首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have demonstrated that in normal and b/b rat red blood cells (RBCs) hsp70-like protein (heat shock protein 70-like) is localized in the cytosol and it is exported via exosomes during in vivo reticulocytes maturation. As we have presumed, in the mutant (b/b) rat, hsp70-like protein transfers from cytosol to the RBC membrane. In the normal rat RBCs this happens when those cells are submitted to heat stress conditions. Our study indicates that the presence of hsp70-like protein in the b/b rat RBC plasma membrane is consistent with a primary defect and is not a consequence of life long stress, i.e. hypoxia.  相似文献   

2.
Several substrates of endogenous Ca2+- and phospholipid-sensitive protein kinase have been identified in plasma membranes and cytosol from rat adipocytes. Specifically, Ca2+ stimulates phosphorylation of a 40-kDa protein in isolated plasma membranes, an effect which is further enhanced by the addition of the phorbol ester tetradecanoylphorbol acetate and phospholipase C. The 40-kDa phosphoprotein is also present in the cytosol, and its phosphorylation is stimulated in a Ca2+-dependent manner by phosphatidylserine, diacylglycerol, and phorbol ester. Direct addition of insulin to adipocyte plasma membranes stimulates phosphorylation of the 40-kDa protein in a concentration-dependent manner. Maximal stimulation was observed at 10(-8) M insulin. At 6.7 X 10(-8) M insulin, phosphorylation of the 40-kDa protein was stimulated by 68 +/- 9% (n = 6). Addition of phorbol ester (1, 10, and 100 ng/ml) plus insulin further enhanced the phosphorylation (286 +/- 39, n = 3; 350 +/- 65, n = 4; and 323 +/- 42%, n = 5, stimulation, respectively). Analysis of the 40-kDa phosphoprotein by two-dimensional polyacrylamide gel electrophoresis revealed that incubations containing no additions, insulin, and/or phorbol ester all resulted in the generation of a single and apparently identical phosphorylated 40-kDa species. These studies indicate that insulin and Ca2+- and phospholipid-dependent protein kinase stimulate phosphorylation of a 40-kDa protein in adipocyte plasma membranes.  相似文献   

3.
Cultured rat astrocytes were exposed for 1 or 3 h to acidic medium (pH adjusted to 5.0, 5.5, or 6.0). Radioactive labeling for 3 h after exposure to acidic medium revealed increased synthesis of many proteins, including an inducible 68-kDa protein. Optimal extracellular (medium) pH for the induction of this 68-kDa protein was 5.5. Immunoblotting demonstrated that this 68-kDa protein induced by acidosis was the 68-kDa heat-shock protein previously described in cultured astrocytes.  相似文献   

4.
The mutagenicities of various carcinogens induced by liver microsomes are increased in the presence of liver cytosol in rodents. It still remains, however, to be clarified which factor or factors in the cytosol enhance(s) the microsome-mediated mutagenicities. In the present study, we sought to identify the enhancing factor in liver cytosol prepared from rats using the microsome-mediated Salmonella mutagenicity induced by 2-amino-6-methyldipyrido [1,2-a:3',2'-d] imidazole (Glu-P-1). By a series of chromatographic steps, we purified a 16-kDa protein on SDS-PAGE from the cytosol of rat livers. Partial amino acid sequences of this protein revealed that the 16-kDa protein was copper, zinc-superoxide dismutase (CuZn-SOD). The purified CuZn-SOD enhanced the microsome-mediated mutagenicities of several heterocyclic amines and aromatic amines. Furthermore, bovine and human CuZn-SOD also enhanced the microsome-mediated mutagenicity of Glu-P-1. The CuZn-SOD caused an increase in the mutagenicity of N-hydroxylated Glu-P-1 formed from Glu-P-1 by the microsomes, although CuZn-SOD did not affect either the formation or the stability of the N-hydroxylated derivative. These findings suggest that the enhancing cytosol factor for the mutagenicity of Glu-P-1 is CuZn-SOD, which stimulates the mutagenicity of N-hydroxylated Glu-P-1 without changing its metabolism.  相似文献   

5.
The P68 protein kinase is a serine/threonine kinase induced by interferon treatment and activated by double-stranded RNAs (dsRNAs). Once activated, the kinase phosphorylates its natural substrate, the alpha subunit of eukaryotic initiation factor 2 (eIF-2) leading to potential limitations in functional eIF-2 and decreases in protein synthesis initiation. We have recently purified from influenza virus-infected cells a P68 kinase inhibitor, found to be a 58-kDa cellular protein. We have now investigated the mechanisms by which the 58-kDa inhibitor regulates P68 kinase activity and how the inhibitor itself is controlled. The 58-kDa inhibitor did not function by degrading or sequestering the dsRNA activator of P68 but could repress phosphorylation of eIF-2 alpha by an already activated protein kinase. Utilizing antibody prepared against a 58-kDa-specific peptide, we showed that the 58-kDa proteins from infected and uninfected cells were present in equivalent amounts. Although kinase inhibitory activity could not be detected in crude uninfected cell extracts, ammonium sulfate treatment unmasked this activity and allowed purification of the cellular inhibitor with identical chromatographic properties as that from influenza virus-infected cells. Finally, we have identified and partially purified a specific inhibitor of the 58-kDa protein which we refer to as an "anti-inhibitor." Based on these data, we present a model depicting the complex regulation of the interferon-induced protein kinase in eukaryotic cells.  相似文献   

6.
The relationship between the 68-kilodalton microtubule-associated protein (68KMAP) and the major heat-induced protein (HSP70) in rat and human cells was investigated by comparison of their heat induction properties and by tryptic and Cleveland peptide mapping procedures. HSP70 synthesis was induced by heat shock of rat and human cells, whereas 68KMAP was a major synthesised protein in the absence of heat shock, with its synthesis being only slightly increased on heat shock. Tryptic peptide mapping, however, indicated strong peptide homology between the two proteins. These data, therefore, confirm that 68KMAP represents a constitutively expressed, heat-shock cognate gene. Two-dimensional gel electrophoretic analysis of subcellular fractions of rat brain, combined with peptide mapping procedures, indicated that 68KMAP exists as at least two isoforms separable by isofocussing, the more acidic of which (alpha 68KMAP) is present in fractions enriched in microtubules, cytosol, microsomes, synaptosomal plasma membranes, and synaptic vesicles, and the more basic of which (beta 68KMAP) is present predominantly in fractions enriched in synaptic vesicles and synaptosomal plasma membranes. These two forms are distinguishable in terms of changes in Cleveland peptide maps, and we conclude that alpha- and beta 68KMAP, therefore, represent distinct forms. The significance of these findings to the molecular pathogenesis of Down's syndrome in the human brain is discussed.  相似文献   

7.
A protein doublet (M(r) = 68,000) that copurifies with chicken cardiac collagen types I and III is purified and characterized in the present study. Peptide mapping and amino terminus sequencing for both 68-kDa polypeptides show they have similar structures. This is supported by amino terminus sequencing of a 39-kDa proteolytic fragment of each polypeptide. The 68-kDa polypeptides appear at pI 6.7-6.8 in two-dimensional gels. Under nonreducing, electrophoretic conditions, the doublet appears as a large multimer or aggregate. Amino acid sequencing of the protein shows that its amino terminus contains a heptapeptide (VCLXXGK) that appears in the heparin/fibrin-binding domain of fibronectin and the collagen-binding domain of laminin. Cardiac myocytes synthesize and secrete the protein in vitro onto cell surfaces and onto the substratum. Indirect immunofluorescence shows the protein first appears in the chicken subepicardium at approximately 10 days following fertilization. As collagen accumulates in the subepicardium and the volume of the subepicardial space increases, the 68-kDa protein is found predominantly at the interface between myocardial cells and the connective tissue and between epicardial cells and the connective tissue. In adult hearts, the protein is also present at lower concentrations in endomysial connective tissue. The 68-kDa protein is also present in the skeletal muscle endomysium of embryonic chickens. Electron microscopic immunocytochemistry shows the 68-kDa protein is located at the surface of subepicardial collagen fibers. In addition, a direct interaction between the 68-kDa protein and collagen are indicated by: 1) equilibrium gel filtration of the 68-kDa protein in the presence of gelatin, 2) gelatin affinity chromatography of the 68-kDa protein, and 3) comigration of type I collagen and the 68-kDa protein during gel filtration under reducing conditions. The 68-kDa protein exhibits no collagenase activity under native conditions or in zymograms. Together, the data indicate that the 68-kDa protein is a novel collagen-associated protein appearing in late epicardial development.  相似文献   

8.
Previously we purified a cytosolic factor that stimulates the import of the extrapeptide (the synthetic peptide of the presequence of ornithine aminotransferase) into the mitochondrial matrix (Ono, H., and Tuboi, S., 1988, J. Biol. Chem. 263, 3188-3193). In this work this cytosolic factor was shown also to stimulate the import of the precursors of ornithine aminotransferase, a large subunit of succinate dehydrogenase, and sulfite oxidase. The amounts of these precursors bound to the outer mitochondrial membrane were increased by this cytosolic factor, suggesting that the cytosolic factor participates in the recognition step in the import process of the precursor protein. When the cytosolic factor was applied to an ATP-agarose column, the import-stimulating activity was recovered entirely in the unadsorbed fraction. Immunochemical studies showed that in these conditions the 70-kDa heat shock-related protein (Hsp 70) was present exclusively in the fraction adsorbed to the ATP-agarose column. The cytosolic factor is thus different from the 70-kDa heat shock-related protein, which was identified as a factor required for the import of mitochondrial proteins in yeast. The cytosolic factor was also detected in the cytosol of rat liver cells, and a considerable amount of this factor was recovered from rat liver mitochondria by washing them with high salt buffer, suggesting that the cytosolic factor has affinity to the outer mitochondrial membrane and binds to its receptor on the membrane. From these results, we conclude that the cytosolic factor forms a complex with the precursor of mitochondrial protein and then this complex binds to the outer mitochondrial membrane, probably via the receptor of the cytosolic factor.  相似文献   

9.
D A Stetler  S T Jacob 《Biochemistry》1985,24(19):5163-5169
Poly(A) polymerases were purified from the cytosol fraction of rat liver and Morris hepatoma 3924A and compared to previously purified nuclear poly(A) polymerases. Chromatographic fractionation of the hepatoma cytosol on a DEAE-Sephadex column yielded approximately 5 times as much poly(A) polymerase as was obtained from fractionation of the liver cytosol. Hepatoma cytosol contained a single poly(A) polymerase species [48 kilodaltons (kDa)] which was indistinguishable from the hepatoma nuclear enzyme (48 kDa) on the basis of CNBr cleavage maps. Liver cytosol contained two poly(A) polymerase species (40 and 48 kDa). The CNBr cleavage patterns of these two enzymes were distinct from each other. However, the cleavage pattern of the 40-kDa enzyme was similar to that of the major liver nuclear poly(A) polymerase (36 kDa), and approximately three-fourths of the peptide fragments derived from the 48-kDa species were identical with those from the hepatoma enzymes (48 kDa). NI-type protein kinases from liver or hepatoma stimulated hepatoma nuclear and cytosolic poly(A) polymerases 4-6-fold. In contrast, the liver cytosolic 40- and 48-kDa poly(A) polymerases were stimulated only slightly or inhibited by similar units of the protein kinases. Antibodies produced in rabbits against purified hepatoma nuclear poly(A) polymerase reacted equally well with hepatoma nuclear and cytosolic enzyme but only 80% as well with the liver cytosolic 48-kDa poly(A) polymerase and not at all with liver cytosolic 40-kDa or nuclear 36-kDa enzymes. Anti-poly(A) polymerase antibodies present in the serum of a hepatoma-bearing rat reacted with hepatoma nuclear and cytosolic poly(A) polymerases to the same extent but only 40% as well with the liver cytosolic 48-kDa enzyme.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
Immunoblot analysis with polyclonal antibodies raised against a recombinant rat cutaneous fatty acid-binding protein revealed a 30-kDa protein other than the 15-kDa fatty acid-binding protein in rat skin cytosol. This protein was present in a number of rat organs and in mouse 3T3 L1 cells. The amino acid sequences of the enzymatic peptides of the 30-kDa protein extracted from SDS-PAGE gels suggested that it was a mixture of the subunits of the eukaryotic signaling molecule, 14-3-3 protein. Glutathione S-transferase fusion proteins of 14-3-3 protein subunits were examined for cross-reaction by Western blotting, and the epsilon-subunit alone was found to be immunoreactive, so far as tested. It is likely that the 30-kDa protein detected in the rat tissues by the antibodies is the 14-3-3 protein epsilon-subunit. Although there is no apparent sequence similarity between the fatty acid-binding protein and the 14-3-3 protein subunit, they appear to share a common structural element recognized by the antibodies. Since 14-3-3 proteins and fatty acid-binding proteins are known to interact with a wide variety of cellular proteins, the presence of a common local structure might mutually modulate such interactions.  相似文献   

11.
We have previously reported that molybdate-stabilized cytosol prepared from 32P-labeled L-cells contains two phosphoproteins (a 90-92- and a 98-100-kDa protein) that elute from an affinity resin of deoxycorticosterone-derivatized agarose in a manner consistent with the predicted behavior of the glucocorticoid receptor (Housley, P. R., and Pratt, W. B. (1983) J. Biol. Chem. 258, 4630-4635). In the present work we report that both the 90-92- and 98-100-kDa 32P-labeled proteins are also extracted from molybdate-stabilized cytosol by incubation with a monoclonal antibody and protein A-Sepharose. Only the 98-100-kDa protein is specifically labeled when either L-cell cytosol or L-cell cytosol proteins bound to the affinity resin are labeled with the glucocorticoid binding site-specific affinity ligand [3H]dexamethasone 21-mesylate. The 98-100-kDa protein labeled with [3H]dexamethasone mesylate is adsorbed to protein A-Sepharose in an immune-specific manner after reaction with the monoclonal antibody. Sodium dodecyl sulfate-polyacrylamide gel analysis of the protein A-Sepharose-bound material resulting from incubating the monoclonal antibody with a mixture of 32P-labeled cytosol and [3H]dexamethasone mesylate-labeled cytosol demonstrates identity of the 98-100-kDa [3H]dexamethasone mesylate-labeled band with the 98-100-kDa 32P-labeled band and clear separation from the nonsteroid-binding 90-92-kDa phosphoprotein. The results of immunoblot experiments demonstrate that the 90-92-kDa protein is structurally distinct from the 98-100-kDa steroid-binding protein. As the 90-92-kDa nonsteroid-binding phosphoprotein co-purified with the 98-100-kDa uncleaved form of the glucocorticoid receptor by two independent methods, one of which is based on recognizing a steroid-binding site and the other of which is based on recognizing an antibody binding site, we propose that the 90-92-kDa phosphoprotein is a component of the molybdate-stabilized, untransformed glucocorticoid-receptor complex in L-cell cytosol.  相似文献   

12.
The ontogenetic appearance of the individual triplet polypeptides that comprise mammalian neurofilaments was studied in the developing rat optic nerve. Triton-insoluble cytoskeletal preparations from the optic nerves of rats of postnatal ages 1 Day (P1), 6 days (P6), 10 days (P10), 20 days (P20), and 3 months (adult) were analyzed for protein composition by one and two-dimensional gel electrophoresis. Results indicate that at P1, both the 150- and 68-kDa neurofilament subunit proteins are present. The 200-kDa subunit first becomes discernible at P20, but, at this age, it is still present in considerably less quantity than in the adult. Immunocytochemical verification of the presence of neurofilament protein was accomplished by staining tissue sections with specific antibodies against the 150- and the 68-kDa neurofilament subunits using the peroxidase-antiperoxidase technique. Results of the morphological analyses have shown that neurofilaments are not present in quantity until P10, which coincides with the time when the 68-kDa subunit increases in quantity by one dimensional gel analysis. Thus, the 150- and 68-kDa subunits can be detected prior to the appearance of neurofilaments, and the 200-kDa protein is not observed until sometime later. The potential physiological significance of the differential subunit transport is discussed with respect to neuronal differentiation in the developing mammalian CNS.  相似文献   

13.
A role for cytosolic malonyl-CoA decarboxylase (MCD) as a regulator of fatty acid oxidation has been postulated. However, there is no direct evidence that MCD is present in the cytosol. To address this issue, we performed cell fractionation and electron microscopic colloidal gold studies of rat liver to determine the location and activity of MCD. By both methods, substantial amounts of MCD protein and activity were found in the cytosol, mitochondria and peroxisomes, the latter with the highest specific activity. MCD species with different electrophoretic mobility were observed in the three fractions. The data demonstrate that active MCD is present in the cytosol, mitochondria and peroxisomes of rat liver, consistent with the view that MCD participates in the regulation of cytosolic malonyl-CoA levels and of hepatic fatty acid oxidation.  相似文献   

14.
Employing a monoclonal antibody directed against the C-terminal peptide of glucose transporter molecule 1 (Glut1), we identified a approximately 30-kDa polypeptide which coimmunoprecipitated with Glut1 from sample of human red blood cells (RBC) membranes. The approximately 30-kDa polypeptide reacted with an antibody directed against stomatin, an integral plasma membrane protein which is also present at a high abundance in the human RBC plasma membrane. Likewise, employing anti-stomatin antibody, we found that Glut1 coimmunoprecipitated with stomatin from samples of RBC membranes. However, neither band 3, which is the most abundant integral membrane protein in the RBC, nor actin coimmunoprecipitated with Glut1, indicating a specific interaction between Glut1 and stomatin. Similar to the results obtained in the RBC, Glut1 and stomatin immunoprecipitated with each other in lysates of Clone 9 cells, a rat liver cell line in which Glut1 is expressed at approximately 1/200 the level present in RBC. Employing conditions that resulted in immunoprecipitation of approximately 10% of Glut1 in RBC membranes led to a approximately 3% coimmunoprecipitation of stomatin. A mixed population of Clone 9 cells stably transfected with a plasmid overexpressing the mouse stomatin exhibited 30 +/- 3% reduction in the basal rate of glucose transport compared to control cells or cells stably transfected with the empty vector. The above results suggest that stomatin is closely associated with Glut1 in the plasma membrane and that overexpression of stomatin results in a depression in the basal rate of glucose transport.  相似文献   

15.
CTP:phosphocholine cytidylyltransferase (CT) is a key regulatory enzyme in phosphatidylcholine biosynthesis. We constructed a recombinant baculovirus (bCT) containing rat CT cDNA under the control of the polyhedrin promoter. Crude cell extracts of Spodoptera frugiperda (Sf9) cells infected with bCT possessed 250-fold higher specific activities for CT compared to rat liver cytosol, and CT protein constituted 3-6% of the total cellular protein. The 42-kDa form of CT predicted from the cDNA sequence was the first immunoreactive CT protein detected at Day 2 after infection and this form continued to accumulate until Day 5. On Day 3 following infection, a 37-kDa protein immunologically related to CT began to accumulate, indicating that CT was being degraded. The active, 42-kDa form of CT was purified to homogeneity in a single step using hydroxyapatite chromatography. Antibodies raised against recombinant CT were employed to quantitatively extract and assay CT activity in mammalian cell lines. The baculovirus expression system is suitable for the preparation of large amounts of protein for investigating the structure, function, and regulation of CT.  相似文献   

16.
The 130-kDa protein was isolated as a novel inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) binding protein from rat brain and was molecularly cloned to be found similar to phospholipase C-delta 1 (Kanematsu, T., Takeya, H., Watanabe, Y., Ozaki, S., Yoshida, M., Koga, T., Iwanaga, S. and Hirata, M., 1992. Putative inositol 1,4,5-trisphosphate binding proteins in rat brain cytosol, J. Biol. Chem. 267, 6518-6525; Kanematsu, T., Misumi, Y., Watanabe, Y., Ozaki, S., Koga, T., Iwanaga, S., Ikehara, Y. and Hirata, M., 1996. A new inositol 1,4,5-trisphosphate binding protein similar to phospholipase C-delta 1, Biochem. J. 313, 319-325). The 130-kDa protein and its deleted protein expressed in COS-1 cells were seen in both the membrane and the cytosol fractions. Truncation of 232 residues from the N-terminus, the protein molecule lacking the pleckstrin homology (PH) domain was also localized in the membrane fraction as much as seen with a full-length protein and other deleted proteins, thereby indicating that the PH domain is not primarily involved in the membrane localization. The addition of Mg2+ to homogenates of COS-1 cells caused the translocation of expressed proteins from the cytosol to the membrane fraction, yet further addition of AlF4- which induced the activation of GTP binding proteins did not cause a further translocation. The protein translocated to the membrane by the addition of Mg2+ was hardly extracted with Triton X-100. The inclusion of Ins(1,4,5)P3 or phosphatidylinositol 4,5-bisphosphate in cell homogenates caused the very small reduction in the amounts of membrane-associated proteins expressed by some constructs. These results indicate that (i) the PH domain is not primarily involved in the membrane localization of the 130-kDa protein, (ii) the activation of GTP binding protein does not appear to cause the translocation of the 130-kDa protein, and (iii) intrinsic phosphatidylinositol 4,5-bisphosphate present in the membrane appears to be involved in the membrane association of the 130-kDa protein to a very small extent, probably through the binding site in the PH domain.  相似文献   

17.
We have employed a combination of gel retardation, protein-DNA cross-linking, and protein-protein cross-linking techniques to further examine the 2,3,7,8-tetrachlorodibenzo-p- dioxin-(TCDD-) dependent changes in the Ah receptor that result in a DNA-binding conformation. Gel retardation analysis of DNA-Sepharose chromatographic fractions of rat hepatic cytosol indicated that TCDD-dependent and sequence-specific DNA binding coeluted with a 200-kDa form of the Ah receptor (peak 2) previously characterized as being multimeric and having high affinity for calf thymus DNA. The TCDD-bound, 100-kDa form of the receptor (peak 1) bound weakly to the DNA recognition motif. These results indicated that the DNA-binding form of the Ah receptor is a multimer. SDS-polyacrylamide gel electrophoresis of peak 2 cross-linked to a bromodeoxyuridine-substituted DNA recognition motif indicated that this form of the receptor present in rat hepatic cytosol is composed of at least two DNA-binding proteins of approximately 100 and 110 kDa. Using the chemical cross-linking agent dimethyl pimelimidate, we further established that the 100-kDa form of the receptor (peak 1) associates with a different protein to generate the receptor form (peak 2) that binds to the dioxin-responsive enhancer. Photoaffinity-labeling studies indicated that only the 100-kDa protein (peak 1), and not the 110-kDa protein, binds ligand. Together, these observations imply that the DNA-binding form of the Ah receptor exists as a heteromer.  相似文献   

18.
Immunoblot analysis of a rat testis cytosol fraction revealed two proteins which reacted with a polyclonal rabbit antibody to bovine phosphatidylinositol transfer protein. These two proteins were separated by anion exchange and molecular sieve column chromatographic procedures and shown to catalyze the transfer of phosphatidylinositol and phosphatidylcholine between populations of small unilamellar vesicles. One protein was identified as the phosphatidylinositol transfer protein detectable in 16 other rat tissues and many eukaryotic species; the other phosphatidylinositol transfer protein was unique to testis. The molecular masses of the proteins, determined under denaturing electrophoretic conditions, were 35 and 41 kDa, respectively. When testis was examined in animals from birth to six weeks of age, the 35-kDa protein was present throughout, while the 41-kDa protein first appeared during week 4 and increased to adult levels by week 6; a small yet significant increase in tissue phosphatidylinositol transfer activity accompanied this expression of the testis-specific protein. Selective destruction of Leydig cells by ethylene dimethanesulfonate did not cause any detectable loss of the 41-kDa phosphatidylinositol transfer protein. The structural and catalytic relationships between the two testicular phosphatidylinositol transfer protein species remain to be elucidated.  相似文献   

19.
A cell-free system of isolated rat liver nuclei is described which permits an active incorporation of newly synthesized RNA into 'dense' ribonucleoprotein-like materials. The reaction is stimulated with increasing amounts of cytosol protein isolated from rat liver. This indicates that cytosol protein plays an important role in the formation of such material.  相似文献   

20.
In BC3H-1 myocytes, insulin has been reported to (a) increase diacyglycerol (DAG) production and provoke increases in protein kinase C enzyme activity of crude or DEAE-Sephacel-purified cytosol and membrane fractions in BC3H-1 myocytes (Cooper et al. (1987) J. Biol. Chem. 262, 3633-3739), but (b) decrease cytosolic, and transiently increase membrane, immunoreactive protein kinase C (Acevedo-Duncan et al. (1989) FEBS Lett. 244, 174-176). Presently, we used a Mono-Q column to purify protein kinase C and found that, similar to immunoblot findings, enzyme activity decreased in the cytosol, and increased in the membrane during insulin treatment. Similar differences in protein kinase C activation patterns were observed in rat adipose tissue: insulin stimulated cytosolic protein kinase C enzyme activity as measured after DEAE-Sephacel chromatography, but decreased cytosolic enzyme activity when measured after Mono-Q chromatography or by immunoblotting. We presently evaluated the possibility that insulin-induced increases in endogenous DAG may influence protein kinase C during assay in vitro. Crude cytosol from BC3H-1 myocytes contained 25-35% of total and [3H]glycerol-labelled DAG and insulin increased this DAG. Considerable amounts of [3H]glycerol-labelled DAG were present in insulin-stimulated protein kinase C-containing column fractions following DEAE-Sephacel chromatography of cytosol fractions, whereas lesser amounts were recovered after Mono-Q column chromatography. This difference in recovery of DAG and activation of the enzyme by this endogenous DAG may explain why we were able to discern insulin-induced (presumably translocation 'provoked') decreases in cytosolic protein kinase C in the present Mono-Q column preparations of both BC3H-1 myocytes and rat adipose tissue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号