首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The proteins of the large subunit of rat liver ribosomes were separated into seven groups by stepwise elution from carboxymethylcellulose with LiCl at pH 6.5. Seventeen proteins (L4, L5, L7, L9, L11, L12, L13, L21, L22, L23, L26, L27, L30, L33, L35', L37, and L39) were isolated from three of the groups (B60, D60, G60) by ion exchange chromatography on carboxymethylcellulose and by filtration through Sephadex. The amount of protein obtained varied from 0.5 to 15 mg. Eight of the proteins (L9, L11, L13, L21, L22, L35', L37 and L39) had no detectable contamination; the impurities in the others were no greater than 9%. The molecular weight of the proteins was estimated by polyacrylamide gel electrophoresis in sodium dodecyl sulfate; the amino acid composition was determined.  相似文献   

2.
3.
Activities of ribosomal cores deprived of proteins L7, L10, L11 and L12   总被引:4,自引:0,他引:4  
  相似文献   

4.
The amino acid sequences of ribosomal proteins L1, L14, L15, L23, L24 and L29 from Bacillus stearothermophilus have been completely determined. This has been achieved by sequence analyses of peptides derived from enzymatic digestions of the proteins with trypsin, chymotrypsin, pepsin, Staphylococcus aureus protease, and Armillaria mellea protease as well as by chemical cleavage with hydroxylamine and cyanogen bromide. Based on the primary structures of the six proteins, their secondary structures were predicted using four different computer prediction programs. A comparison of the amino acid sequences of the studied proteins from B. stearothermophilus with the homologous proteins from Escherichia coli revealed that in four proteins (L1, L15, L24 and L29) between 40-50% of the residue in the sequences are identical, whereas this value is significantly higher (69%) for L14 and lower (28%) for L23. The distribution of those amino acid residues which are identical in the corresponding proteins from the two bacteria is not random along the protein chain: some regions are highly conserved whereas others are not. This finding indicates that the regions which are conserved during evolution are important for the spatial structure and/or function of the protein.  相似文献   

5.
Summary Available sequences that correspond to the E. coli ribosomal proteins L11, L1, L10, and L12 from eubacteria, archaebacteria, and eukaryotes have been aligned. The alignments were analyzed qualitatively for shared structural features and for conservation of deletions or insertions. The alignments were further subjected to quantitative phylogenetic analysis, and the amino acid identity between selected pairs of sequences was calculated. In general, eubacteria, archaebacteria, and eukaryotes each form coherent and well-resolved nonoverlapping phylogenetic domains. The degree of diversity of the four proteins between the three groups is not uniform. For L11, the eubacterial and archaebacterial proteins are very similar whereas the eukaryotic L11 is clearly less similar. In contrast, in the case of the L12 proteins and to a lesser extent the L10 proteins, the archaebacterial and eukaryotic proteins are similar whereas the eubacterial proteins are different. The eukaryotic L1 equivalent protein has yet to be identified. If the root of the universal tree is near or within the eubacterial domain, our ribosomal protein-based phylogenies indicate that archaebacteria are monophyletic. The eukaryotic lineage appears to originate either near or within the archaebacterial domain. Correspondence to: P. Dennis  相似文献   

6.
Structural comparison of the prokaryotic ribosomal proteins L7/L12 and L30   总被引:7,自引:0,他引:7  
The structures of two prokaryotic ribosomal proteins, the carboxyterminal half of L7/L12 from Escherichia coli (L12CTF) and L30 from Bacilus stearothermophilus display a remarkably similar fold in which alpha-helices pack onto one side of an antiparallel, three-stranded, beta-pleated sheet. A detailed comparison of the structures by least-squares methods reveals that more than two-thirds of the alpha carbons can be superimposed with a root mean square distance of 2.33 A. The principal difference is an extra alpha-helix in L12CTF. The sequences of the proteins display a distinct conservation in regions which are crucial to the common fold, in particular the hydrophobic core. It is proposed that the similarity is a result of divergent evolution.  相似文献   

7.
This study demonstrates the importance of preconditioning ofsource tissue in regeneration of multiple shoot buds from severalspecies of Lathyrus. Preconditioned multiple shoots of Lathyruscicera L., L. ochrus (L.) DC. and L. sativus L. were obtainedby germinating seeds on Murashige and Skoog (MS) medium containing50 µM N5-benzylaminopurine (BAP) for 2 to 3 weeks. Multipleshoot bud formation occurred when epicotyl explants of preconditionedshoots were cultured on MS medium containing 5–50 µMBAP. No shoot regeneration was observed from epicotyl explantswhich were obtained from non-preconditioned shoots. Shoot budswere formed directly on explants without an intervening callusphase after 2 to 3 weeks of culture. Regenerated shoot budsformed healthy shoots which developed prolific and strong rootswhen transferred to MS medium supplemented with 2.5 µMnaphthaleneacetic acid (NAA). Lathyrus cicera L., L. ochrus (L.) DC., Ochrus Vetch, L. sativus L., Lathyrus pea, de novo differentiation, epicotyl, preconditioning with BAP  相似文献   

8.
L16 exhibits both peptide bond and transesterification activities when reconstituted into 2 M LiCl core particles. L6 and L11, when reconstituted in a similar manner in the absence of L16, manifest significant transesterification activity. Both L6 and L11 enhance the transesterification activity of L16; L11 being more active than L6 in this respect. However, both L6 and L11 have minimal effect on peptide bond formation when reconstituted with L16 at concentrations more than 2.5 M equivalents. Both L6 and L11 exhibit a differential effect on transesterification. The affinity-labelling agents, like PhCH2SO2F, diisopropylfluorophosphate and ethoxyformic anhydride, have been used to explore the role of residues in peptide bond formation and transesterification. It is proposed that the Ser-Phe combination present in L16, L11 and L6 is involved in transesterification in addition to the single histidine in L16. The single histidine in L16 appears to be important in the catalysis of peptide bond formation and transesterification.  相似文献   

9.
Eighteen of 34 endemic meningococcal case strains were of the L8 lipooligosaccharide (LOS) type; four of these were both L3 and L7 (L3,7), and seven were L1. L1 structures arose by alternative terminal Gal substitutions of lactosyl diheptoside L8 structures, as determined by electrospray ionization and other mass spectrometric techniques, and enzymatic and chemical degradations (Structures L1 and L1a). [see text for structure] The more abundant molecule, designated L1, had a trihexose globosyl alpha chain; the less abundant one, designated L1a, had a beta-lactosyl alpha chain and a parallel alpha-lactosaminyl gamma chain. A P(k) globoside (Galalpha1-->4Galbeta1-->4 Glc-R) monoclonal antibody bound 9/10 L1 strains, but a P(1) globoside (Galalpha1-->4Galbeta1-->4GlcNAc-R) mAb bound none of them. alpha-Galactosidase caused loss of both L1 structures and creation of L8 structures; beta-galactosidase caused loss of the L8 determinant. The L1/P(k) glycose was partially sialylated. Some LOS also had unsubstituted basal beta-GlcNAc additions. These structural relationships explain co-expression of L8, L1, and L3,7 serotypes.  相似文献   

10.
Lactobacillus rhamnosus is a facultative, lactic acid bacterium in the phylum Firmicutes. Lactobacillus spp. are generally considered beneficial, and specific strains of L. rhamnosus are validated probiotics. We describe the draft genomes of three L. rhamnosus strains (L31, L34, and L35) isolated from the feces of Thai breastfed infants, which exhibit anti-inflammatory properties in vitro. The three genomes range between 2.8 – 2.9 Mb, and contain approximately 2,700 protein coding genes.  相似文献   

11.
Summary Ribosomal proteins L4, L5, L20 and L25 have been localized on the surface of the 50S ribosomal subunit of Escherichia coli by immuno-electron microscopy. The two 5S RNA binding proteins L5 and L25 were both located at the central protuberance extending towards its base, at the interface side of the 50S particle. L5 was localized on the side of the central protuberance that faces the L1 protuberance, whereas L25 was localized on the side that faces the L7/L12 stalk. Proteins L4 and L20 were both located at the back of the 50S subunit; L4 was located in the vicinity of proteins L23 and L29, and protein L20 was localized between proteins L17 and L10 and is thus located below the origin of the L7/L12 stalk.  相似文献   

12.
Each of the principal quinolizidine alkaloids (QA) found in both xylem and phloem exudates together with extracts from all component organs collected from bitter (cv. Lupini) and sweet (cv. Ultra) cultivars of Lupinus albus L. were quantified by gas chromatographic analyses throughout reproductive development. In addition to establishing the major translocated QA species estimates for fluxes of QA to developing fruits based on their sap composition and water economy showed that around half of the QA that accumulated in fruit tissues was due to synthesis in situ and half to translocation principally by phloem. Detailed analyses of QA in transport fluids and component organs were extended to reciprocal homo- and hetero-grafts using bitter (cv. Fest) and sweet (cv. Danja) cultivars of L. angustifolius L. These data confirmed that the majority of QA were synthesized in shoot tissues. In both lupin species feeding and analysis of deuterated QA (lupanine and 13-hydroxylupanine) were used as tracers to demonstrate direct redistribution of alkaloids by translocation from mature leaves in phloem.  相似文献   

13.
14.
Örjan Nilsson 《Grana》2013,52(2-3):279-363
The pollen morphology of several genera in Portulacaceae is described. Particular attention has been paid to the genera of the subfamily Montioideae, as a stage of continued monographical studies. Among genera especially dealt with are Claytonia, Montia, Crunocallis, Naiocrene, Neopaxia, Mona, Maxia, Limnalsine, and Montiastrum. In the taxonomical treatment of these genera the pollen morphology has proved to afford many important additional characters.

The pollen grains of Claytonia are distinguished from those of the remainder in being 3-colpate. The grains of the Claytonia-type have many similarities with those of Lewisia, a genus of the subfamily Portulacoideae. The other genera of Montioideae have pantocolpate pollen grains. Among these genera several different pollen types are distinguished, chiefly with regard to the sexine structures and the aperture membranes. The Montiastrum-type is especially interesting, with tholate grains, a particular pollen type not met with in any other genus in the family. The pollen morphology of some genera in the Portulacoideae is also treated. In some species in Calandrina and Talinum pantotreme pollen grains are observed with apertures transitional between pori and colpi. The apertures of the pantotreme grains are arranged in characteristic patterns.

Particular attention has been given to the variation of the pollen morphological characters. This variation has been examined with regard to the differences between different populations of the same species as well as between different species. The greatest variation has been observed in the shape and size of the grains. The structure and sculpture and thickness of the sexine and the aperture membranes are less variable. Some polyploid taxa are connected with the occurrence of pollen grains with divergent and varying aperture numbers.

In a survey of the genera the taxonomical results of the investigation are presented with particular regard to the pollen morphology. The new genus, Maxia Ö. Nilss., is described. One new species, Montia clara Ö. Nilss., is described and some new combinations are made.

Pollen morphological diagnoses are given for 46 different taxa. The aperture conditions for 96 different species are presented.  相似文献   

15.
16.
Interactions between papillomavirus L1 and L2 capsid proteins   总被引:4,自引:0,他引:4       下载免费PDF全文
The human papillomavirus (HPV) capsid consists of 360 copies of the major capsid protein, L1, arranged as 72 pentamers on a T=7 icosahedral lattice, with substoichiometric amounts of the minor capsid protein, L2. In order to understand the arrangement of L2 within the HPV virion, we have defined and biochemically characterized a domain of L2 that interacts with L1 pentamers. We utilized an in vivo binding assay involving the coexpression of recombinant HPV type 11 (HPV11) L1 and HPV11 glutathione S-transferase (GST) L2 fusion proteins in Escherichia coli. In this system, L1 forms pentamers, GST=L2 associates with these pentamers, and L1+L2 complexes are subsequently isolated by using the GST tag on L2. The stoichiometry of L1:L2 in purified L1+L2 complexes was 5:1, indicating that a single molecule of L2 interacts with an L1 pentamer. Coexpression of HPV11 L1 with deletion mutants of HPV11 L2 defined an L1-binding domain contained within amino acids 396 to 439 near the carboxy terminus of L2. L2 proteins from eight different human and animal papillomavirus serotypes were tested for their ability to interact with HPV11 L1. This analysis targeted a hydrophobic region within the L1-binding domain of L2 as critical for L1 binding. Introduction of negative charges into this hydrophobic region by site-directed mutagenesis disrupted L1 binding. L1-L2 interactions were not significantly disrupted by treatment with high salt concentrations (2 M NaCl), weak detergents, and urea concentrations of up to 2 M, further indicating that L1 binding by this domain is mediated by strong hydrophobic interactions. L1+L2 protein complexes were able to form virus-like particles in vitro at pH 5.2 and also at pH 6.8, a pH that is nonpermissive for assembly of L1 protein alone. Thus, L1/L2 interactions are primarily hydrophobic, encompass a relatively short stretch of amino acids, and have significant effects upon in vitro assembly.  相似文献   

17.
The genes corresponding to the L11, L1, L10, and L12 equivalent ribosomal proteins (L11e, L1e, L10e, and L12e) of Escherichia coli have been cloned and sequenced from two widely divergent species of archaebacteria, Halobacterium cutirubrum and Sulfolobus solfataricus, and the L10 and four different L12 genes have been cloned and sequenced from the eucaryote Saccharomyces cerevisiae. Alignments between the deduced amino acid sequences of these proteins and to other available homologous proteins of eubacteria and eucaryotes have been made. The data suggest that the archaebacteria are a distinct coherent phylogenetic group. Alignment of the proline-rich L11e proteins reveals that the N-terminal region, believed to be responsible for interaction with release factor 1, is the most highly conserved region and that there is specific conservation of most of the proline residues, which may be important in maintaining the highly elongated structure of the molecule. Although L11 is the most highly methylated protein in the E. coli ribosome, the sites of methylation are not conserved in the archaebacterial L11e proteins. The L1e proteins of eubacteria and archaebacteria show two regions of very high similarity near the center and the carboxy termini of the proteins. The L10e proteins of all kingdoms are colinear and contain approximately three fourths of an L12e protein fused to their carboxy terminus, although much of this fusion has been lost in the truncated eubacterial protein. The archaebacterial and eucaryotic L12e proteins are colinear, whereas the eubacterial protein has suffered a rearrangement through what appear to be gene fusion events. Within the L12e derived region of the L10e proteins there exists a repeated module of 26 amino acids, present in two copies in eucaryotes, three in archaebacteria, and one in eubacteria. This modular sequence is apparently also present in the L12e proteins of all kingdoms and may play a role in L12e dimerization, L10e-L12e complex formation, and the function of the L10e-L12e complex in translation.  相似文献   

18.
19.
20.
The sequence of the amino-terminal region of eleven rat liver ribosomal proteins–S4, S6, S8, L7a, L18, L27, L30, L37a, and L39 - was determined. The analysis confirmed the homogeneity of the proteins and suggests that they are unique, since no extensive common sequences were found. The N-terminal regions of the rat liver proteins were compared with amino acid sequences in Saccharomyces cerevisiae and in Escherichia coli ribosomal proteins. It seems likely that the proteins L37 from rat liver and Y55 from yeast ribosomes are homologous. It is possible that rat liver L7a or L37a or both are related to S cerevisiae Y44, although the similar sequences are at the amino-terminus of the rat liver proteins and in an internal region of Y44. A number of similarities in the sequences of rat liver and E coli ribosomal proteins have been found; however, it is not yet possible to say whether they connote a common ancestry.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号