首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Radial distribution functions were deduced by Fourier transform analysis of angular dependences of diffuse x-ray scattering intensities for the following proteins with different hydration degree: water-soluble a-protein myoglobin, water-soluble alpha+beta protein lysozyme, and transmembrane proteins of photosynthetic reaction centers from purple bacteria Rhodobacter sphaeroides and Blastochlorii viridis. The results of Fourier analysis of x-ray scattering intensities give the quantitative characteristics of the mechanisms underlying the influence of water on the formation of biomacromolecules. Water, on the one hand, weakens the intraglobular hydrogen bond net, loosens the protein structure, and increases the internal conformational dynamics. Concurrently water arranges the stability and ordering of the macromolecule. A sharp correlation is observed between the shift of the "first" peak of radial distribution functions, the weakening of the intraglobular hydrogen bond net, the increase in intraglobular mobility, and the appearance of functional activity in macromolecules. The behavior of the "first" peak is similar to that observed in transmembrane protein of reaction center and water-soluble proteins. The "first" peak for transmembrane protein of reaction center reaches its maximum value much faster (at smaller hydration degrees) than for water-soluble proteins. The fast transfer of reaction center protein to its native state during hydration is due to the fact that the dehydrated conformation of reaction center protein is very close to the native one. From a comparison of the radial distribution functions for water, water-soluble proteins and transmembrane proteins, one may conclude that water has the lowest packing density and the lowest order; water-soluble proteins have a larger packing density and are more ordered than water, and transmembrane proteins have the highest degree of packing density and ordering.  相似文献   

2.
The angular dependencies of inelastic intensities of Rayleigh scattering of Moessbauer radiation were measured for myoglobin and lysozyme (in the hydration range h = 0.05-0.7). The data were fitted within the framework of model, when two types of intraglobular motions were taken into account: individual motions of small side-chain groups and cooperative motions of segments. The best agreement with the experiment at h > 0.05 was obtained when individual motions of small groups together with the cooperative motions of alpha-helices and beta-sheets for lysozyme, and alpha-helices for myoglobin were considered. At further hydration (h = 0.45), mean-square displacements (x2) of both types of motions strongly increase with the increase in hydration degree, while the motions with a large correlation radius (not less than macromolecule radius) remain nearly the same as for h = 0.05. The results of the study of the radial distribution function deduced by Fourier-transform from the diffuse x-ray measurements together with RSMR data allow one to conclude that the water during protein hydration competes with the intramolecular hydrogen bonds, loosens the protein and increases the internal dynamics. Concurrently, water arranges the ordering of macromolecule, which takes the native structure at h = 0.4-0.7. The analysis of auto and cross-correlation functions of bending fluctuations of alpha-helices in the large domain of lysozyme performed by molecular dynamics allows one to come to the final conclusion that it is the difference in the structural organization of myoglobin and lysozyme and not the presence of SS-bonds in lysozyme macromolecule that is responsible for different structural fluctuations in these proteins.  相似文献   

3.
Radial distribution functions were deduced by Fourier transform analysis of the angular dependences of diffuse X-ray scattering intensities for the following proteins with different hydration degrees: water-soluble α-protein myoglobin, water-soluble (α + β) protein lysozyme, and transmembrane proteins from the photosynthetic reaction centers of purple bacteria Rhodobacter sphaeroides and Blastochlorii (Rhodopseudomonas) viridis. The results of Fourier transform analysis of X-ray scattering intensities give quantitative characteristics of the mechanism underlying the influence of water on the formation of biological macromolecules. On the one hand, water loosens the network of hydrogen bonds, which results in a considerable conformational mobility in the molecules of lysozyme and myoglobin and the reaction centers. On the other hand, water stabilizes and orders the protein globule. A strict correlation was found between the shift of the “first” maximum of the radial distribution function, loosening of the intraglobular hydrogen bonds, increase in the intramolecular mobility, and appearance of pronounced functional activity in macromolecules. The pattern of behavior of the first maximum in the transmembrane proteins of the reaction center was similar to that observed for the water-soluble proteins. However, the first maximum reached the limiting value of 2.9 Å at a considerably lower hydration degree compared with the water-soluble proteins. A quick transition of the protein complex of the reaction center to its native state is due to the fact that the dehydrated conformation of this complex is very close to the native conformation. Comparison of the radial distribution function for water, water-soluble proteins, and transmembrane proteins suggests a quantitative conclusion that water is the least densely packed and ordered system, the water-soluble proteins are more densely packed than water, and the transmembrane proteins are the most densely packed and ordered system.  相似文献   

4.
The angular dependencies of inelastic intensities of Rayleigh scatteringof Moessbauer radiation were measured for lysozyme and myoglobin (fordifferent degrees of hydration: from h = 0.05 till h = 0.7). The treating ofthe data at h > 0.05 approves the existence of segmental motions(-helices for myoglobin, -helices and -sheets forlysozyme) as well as of individual motions. Further hydration increase themean-square displacements for both types of intraglobular motions for theseproteins, while the motions of the globule as a whole remain nearlythe same as for h = 0.05. Results of the study of the radial distributionfunction deduced by Fourier – transform from the diffuse x-raymeasurements together with RSMR data allow to conclude that the waterduring hydration of proteins competes with the intramolecular hydrogenbonds, loosens the protein and increases the internal dynamics. At the sametime water arranges the ordering of macromolecule from `glassy' state ath 0.02 to the native state at h = 0.4–0.7. Differentarchitecture of proteins leads to the different structural dynamics as in thecase of lysozyme and myoglobin.  相似文献   

5.
We review recent studies on the role played by non-liquid, water-containing matrices on the dynamics and structure of embedded proteins. Two proteins were studied, in water-trehalose matrices: a water-soluble protein (carboxy derivative of horse heart myoglobin) and a membrane protein (reaction centre from Rhodobacter sphaeroides). Several experimental techniques were used: Mossbauer spectroscopy, elastic neutron scattering, FTIR spectroscopy, CO recombination after flash photolysis in carboxy-myoglobin, kinetic optical absorption spectroscopy following pulsed and continuous photoexcitation in Q(B) containing or Q(B) deprived reaction centre from R. sphaeroides. Experimental results, together with the outcome of molecular dynamics simulations, concurred to give a picture of how water-containing matrices control the internal dynamics of the embedded proteins. This occurs, in particular, via the formation of hydrogen bond networks that anchor the protein surface to the surrounding matrix, whose stiffness increases by lowering the sample water content. In the conclusion section, we also briefly speculate on how the protein-matrix interactions observed in our samples may shed light on the protein-solvent coupling also in liquid aqueous solutions.  相似文献   

6.
The influence of three chemical chaperones: glycerol, 4-hexylresorcinol, and 5-methylresorcinol on the structure, equilibrium fluctuations, and the functional activity of the hydrophilic enzyme lysozyme and the transmembrane reaction center (RC) protein from Rb. sphaeroides in a broad range of concentrations has been studied. Selected chemical chaperones are strongly different by the structure and action on hydrophilic and membrane proteins. The influence of the chemical chaperones (except methylresorcinol) on the structure, dynamics, and functional properties of lysozyme and RC protein are well described within the frames of extended models of preferential hydration and preferential interaction of protein with a chemical chaperone. A molecule of hexylresorcinol consists of a hydrophobic (alkyl radical) and a hydrophilic (aromatic nuclus) moieties. This fact provides additional regulation of functional activity of lysozyme and RC by hexylresorcinol. The influence of methylresorcinol on proteins differs from that of glycerol and hexylresorcinol. Methylresorcinol interacts with the surface of lysozyme directly, not via water hydrogen bonds. This leads to a decrease in denaturation temperature T(d), and an increase in the amplitude of equilibrium fluctuation, which allows him to be a powerful activator. Methylresorcinol interacts with the membrane RC protein only by the condensation of hydration water, which is negligible in the case of methylresorcinol. Therefore, methylresorcinol does not effect the functional properties of the RC protein. It was concluded that various chaperones at one and the same concentration and chaperones at different concentrations form diverse 3D structures of proteins, which differ by dynamic and functional characteristics.  相似文献   

7.
X Z Zhou 《Biophysical journal》1995,69(6):2298-2303
The translational friction coefficients and intrinsic viscosities of four proteins (ribonuclease A, lysozyme, myoglobin, and chymotrypsinogen A) are calculated using atomic-level structural details. Inclusion of a 0.9-A-thick hydration shell allows calculated results for both hydrodynamic properties of each protein to reproduce experimental data. The use of detailed protein structures is made possible by relating translational friction and intrinsic viscosity to capacitance and polarizability, which can be calculated easily. The 0.9-A hydration shell corresponds to a hydration level of 0.3-0.4 g water/g protein. Hydration levels within this narrow range are also found by a number of other techniques such as nuclear magnetic resonance spectroscopy, infrared spectroscopy, calorimetry, and computer simulation. The use of detailed protein structures in predicting hydrodynamic properties thus allows hydrodynamic measurement to join the other techniques in leading to a unified picture of protein hydration. In contrast, earlier interpretations of hydrodynamic data based on modeling proteins as ellipsoids gave hydration levels that varied widely from protein to protein and thus challenged the existence of a unified picture of protein hydration.  相似文献   

8.
M Diehl  W Doster  W Petry    H Schober 《Biophysical journal》1997,73(5):2726-2732
Conformational changes of proteins often involve the relative motion of rigid structural domains. Normal mode analysis and molecular dynamics simulations of small globular proteins predict delocalized vibrations with frequencies below 20 cm(-1), which may be overdamped in solution due to solvent friction. In search of these modes, we have studied deuterium-exchanged myoglobin and lysozyme using inelastic neutron scattering in the low-frequency range at full and low hydration to modify the degree of damping. At room temperature, the hydrated samples exhibit a more pronounced quasielastic spectrum due to diffusive motions than the dehydrated samples. The analysis of the corresponding lineshapes suggests that water modifies mainly the amplitude, but not the characteristic time of fast protein motions. At low temperatures, in contrast, the dehydrated samples exhibit larger motional amplitudes than the hydrated ones. The excess scattering, culminating at 16 cm(-1), is suggested to reflect water-coupled librations of polar side chains that are depressed in the hydrated system by strong intermolecular hydrogen bonding. Both myoglobin and lysozyme exhibit ultra-low-frequency modes below 10 cm(-1) in the dry state, possibly related to the breathing modes predicted by harmonic analysis.  相似文献   

9.
The influence of three chemical chaperones: glycerol, 4-hexylresorcinol, and 5-methylresorcinol on the structure, equilibrium fluctuations, and functional activity of the hydrophilic enzyme lysozyme and the transmembrane reaction center (RC) protein from Rb. sphaeroides in a broad range of concentrations has been studied. The chosen chemical chaperones differ strongly in their structure and action on hydrophilic and membrane proteins. The influence of the chemical chaperones (except methylresorcinol) on the structure, dynamics, and functional properties of lysozyme and RC protein are well described in the framework of extended models of preferential hydration and preferential interaction of protein with a chemical chaperone. A molecule of hexylresorcinol consists of a hydrophobic (alkyl radical) and a hydrophilic (aromatic core) moieties; this provides for additional regulation of the functional activity of lysozyme and RC by hexylresorcinol. The influence of methylresorcinol on proteins differs from that of glycerol and hexylresorcinol. Methylresorcinol interacts with the surface of lysozyme directly, not via water hydrogen bonds. This leads to a decrease in the denaturation temperature and an increase in the amplitude of equilibrium fluctuations, allowing it to be a powerful activator. Methylresorcinol interacts with the membrane RC protein only by the condensation of hydration water, which is negligible in this case. Therefore, methylresorcinol does not affect the functional properties of the RC protein. It is concluded that different chaperones at the same concentration as well as one and the same chaperone at different concentrations produce protein 3D structures differing in dynamic and functional characteristics.  相似文献   

10.
Tetragonal crystals of hen egg white lysozyme undergo a reversible transformation, accompanied by loss of water, when the relative humidity of the environment is reduced to about 90%. The structure of the low humidity form has been analyzed, using x-ray data collected at 88% relative humidity, in order to explore the variability in protein hydration caused by a change in the amount of water surrounding the protein molecule and the consequent conformational perturbations in the molecule. The structure has been refined by the restrained least-squares method to an R value of 0.162 for 6269 observed reflections in the 10-2.1-A resolution shell. The refined structure provides interesting examples for the variability in helical parameters, the role of interactions involving side chains and water in the stabilization of secondary structural features, and favorable specific hydration sites. The protein molecule as a whole moves slightly in the low humidity form from its position in the native crystals. The hydration shell tends to move along with the protein. Significant changes, however, occur in the hydration shell. These changes cause structural perturbations in the enzyme molecule, which are most pronounced in regions involved in substrate binding.  相似文献   

11.
Proteins in the alpha-lactalbumin and c-type lysozyme family have been studied extensively as model systems in protein folding. Early formation of the alpha-helical domain is observed in both alpha-lactalbumin and c-type lysozyme; however, the details of the kinetic folding pathways are significantly different. The major folding intermediate of hen egg-white lysozyme has a cooperatively formed tertiary structure, whereas the intermediate of alpha-lactalbumin exhibits the characteristics of a molten globule. In this study, we have designed and constructed an isolated alpha-helical domain of hen egg-white lysozyme, called Lyso-alpha, as a model of the lysozyme folding intermediate that is stable at equilibrium. Disulfide-exchange studies show that under native conditions, the cysteine residues in Lyso-alpha prefer to form the same set of disulfide bonds as in the alpha-helical domain of full-length lysozyme. Under denaturing conditions, formation of the nearest-neighbor disulfide bonds is strongly preferred. In contrast to the isolated alpha-helical domain of alpha-lactalbumin, Lyso-alpha with two native disulfide bonds exhibits a well-defined tertiary structure, as indicated by cooperative thermal unfolding and a well-dispersed NMR spectrum. Thus, the determinants for formation of the cooperative side-chain interactions are located mainly in the alpha-helical domain. Our studies suggest that the difference in kinetic folding pathways between alpha-lactalbumin and lysozyme can be explained by the difference in packing density between secondary structural elements and support the hypothesis that the structured regions in a protein folding intermediate may correspond to regions that can fold independently.  相似文献   

12.
Circular dichroism using synchrotron radiation (SRCD) can extend the spectral range down to approximately 130 nm for dry proteins, potentially providing new structural information. Using a selection of dried model proteins, including alpha-helical, beta-sheet, and mixed-structure proteins, we observe a low-wavelength band in the range 130-160 nm, whose intensity and peak position is sensitive to the secondary structure of the protein and may also reflect changes in super-secondary structure. This band has previously been observed for peptides but not for globular proteins, and is compatible with previously published theoretical calculations related to pi-orbital transitions. We also show that drying does not lead to large changes in the secondary structure and does not induce orientational artifacts. In combination with principal component analysis, our SRCD data allow us to distinguish between two different types of protein fibrils, highlighting that bona fide fibrils formed by lysozyme are structurally more similar to the nonclassical fibrillar aggregates formed by the SerADan peptide than with the amyloid formed by alpha-synuclein. Thus, despite the lack of direct structural conclusions, a comprehensive SRCD-based database of dried protein spectra may provide a useful method to differentiate between various types of supersecondary structure and aggregated protein species.  相似文献   

13.
Infrared absorption spectroscopy has been used to study the effect of organic solvents on the conformation of myoglobin, apomyoglobin, hemoglobin, lysozyme and ribonuclease. Beta structure can easily be induced by specific solvent effects. Films prepared from a 50% (v/v) mixture of alcohol, acetone, pyridine, tetrahydrofuran or dimethylsulfoxide/water mixtures show a high proportion of beta structure. The degree of induction of beta structure depends on the hydrocarbon content of the alcohol in the order methanol greater than ethanol greater than butanol. No beta structure was observed in films prepared from aqueous octanol solutions. Lyophilization tends to decrease secondary structure. The conformation of the proteins depends on the particular solvent system and the solvent composition. Solution studies of myoglobin in pure dimethylsulfoxide show that the conformation is a mixture of random and beta forms while in dimethylsulfoxide/2H2O mixtures the conformation is a mixture of alpha-helical and beta forms.  相似文献   

14.
Interaction of non-electrolytes such as urea with proteins especially at lower concentrations is opening-up newer concepts in the understanding of protein stability and folding in proteomics. In this study, the secondary and tertiary structural characteristics and thermal stability of human serum albumin at lower concentrations of urea have been monitored. The protein attains a molten globule like structure at concentration urea below 2 M. This structural state also shows an increase in the alpha-helical content as compared to the native state. At concentrations of urea above 2 M, human serum albumin starts unfolding, resulting in a three-state transition with two mid points of transitions at around 4 M and 7 M urea concentrations. The characteristics of the partially folded intermediates are discussed with respect to the three component system analyses. Preferential hydration dominates over preferential interaction at lower concentration of urea (up to 2.5 M) and at higher concentration, the preferential interaction overtakes preferential hydration in a competitive manner. Formation of structural intermediates at lower concentration of urea is hypothesized as a general phenomenon in proteins and fits in with the observation with preferential interaction parameters by Timasheff and co-workers in the case of lysozyme and ribonuclease at different pH values.  相似文献   

15.
The statistical thermodynamic model of protein structure proposed in paper I is developed with special attention to the hydrophobic interaction. Calorimetric measurements of the thermal denaturation of five globular proteins, ribonuclease A, lysozyme, alpha-chymotrypsin, cytochrome c, and myoglobin, are quantitatively analyzed using the model. The thermodynamic parameters obtained by the least squares method reflect the global, average properties of proteins and are in good agreement with the expected values estimated from experimental and theoretical studies for model peptides. The average bond energy epsilon is well related to the tertiary structure of each protein. However, the difference in the parameters between different proteins is not observed for the cooperative energy ZJ and the chain entropy alpha. The individuality of a protein as far as its structural stability is concerned, is mainly reflected by the parameter gamma specifying the hydrophobic nature of a protein. The model is further applied in the analysis of several aspects of the structural stability of globular proteins. Denaturation induced by denaturants, salts, and pH are also explained by the model in a unified manner.  相似文献   

16.
The hydration of conalbumin, of myoglobin, of lysozyme, of carbon monoxide hemoglobin, of β-lactoglobin, of bovine serum albumin, of ovomucoid, of ribonuclease, and of egg albumin has been measured with equilibrium dialysis using sucrose as the probe at 30 °C. All proteins were at their isoelectric points except lysozymes and β-lactoglobulin and also samples of egg albumin which had been shifted to a more alkaline pH. Departure from their isoelectric points leads to an increase in the apparent protein hydration. Decreasing the temperature to 11.5 °C produces a slight increase in the hydration of egg albumin. A method is proposed for the calculation of protein hydration. The calculated protein hydration tends to be less than that determined experimentally for five of the proteins. There is satisfactory agreement with four of the proteins.  相似文献   

17.
The "rules" governing protein structure and stability are still poorly understood. Important clues have come from proteins that operate under extreme conditions, because these clarify the physical constraints on proteins. One obvious extreme is pressure, but so far little is known of the behavior of proteins under pressure, largely for technical reasons. We have therefore developed new methodology for calculating structure change in solution with pressure, using NMR chemical shift changes, and we report the change in structure of lysozyme on going from 30 bar to 2000 bar, this being the first solution structure of a globular protein under pressure. The alpha-helical domain is compressed by approximately 1%, due to tighter packing between helices. The interdomain region is also compressed. By contrast, the beta-sheet domain displays very little overall compression, but undergoes more structural distortion than the alpha-domain. The largest volume changes tend to occur close to hydrated cavities. Because isothermal compressibility is related to volume fluctuation, this suggests that buried water molecules play an important role in conformational fluctuation at normal pressures, and are implicated as the nucleation sites for structural changes leading to pressure denaturation or channel opening.  相似文献   

18.
A molecular model is proposed to explain water 1H NMR spin-lattice relaxation at different levels of hydration (NMR titration method) on collagen. A fast proton exchange model is used to identify and characterize protein hydration compartments at three distinct Gibbs free energy levels. The NMR titration method reveals a spectrum of water motions with three well-separated peaks in addition to bulk water that can be uniquely characterized by sequential dehydration. Categorical changes in water motion occur at critical hydration levels h (g water/g collagen) defined by integral multiples N = 1, 4 and 24 times the fundamental hydration value of one water bridge per every three amino acid residues as originally proposed by Ramachandran in 1968. Changes occur at (1) the Ramachandran single water bridge between a positive amide and negative carbonyl group at h1 = 0.0658 g/g, (2) the Berendsen single water chain per cleft at h2 = 0.264 g/g, and (3) full monolayer coverage with six water chains per cleft level at h3 = 1.584 g/g. The NMR titration method is verified by comparison of measured NMR relaxation compartments with molecular hydration compartments predicted from models of collagen structure. NMR titration studies of globular proteins using the hydration model may provide unique insight into the critical contributions of hydration to protein folding.  相似文献   

19.
The distribution of point mutations accepted by natural selection in the amino acid sequences of 16 cytochrome-C, 7 lysozyme, 15 myoglobin, 10 ribonuclease, 12 short neurotoxin, 16 plant ferredoxin and 6 bacterial ferredoxin molecules have been investigated.The number of point mutations shows an increasing tendency from the NH2-terminus towards the COON-terminus of these proteins or at least within their structural domains.Our results suggest that the continuous folding of polypeptide chain during biosynthesis may play an important role in the formation of globular protein structure.  相似文献   

20.
Cells of Rhodopseudomonas sphaeroides grown in a 25% O2 atmosphere were rapidly subjected to total anaerobiosis in the presence of light to study the progression of events associated with the de novo synthesis of the inducible intracytoplasmic membrane (ICM). This abrupt change in physiological conditions resulted in the immediate cessation of cell growth and whole cell protein, DNA, and phospholipid accumulation. Detectable cell growth and whole cell protein accumulation resumed ca. 12 h later. Bulk phospholipid accumulation paralleled cell growth, but the synthesis of individual phospholipid species during the adaptation period suggested the existence of a specific regulatory site in phospholipid synthesis at the level of the phosphatidylethanolamine methyltransferase system. Freeze-fracture electron microscopy showed that aerobic cells contain small indentations within the cell membrane that appear to be converted into discrete ICM invaginations within 1 h after the imposition of anaerobiosis. Microscopic examination also revealed a series of morphological changes in ICM structure and organization during the lag period before the initiation of photosynthetic growth. Bacteriochlorophyll synthesis and the formation of the two light-harvesting bacteriochlorophyll-protein complexes of R. sphaeroides (B800-850 and B875) occurred coordinately within 2 h after the shift to anaerobic conditions. Using antibodies prepared against various ICM-specific polypeptides, the synthesis of reaction center proteins and the polypeptides associated with the B800-850 complex was monitored. The reaction center H polypeptide was immunochemically detected at low levels in the cell membrane of aerobic cells, which contained no detectable ICM or bacteriochlorophyll. The results are discussed in terms of the oxygen-dependent regulation of gene expression in R. sphaeroides and the possible role of the reaction center H polypeptide and the cell membrane indentations in the site-specific assembly of ICM pigment-protein complexes during the de novo synthesis of the ICM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号