported, its presence only in oestrogen target tissues suggest that this activity is the same as that involved in the nuclear loss of the receptor observed in intact cells.  相似文献   

8.
The catalytic subunit of cAMP-dependent protein kinase (PKA) is phosphorylated at threonine 197 and serine 338. Phosphorylation of threonine 197, located in the activation loop, is required for coordinating the active site conformation and optimal enzymatic activity. However, this phosphorylation has not been widely appreciated as a regulatory site because of the apparent constitutive nature of the phosphorylation and the general resistance of the kinase to phosphatase treatment. We demonstrate here that the observed resistance of the catalytic subunit to dephosphorylation is due, in part, to the presence of the highly nucleophilic cysteine 199 located proximal to the phosphate on threonine 197. Experiments performed in vitro demonstrated that mutation (cysteine 199 to alanine), oxidation, such as by glutathionylation or internal disulfide bond formation, or alkylation of the C-subunit enhanced its ability to be dephosphorylated. Furthermore, rephosphorylation of reduced C-subunit by PDK1 created a cycle whereby the inactive kinase could be reactivated. To demonstrate that thiol modification of PKA can lead to enhanced dephosphorylation in vivo, PC12 cells were treated with N-ethylmaleimide (NEM). Such treatment resulted in complete PKA inactivation and dephosphorylation of threonine 197. This effect of NEM was contingent upon prior treatment of the cells with PKA activators, demonstrating the resistance of the holoenzyme to thiol alkylation-mediated dephosphorylation. Our results also demonstrated that NEM treatment of PC12 cells enhanced the dephosphorylation of the protein kinase Calpha activation loop, suggesting a common mechanism of regulation among members of the AGC family of kinases.  相似文献   

9.
The mitogen-activated protein (MAP) kinase phosphatase-3 (MKP3) is a dual specificity phosphatase that specifically inactivates one subfamily of MAP kinases, the extracellular signal-regulated kinases (ERKs). Inactivation of MAP kinases occurs by dephosphorylation of Thr(P) and Tyr(P) in the TXY kinase activation motif. To gain insight into the mechanism of ERK2 inactivation by MKP3, we have carried out an analysis of the MKP3-catalyzed dephosphorylation of the phosphorylated ERK2. We find that ERK2/pTpY dephosphorylation by MKP3 involves an ordered, distributive mechanism in which MKP3 binds the bisphosphorylated ERK2/pTpY, dephosphorylates Tyr(P) first, dissociates and releases the monophosphorylated ERK2/pT, which is then subjected to dephosphorylation by a second MKP3, yielding the fully dephosphorylated ERK2. The bisphosphorylated ERK2 is a highly specific substrate for MKP3 with a k(cat)/K(m) of 3.8 x 10(6) m(-1) s(-1), which is more than 6 orders of magnitude higher than that for small molecule aryl phosphates and an ERK2-derived phosphopeptide encompassing the pTEpY motif. This strikingly high substrate specificity displayed by MKP3 may result from a combination of high affinity binding interactions between the N-terminal domain of MKP3 and ERK2 and specific ERK2-induced allosteric activation of the MKP3 C-terminal phosphatase domain.  相似文献   

10.
In this report, we analyse the effects of osmotic shock on signal transduction in CHO cells. We demonstrate that at least three different kinase cascades are switched on upon osmotic shock, namely PKA, AMPK, and MLTK. Whereas PKA from cells treated with forskolin activated stress kinase p38, PKA from cells treated with sorbitol did not activate p38, although the enzyme is activated in both cases as analysed in vitro using a specific peptide target. Further, osmolar shock activated AMPK but treatment of the cells with the AMPK activator 5-amino-4-imidazolecarboxamide (AICAr) did not result in p38 activation, strongly suggesting that AMPK is not involved in stress kinase activation. Transfection of CHO cells with dominant negative recombinants of MLTKalpha resulted in inhibition of sorbitol-mediated p38 activation, indicating that the mixed-lineage kinase is involved in the activation of p38 by sorbitol. Finally, in CHO cells overexpressing wild-type MLTKalpha, no activation of AMPK of PKA could be demonstrated, indicating that the activated kinase cascades are not involved in a cross-talk process.  相似文献   

11.
Protein kinase C can autophosphorylate in vitro and has also been shown to be phosphorylated in vivo. In order to investigate the factors that may determine the phosphorylation state of protein kinase C in vivo, we determined the ability of the ATP + Mg2+-dependent phosphatase and the polycation-stimulated (PCS) phosphatases to dephosphorylate protein kinase C in vitro. These studies show that all the oligomeric forms of the PCS phosphatases (PCSH1, PCSH2, PCSM and PCSL phosphatases) are effective in the dephosphorylation of protein kinase C, showing 34-82% of the activity displayed with phosphorylase a as substrate. In contrast both the catalytic subunit of the PCS phosphatase and that of the ATP+Mg2+-dependent phosphatase showed only weak activity with protein kinase C as substrate. All these phosphatases, however, were activated by protamine (Ka 14-16 micrograms/ml) through what appears to be a substrate-directed effect. The relative role of these phosphatases in the control of protein kinase C is discussed.  相似文献   

12.
13.
To date, a large number of sequences of protein kinases that belong to the sucrose nonfermenting1-related protein kinase2 (SnRK2) family are found in databases. However, only limited numbers of the family members have been characterized and implicated in abscisic acid (ABA) and hyperosmotic stress signaling. We identified 10 SnRK2 protein kinases encoded by the rice (Oryza sativa) genome. Each of the 10 members was expressed in cultured cell protoplasts, and its regulation was analyzed. Here, we demonstrate that all family members are activated by hyperosmotic stress and that three of them are also activated by ABA. Surprisingly, there were no members that were activated only by ABA. The activation was found to be regulated via phosphorylation. In addition to the functional distinction with respect to ABA regulation, dependence of activation on the hyperosmotic strength was different among the members. We show that the relatively diverged C-terminal domain is mainly responsible for this functional distinction, although the kinase domain also contributes to these differences. The results indicated that the SnRK2 protein kinase family has evolved specifically for hyperosmotic stress signaling and that individual members have acquired distinct regulatory properties, including ABA responsiveness by modifying the C-terminal domain.  相似文献   

14.
15.
Mammalian STE20-like kinase 2 (MST2), a member of the STE20-like kinase family, has been shown in previous studies to undergo proteolytic activation by caspase-3 during cell apoptosis. A few studies have also implicated protein phosphorylation reactions in MST2 regulation. In this study, we examined the mechanism of MST2 regulation with an emphasis on the relationship between caspase-3 cleavage and protein phosphorylation. Both the full-length MST2 and the caspase-3-truncated form of MST2 overexpressed in 293T cells exist in a phosphorylated state. On the other hand, the endogenous full-length MST2 from rat thymus or from proliferating cells is mainly unphosphorylated whereas the caspase-3-truncated endogenous MST2 from apoptotic cells is highly phosphorylated. Cell transfection studies using mutant MST2 constructs indicate that MST2 depends on the autophosphorylation of a unique threonine residue, Thr(180), for kinase activity. The autophosphorylation reaction shows strong dependence on MST2 concentration suggesting that it is an intermolecular reaction. While both the full-length MST2 and the caspase-3-truncated form of MST2 undergo autophosphorylation, the two forms of the phosphorylated MST2 display marked difference in susceptibility to protein phosphatases. The full-length phospho-MST2 is rapidly dephosphorylated by protein phosphatase 1 or protein phosphatase 2A whereas the truncated MST2 is remarkably resistant to the dephosphorylation. Based on the present results, a novel molecular mechanism for MST2 regulation in apoptotic cells is postulated. In normal cells, because of the low concentration and the ready reversal of the autophosphorylation by protein phosphatases, MST2 is present mainly in the unphosphorylated and inactive state. During cell apoptosis, MST2 is cleaved by caspase-3 and undergoes irreversible autophosphorylation, thus resulting in the accumulation of active MST2.  相似文献   

16.
AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non- ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.  相似文献   

17.
The extracellular signal-regulated protein kinase 2 (ERK2) is the founding member of a family of mitogen-activated protein kinases (MAPKs) that are central components of signal transduction pathways for cell proliferation, stress responses, and differentiation. The MAPKs are unique among the Ser/Thr protein kinases in that they require both Thr and Tyr phosphorylation for full activation. The dual phosphorylation of Thr-183 and Tyr-185 in ERK2 is catalyzed by MAPK/ERK kinase 1 (MEK1). However, the identity and relative activity of protein phosphatases that inactivate ERK2 are less well established. In this study, we performed a kinetic analysis of ERK2 dephosphorylation by protein phosphatases using a continuous spectrophotometric enzyme-coupled assay that measures the inorganic phosphate produced in the reaction. Eleven different protein phosphatases, many previously suggested to be involved in ERK2 regulation, were compared, including tyrosine-specific phosphatases (PTP1B, CD45, and HePTP), dual specificity MAPK phosphatases (VHR, MKP3, and MKP5), and Ser/Thr protein phosphatases (PP1, PP2A, PP2B, PP2C alpha, and lambda PP). The results provide biochemical evidence that protein phosphatases display exquisite specificity in their substrate recognition and implicate HePTP, MKP3, and PP2A as ERK2 phosphatases. The fact that ERK2 inactivation could be carried out by multiple specific phosphatases shows that signals can be integrated into the pathway at the phosphatase level to determine the cellular response to external stimuli. Important insights into the roles of various protein phosphatases in ERK2 kinase signaling are obtained, and further analysis of the mechanism by which different protein phosphatases recognize and inactivate MAPKs will increase our understanding of how this kinase family is regulated.  相似文献   

18.
AGC kinases, including the three Akt (protein kinase B) isoforms, protein kinase A (PKA) and all protein kinase C (PKC) isoforms, require activation loop phosphorylation (threonine 308 in Akt1) as well as phosphorylation of a C-terminal residue (serine 473 in Akt1) for catalytic activity and phosphorylation of downstream targets. Conversely, phosphatases reverse these phosphorylations. Virtually all cellular processes are affected by AGC kinases, a circumstance that has led to intense scrutiny of the molecular mechanisms that regulate phosphorylation of these kinases. Here, we review a new layer of control of phosphorylation in Akt, PKA and PKC pointing to ATP binding pocket occupancy as a means to decelerate dephosphorylation of these and, potentially, other kinases. This additional level of kinase regulation opens the door to search for new functional motifs for the rational design of non-ATP-competitive kinase inhibitors that discriminate within and between protein kinase families.Key words: inhibitors hijacking kinase activation, activation loop phosphorylation, dephosphorylation, phosphatase resistance, PKA, PKB, PKC  相似文献   

19.
The biochemical events encompassing the dephosphorylation of protein kinase C substrates by protein kinase A activators have been investigated in a neurotumor cell line, NCB-20. Treatment of [32P]orthophosphate-labeled cells with protein kinase A activators (e.g. forskolin, dibutyryl cAMP, prostaglandin E1) resulted in an inhibition of protein kinase C activity due to a failure of the protein kinase C complex to translocate into the membrane. Phospholipase C activity, as measured by the synchronous release of diacylglycerol and inositol phosphates (inositol 1,4,5-trisphosphate, inositol 1,4-bisphosphate, and inositol 1-phosphate) in response to bradykinin, was inhibited up to 50% following exposure to protein kinase A activators. At the same time, phospholipase C-specific inositol phospholipid substrates (phosphatidylinositol, phosphatidylinositol 4-phosphate, and phosphatidylinositol 4,5-bisphosphate) were found to accumulate in NCB-20 cells following treatment with protein kinase A activators. This suggests that phospholipase C may be altered through protein kinase A-mediated protein phosphorylation. Second messenger generation (inositol phosphates, diacylglycerol, and Ca2+) is therefore inhibited through cyclic AMP-mediated shutdown of the inositol lipid cycle at the level of phospholipase C.  相似文献   

20.
Cells slow down cell cycle progression in order to adapt to unfavorable stress conditions. Yeast (Saccharomyces cerevisiae) responds to osmotic stress by triggering G1 and G2 checkpoint delays that are dependent on the mitogen-activated protein kinase (MAPK) Hog1. The high-osmolarity glycerol (HOG) pathway is also activated by arsenite, and the hog1Δ mutant is highly sensitive to arsenite, partly due to increased arsenite influx into hog1Δ cells. Yeast cell cycle regulation in response to arsenite and the role of Hog1 in this process have not yet been analyzed. Here, we found that long-term exposure to arsenite led to transient G1 and G2 delays in wild-type cells, whereas cells that lack the HOG1 gene or are defective in Hog1 kinase activity displayed persistent G1 cell cycle arrest. Elevated levels of intracellular arsenite and “cross talk” between the HOG and pheromone response pathways, observed in arsenite-treated hog1Δ cells, prolonged the G1 delay but did not cause a persistent G1 arrest. In contrast, deletion of the SIC1 gene encoding a cyclin-dependent kinase inhibitor fully suppressed the observed block of G1 exit in hog1Δ cells. Moreover, the Sic1 protein was stabilized in arsenite-treated hog1Δ cells. Interestingly, Sic1-dependent persistent G1 arrest was also observed in hog1Δ cells during hyperosmotic stress. Taken together, our data point to an important role of the Hog1 kinase in adaptation to stress-induced G1 cell cycle arrest.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号