首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Costimulation through the CD40-CD40 ligand (CD40L) pathway is critical to allograft rejection, in that anti-CD40L mAb therapy prolongs allograft survival. However, the majority of studies exploring CD40-CD40L interactions have targeted CD40L. Less is known about the requirement for donor- and/or host-derived CD40 during rejection. This study assessed the relative contributions of donor and recipient CD40 expression to the rejection process. As the effectiveness of costimulatory blockade may be mouse strain dependent, this study explored the requirement for donor and recipient CD40 expression in BALB/c and C57BL/6 mice. Wild-type (WT) and CD40(-/-) BALB/c recipients readily rejected WT and CD40(-/-) C57BL/6 allografts, and rejection was associated with a prominent Th1 response. In contrast, CD40(-/-) C57BL/6 recipients failed to reject WT or CD40(-/-) BALB/c allografts and did not mount Th1 or Th2 responses. However, injection of donor CD40(-/-) dendritic cells induced both Th1 and Th2 responses and allograft rejection in CD40(-/-) C57BL/6 recipients. Finally, WT C57BL/6 mice rejected CD40(-/-) allografts, but this rejection response was associated with muted Th1 responses. These findings demonstrate that 1) CD40 expression by the recipient or the graft may impact on the immune response following transplantation; 2) the requirement for CD40 is influenced by the mouse strain; and 3) the requirement for CD40 in rejection may be bypassed by donor DC. Further, as CD40 is not required for rejection in BALB/c recipients, but anti-CD40L mAb prolongs graft survival in these mice, these results suggest that anti-CD40L therapy functions at a level beyond disruption of CD40-CD40L interactions.  相似文献   

2.
Recent studies using mouse models demonstrate that CD4(+) T cells are sufficient to mediate acute cardiac allograft rejection in the absence of CD8(+) T cells and B cells. However, the mechanistic basis of CD4-mediated rejection is unclear. One potential mechanism of CD4-mediated rejection is via elaboration of proinflammatory cytokines such as IFN-gamma. To determine whether IFN-gamma is a critical cytokine in CD4-mediated acute cardiac allograft rejection, we studied whether the expression of IFN-gamma receptors on the donor heart was required for CD4-mediated rejection. To investigate this possibility, purified CD4(+) T cells were transferred into immune-deficient mice bearing heterotopic cardiac allografts from IFN-gamma receptor-deficient (GRKO) donors. While CD4(+) T cells triggered acute rejection of wild-type heart allografts, they failed to trigger rejection of GRKO heart allografts. The impairment in CD4-mediated rejection of GRKO hearts appeared to primarily involve the efferent phase of the immune response. This conclusion was based on the findings that GRKO stimulator cells provoked normal CD4 proliferation in vitro and that intentional in vivo challenge of CD4 cells with wild-type donor APC or the adoptive transfer of in vitro primed CD4 T cells failed to provoke acute rejection of GRKO allografts. In contrast, unseparated lymph node cells acutely rejected both GRKO and wild-type hearts with similar time courses, illustrating the existence of both IFN-gamma-dependent and IFN-gamma-independent mechanisms of acute allograft rejection.  相似文献   

3.
Treatment of mice with a single donor-specific transfusion (DST) plus a brief course of anti-CD154 mAb to block CD40-mediated signaling uniformly induces donor-specific transplantation tolerance. Survival of islet allografts in treated mice is permanent, but skin grafts eventually fail unless recipients are thymectomized. The nature of the cellular mechanisms involved and the basis for the difference in survival of islet vs skin allografts are not known. In this study, we used CD40 knockout mice to investigate the role of CD40-mediated signaling in each component of the tolerance induction protocol: the DST, the graft, and the host. When CD40-mediated signaling was eliminated in only the DST or the graft, islet allografts were rapidly rejected. However, when CD40 signaling was eliminated in the host, approximately 40% of the islet allografts survived. When CD40 signaling was eliminated in the DST, the graft, and the host, islet grafts survived long term (>84 days), whereas skin allografts were rapidly rejected ( approximately 13 days). We conclude that transplantation tolerance induction in mice treated with DST and anti-CD154 mAb requires blockade of CD40-mediated signaling in the DST, the graft, and the host. Blockade of CD40-mediated signaling is necessary and sufficient for inducing islet allograft tolerance and is necessary but not sufficient for long-term skin allograft survival. We speculate that a requirement for regulatory CD4(+) T cells in skin allograft recipients could account for this differential response to tolerance induction.  相似文献   

4.
Critical role of OX40 in CD28 and CD154-independent rejection   总被引:20,自引:0,他引:20  
Blocking both CD28 and CD154 costimulatory pathways can induce transplant tolerance in some, but not all, transplant models. Under stringent conditions, however, this protocol often completely fails to block allograft rejection. The precise nature of such CD28/CD154 blockade-resistant rejection is largely unknown. In the present study we developed a new model in which both CD28 and CD154, two conventional T cell costimulatory molecules, are genetically knocked out (i.e., CD28/CD154 double-knockout (DKO) mice) and used this model to examine the role of novel costimulatory molecule-inducible costimulator (ICOS), OX40, 4-1BB, and CD27 in mediating CD28/CD154-independent rejection. We found that CD28/CD154 DKO mice vigorously rejected fully MHC-mismatched DBA/2 skin allografts (mean survival time, 12 days; n = 6) compared with the wild-type controls (mean survival time, 8 days; n = 7). OX40 costimulation is critically important in skin allograft rejection in this model, as blocking the OX40/OX40 ligand pathway, but not the ICOS/ICOS ligand, 4-1BB/4-1BBL, or CD27/CD70 pathway, markedly prolonged skin allograft survival in CD28/CD154 DKO mice. The critical role of OX40 costimulation in CD28/CD154-independent rejection is further confirmed in wild-type C57BL/6 mice, as blocking the OX40/OX40 ligand pathway in combination with CD28/CD154 blockade induced long term skin allograft survival (>100 days; n = 5). Our study revealed a key cellular mechanism of rejection and identified OX40 as a critical alternative costimulatory molecule in CD28/CD154-independent rejection.  相似文献   

5.
The effect of blocking the CD28/B7 costimulatory pathway on intestinal allograft rejection was examined in mice. Murine CTLA4Ig failed to prevent the rejection of allografts transplanted into wild-type or CD4 knockout (KO) mice but did inhibit allograft rejection by CD8 KO recipients. This effect was associated with decreased intragraft mRNA for IFN-gamma and TNF-alpha and increased mRNA for IL-4 and IL-5. This altered pattern of cytokine production was not observed in allografts from murine CTLA4Ig-treated CD4 KO mice. These data demonstrate that blockade of the CD28/B7 pathway has different effects on intestinal allograft rejection mediated by CD4+ and CD8+ T cells and suggest that these T cell subsets have different costimulatory requirements in vivo. The results also suggest that the inhibition of CD4+ T cell-mediated allograft rejection by CTLA4Ig may be related to down-regulation of Th1 cytokines and/or up-regulation of Th2 cytokines.  相似文献   

6.
The delivery of CD40 signaling to APCs during T cell priming enhances many T cell-mediated immune responses. Although CD40 signaling up-regulates APC production of IL-12, the impact of this increased production on T cell priming is unclear. In this study an IL-12-independent T cell-mediated immune response, contact hypersensitivity (CHS), was used to further investigate the effect of CD40 ligation on the phenotypic development of Ag-specific CD4(+) and CD8(+) T cells. Normally, sensitization for CHS responses induces hapten-specific CD4(+) T cells producing type 2 cytokines and CD8(+) T cells producing IFN-gamma. Treatment of mice with agonist anti-CD40 mAb during sensitization with the hapten 2,4-dinitrofluorobenzene resulted in CHS responses of increased magnitude and duration. These augmented responses in anti-CD40 Ab-treated mice correlated with increased numbers of hapten-specific CD4(+) and CD8(+) T cells producing IFN-gamma in the skin draining lymph nodes. Identical results were observed using IL-12(-/-) mice, indicating that CD40 ligation promotes CHS responses and development of IFN-gamma-producing CD4(+) and CD8(+) T cells in the absence of IL-12. Engagement of CD40 on hapten-presenting Langerhans cells (hpLC) up-regulated the expression of both class I and class II MHC and promoted hpLC migration into the T cell priming site. These results indicate that hpLC stimulated by CD40 ligation use a mechanism distinct from increased IL-12 production to promote Ag-specific T cell development to IFN-gamma-producing cells.  相似文献   

7.
8.
Blockade of the CD40-CD154 pathway can inhibit CD4(+) T cell activation but is unable to prevent immune responses mediated by CD8(+) T cells. However, even in the absence of CD8(+) T cells, inhibition of the CD40-CD154 pathway is insufficient to prevent the development of transplant arteriosclerosis. This study investigated the mechanisms of transplant arteriosclerosis in the absence of the CD40 pathway. C57BL/6 CD40(-/-) (H2(b)) recipients were transplanted with MHC-mismatched BALB/c (H2(d)) aortas. Transplant arteriosclerosis was evident in both CD40(-/-) and CD40(+/-) mice (intimal proliferation was 59 +/- 5% for CD40(-/-) mice vs 58 +/- 4% for CD40(+/-) mice) in the presence or absence of CD8(+) T cells (intimal proliferation was 46 +/- 7% for CD40(-/-) anti-CD8-treated mice vs 50 +/- 10% for CD40(+/-) anti-CD8-treated mice), confirming that CD8(+) T cells are not essential effector cells for the development of this disease. In CD40(-/-) recipients depleted of CD8(+) T cells, the number of eosinophils infiltrating the graft was markedly increased (109 +/- 24 eosinophils/grid for CD40(-/-) anti-CD8-treated mice vs 28 +/- 7 for CD40(+/-) anti-CD8-treated mice). The increased presence of eosinophils correlated with augmented intragraft production of IL-4. To test the hypothesis that IL-4 was responsible for the intimal proliferation, CD8 T cell-depleted CD40(-/-) recipients were treated with anti-IL-4 mAb. This resulted in significantly reduced eosinophil infiltration into the graft (12 +/- 5 eosinophils/grid for CD40(-/-) anti-CD8(+), anti-IL-4-treated mice vs 109 +/- 24 for CD40(-/-) anti-CD8-treated mice), intragraft eotaxin, CCR3 mRNA production, and the level of intimal proliferation (18 +/- 5% for CD40(-/-) anti-CD8(+)-, anti-IL-4-treated mice vs 46 +/- 7% for CD40(-/-) anti-CD8-treated mice). In conclusion, elevated intragraft IL-4 production results in an eosinophil infiltrate and is an important mechanism for CD8(+) T cell-independent transplant arteriosclerosis in the absence of CD40-CD154 costimulation.  相似文献   

9.
Although interruption of CD40-CD40L interactions via their respective mAbs yields prolonged allograft survival, the relative importance of CD40 or CD40L on donor or host cells remains unknown. Moreover, it is uncertain whether any allospecific tolerance occurring with CD40-CD40L blockade will also prevent allograft arteriopathy, the major long-term limitation to transplantation. Therefore, we performed cardiac transplantations using CD40L-deficient (CD40L-/-) mice to investigate the mechanisms underlying prolonged allograft survival. Without immunosuppression, wild-type (WT) hosts rejected allo-mismatched WT or CD40L-/- heart allografts within 2 wk. Conversely, allografts in CD40L-/- hosts beat vigorously for 12 wk. Anti-CD40 treatment did not induce graft failure in CD40L-/- recipients. Although graft-infiltrating cells were reduced approximately 50% in CD40L-/- hosts, the relative percentages of macrophages and T cell subsets were comparable to WT. IFN-gamma, TNF-alpha, and IL-10 were diminished commensurate with the reduced cellular infiltrate; IL-4 was not detected. CD40L-/- recipients did not develop IgG alloantibodies and showed diminished B7 and CD28 expression on subsets of graft-infiltrating cells. CD40L-/- transplant recipients developed allospecific tolerance to the donor haplotype; second set donor skin grafts engrafted well, whereas third-party skin grafts were vigorously rejected. By MLR, splenocytes from CD40L-/- allograft recipients also demonstrated allo-specific hyporesponsiveness. Nevertheless, allografts in CD40L-/- hosts developed significant graft arteriosclerosis by 8-12 wk posttransplant. Therefore, we propose that early alloresponses, without CD40-CD40L costimulation, induce allospecific tolerance but may trigger allo-independent mechanisms that ultimately result in graft vasculopathy.  相似文献   

10.
CD154, one of the most extensively studied T cell costimulation molecules, represents a promising therapeutic target in organ transplantation. However, the immunological mechanisms of CD154 blockade that result in allograft protection, particularly in the context of alloreactive CD4/CD8 T cell activation, remain to be elucidated. We now report on the profound inhibition of alloreactive CD8(+) T cells by CD154 blockade via both CD4-dependent and CD4-independent activation pathways. Using CD154 KO recipients that are defective in alloreactive CD8(+) T cell activation and unable to reject cardiac allografts, we were able to restore CD8 activation and graft rejection by adoptively transferring CD4(+) or CD8(+) T cells from wild-type syngeneic donor mice. CD4-independent activation of alloreactive CD8(+) T cells was confirmed following treatment of wild-type recipients with CD4-depleting mAb, and by using CD4 KO mice. Comparable levels of alloreactive CD8(+) T cell activation was induced by allogenic skin engraftment in both animal groups. CD154 blockade inhibited CD4-independent alloreactive CD8(+) T cell activation. Furthermore, we analyzed whether disruption of CD154 signaling affects cardiac allograft survival in skin-sensitized CD4 KO and CD8 KO recipients. A better survival rate was observed consistently in CD4 KO, as compared with CD8 KO recipients. Our results document CD4-dependent and CD4-independent activation pathways for alloreactive CD8(+) T cells that are both sensitive to CD154 blockade. Indeed, CD154 blockade was effective in preventing CD8(+) T cell-mediated cardiac allograft rejection.  相似文献   

11.
Blockade of CD40-CD154 interactions can facilitate long-term allograft acceptance in selected rodent and in primate models, but, due to the ability of CD154-independent CD8(+) T cells to initiate graft rejection, this strategy is not always effective. In this work we demonstrate that blockade of the CD40-CD154 pathway at the time of transplantation enables the generation of donor alloantigen-specific CD4(+)CD25(+) regulatory T cells, and that if the regulatory cells are present in sufficient numbers they can suppress allograft rejection mediated by CD154-independent CD8(+) T cells.  相似文献   

12.
Although CD4 cells are major mediators in cellular rejection of fetal pig pancreas (FPP) in the mouse, rejection still occurs in the absence of CD4 cells, albeit with delayed kinetics. CD4 cell-independent mechanisms of cellular rejection are poorly understood. To investigate the involvement of CD8 T cells in FPP rejection and their activation requirements, we used mice transgenic for anti-CD4 Ab; this is the most complete model of CD4 cell deficiency. We showed that in such mice FPP was infiltrated with CD8 cells starting from 2 wk posttransplantation and FPP was eventually rejected 8 wk posttransplantation. Ab depletion of CD8 cells greatly improved the survival of FPP and reduced cell infiltration at the graft site. This suggests that CD8 cells can mediate the rejection of porcine xenografts in the absence of CD4 cells. This CD8-mediated rejection of FPP is independent of their perforin-mediated lytic function, as graft survival was not affected in mice deficient in perforin. The production of IFN-gamma and IL-5 by the graft infiltrates indicates that CD8 cells may act through cytokine-mediated mechanisms. Remarkably, in the absence of CD4 cells, lymphocyte infiltration at the graft site was absent in mice transgenic for CTLA4Ig such that the islet grafts flourished beyond 24 wk. In contrast, rejection was little affected by CD40 ligand deficiency. Therefore, we show that CD8 cells are activated to mediate FPP rejection independent of perforin and that this CD4-independent activation of CD8 cells critically depends on B7/CD28 costimulation.  相似文献   

13.
Both humoral and cellular immune responses are involved in renal allograft rejection. Interleukin (IL)-6 is a regulatory cytokine for both B and Foxp3 (forkhead box P3)-expressing regulatory T (Treg) cells. This study was designed to investigate the impact of donor IL-6 production on renal allograft survival. Donor kidneys from IL-6 knockout (KO) vs. wild-type (WT) C57BL/6 mice (H-2(b)) were orthotopically transplanted to nephrotomized BALB/c mice (H-2(d)). Alloantibodies and Treg cells were examined by fluorescence-activated cell sorting analysis. Graft survival was determined by the time to graft failure. Here, we showed that a deficiency in IL-6 expression in donor kidneys significantly prolonged renal allograft survival compared with WT controls. IL-6 protein was upregulated in renal tubules and endothelium of renal allografts following rejection, which correlated with an increase in serum IL-6 compared with that in those receiving KO grafts or naive controls. The absence of graft-producing IL-6 or lower levels of serum IL-6 in the recipients receiving IL-6 KO allografts was associated with decreased circulating anti-graft alloantibodies and increased the percentage of intragraft CD4(+)CD25(+)Foxp3(+) Treg cells compared with those with WT allografts. In conclusion, the lack of graft-producing IL-6 significantly prolongs renal allograft survival, which is associated with reduced alloantibody production and/or increased intragraft Treg cell population, implying that targeting donor IL-6 may effectively prevent both humoral and cellular rejection of kidney transplants.  相似文献   

14.
We determined the role of cytokines in regulating the pattern of rejection and recipient susceptibility to cyclosporine (CsA) in a mouse cardiac allograft model. Hearts from C3H mice transplanted into untreated BALB/c (Th2-dominant) and C57BL/6 (Th1-dominant) mice showed different patterns of rejection. C3H allografts in BALB/c mice showed typical acute vascular rejection (AVR) with strong intragraft deposition and high serum levels of anti-donor IgG with predominant IgG1, while C3H allografts in C57BL/6 mice showed typical acute cellular rejection (ACR) with massive intragraft infiltration of CD4(+) and CD8(+) lymphocytes and low serum levels of anti-donor IgG with predominant IgG2a. Elevated intragraft mRNA expression of IL-2, IFN-gamma, and IL-12 mRNA was present in C57BL/6 recipients, whereas allografts in BALB/c mice displayed increased IL-4 and IL-10 mRNA levels. CsA therapy completely inhibited ACR and induced indefinite allograft survival in C57BL/6 recipients, while the same therapy failed to prevent AVR, and only marginally prolonged graft survival in BALB/c recipients. In contrast, rapamycin blocked AVR, achieving indefinite survival in BALB/c recipients, but was less effective at preventing ACR in C57BL/6 recipients. The disruption of the IL-12 or IFN-gamma genes in C57BL/6 mice shifted ACR to AVR, and resulted in concomitant recipient resistance to CsA therapy. Conversely, disruption of IL-4 gene in BALB/c mice markedly attenuated AVR and significantly prolonged allograft survival. These data suggest that the distinct cytokine profiles expressed by different mouse strains play an essential role in regulating the pattern of rejection and outcome of CsA/rapamycin therapy.  相似文献   

15.
Previous work on blockade of CD40-CD40 ligand interaction in mice and primates with anti-CD40 ligand mAbs has resulted in a moderate prolongation of allograft survival without the development of true allograft tolerance. In this study, we show in rats that adenovirus-mediated gene transfer of CD40Ig sequences into the graft resulted in prolonged (>200 days) expression of CD40Ig and in long-term (>300 days) survival. Recipients expressing CD40Ig displayed strongly (>90%) inhibited mixed leukocyte reactions and alloantibody production at early (days 5 and 17) and late time points (>100 day) after transplantation, but showed limited inhibition of leukocyte infiltration and cytokine production as evaluated by immunohistology at early time points (day 5). Recipients of long-surviving hearts showed donor-specific hyporesponsiveness since acceptance of second cardiac allografts was donor specific. Nevertheless, long-term allografts (>100 days) displayed signs of chronic rejection vasculopathy. Occluded vessels showed leukocyte infiltration, mainly composed of CD4(+) and CD8(+) cells, macrophages, and mast cells. These recipients also showed antidonor CTL activity. Recipients expressing CD40Ig did not show nonspecific immunosuppression, as they were able to mount anticognate immune responses that were partially inhibited at early time points and were normal thereafter. We conclude that gene transfer-mediated expression of CD40Ig resulted in a highly efficient inhibition of acute heart allograft rejection in rats. This treatment induced donor-specific inhibition of certain alloreactive mechanisms in the short-, but not the long-term, which resulted in long-term survival of allografts concomitant with the development of chronic rejection.  相似文献   

16.
Administration of anti-CD25 mAb before an aggressive murine breast tumor inoculation provoked effective antitumor immunity. Compared with CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that did not reject tumor, CD4(+) T cells purified from anti-CD25 mAb-pretreated mice that rejected tumor stimulated by dendritic cells (DCs) produced more IFN-gamma and IL-2, and less IL-17 in vitro, and ignited protective antitumor immunity in vivo in an adoptive transfer model. Tumor Ag-loaded DCs activated naive CD8(+) T cells in the presence of these CD4(+) T cells in vitro. Tumor Ag and adoptively transferred CD4(+) T cells were both required for inducing a long-term tumor-specific IFN-gamma-producing cellular response and potent protective antitumor activity. Although adoptively transferred CD4(+) T cells ignited effective tumor-specific antitumor immunity in wild-type mice, they failed to do so in endogenous NK cell-depleted, Gr-1(+) cell-depleted, CD40(-/-), CD11c(+) DC-depleted, B cell(-/-), CD8(+) T cell-depleted, or IFN-gamma(-/-) mice. Collectively, the data suggest that adoptively transferred CD4(+) T cells orchestrate both endogenous innate and adaptive immunity to generate effective tumor-specific long-term protective antitumor immunity. The data also demonstrate the pivotal role of endogenous DCs in the tumor-specific protection ignited by adoptively transferred CD4(+) T cells. Thus, these findings highlight the importance of adoptively transferred CD4(+) T cells, as well as host immune components, in generating effective tumor-specific long-term antitumor activity.  相似文献   

17.
Blockade of costimulatory signals is a promising therapeutic target to prevent allograft rejection. In this study, we sought to characterize to what extent CTLA-4 engagement contributes to the development of transplantation tolerance under the cover of CD40/CD40L and CD28/CD86 blockade. In vitro, we found that inhibition of the primary alloresponse and induction of alloantigen hyporesponsiveness by costimulation blockade was abrogated by anti-CTLA-4 mAb. In addition, regulatory CD4(+)CD25(+) T cells (T(REG)) were confirmed to play a critical role in the induction of hyporesponsiveness by anti-CD40L and anti-CD86 mAb. Our data indicated that CTLA-4 engagement is not required for activation or suppressor function of T(REG). Instead, in the absence of either CTLA-4 signaling or T(REG), CD8(+) T cell division was enhanced, whereas the inhibition of CD4(+) T cell division by costimulation blockade remained largely unaffected. In vivo, the administration of additional anti-CTLA-4 mAb abrogated anti-CD40L- and anti-CD86 mAb-induced cardiac allograft survival. Correspondingly, rejection was accompanied by enhanced allograft infiltration of CD8(+) cells. We conclude that CTLA-4 signaling and T(REG) independently cooperate in the inhibition of CD8(+) T cell expansion under costimulation blockade.  相似文献   

18.
The primary effector cells of contact hypersensitivity (CHS) responses to dintrofluorobenzene (DNFB) are IFN-gamma-producing CD8(+) T cells, whereas CD4(+) T cells regulate the magnitude and duration of the response. The requirement for CD40-CD154 engagement during CD8(+) and CD4(+) T cell priming by hapten-presenting Langerhans cells (hpLC) is undefined and was tested in the current study. Similar CHS responses to DNFB were elicited in wild-type and CD154(-/-) animals. DNFB sensitization of CD154(-/-) mice primed IFN-gamma-producing CD8(+) T cells and IL-4-producing CD4(+) T cells. However, anti-CD154 mAb MR1 given during hapten sensitization inhibited hapten-specific CD8(+), but not CD4(+), T cell development and the CHS response to challenge. F(ab')(2) of MR1 failed to inhibit CD8(+) T cell development and the CHS response suggesting that the mechanism of inhibition is distinct from that of CD40-CD154 blockade. Furthermore, anti-CD154 mAb did not inhibit CD8(+) T cell development and CHS responses in mice depleted of CD4(+) T cells or in CD4(-/-) mice. During in vitro proliferation assays, hpLC from mice treated with anti-CD154 mAb during DNFB sensitization were less stimulatory for hapten-primed T cells than hpLC from either control mice or mice depleted of CD4(+) T cells before anti-CD154 mAb administration. These results demonstrate that development of IFN-gamma-producing CD8(+) T cells and the CHS response are not dependent on CD40-CD154 interactions. This study proposes a novel mechanism of anti-CD154 mAb-mediated inhibition of CD8(+) T cell development where anti-CD154 mAb acts indirectly through CD4(+) T cells to impair the ability of hpLC to prime CD8(+) T cells.  相似文献   

19.
Blocking the CD28/B7 and/or CD154/CD40 costimulatory pathways promotes long-term allograft survival in many transplant models where CD4(+) T cells are necessary for rejection. When CD8(+) T cells are sufficient to mediate rejection, these approaches fail, resulting in costimulation blockade-resistant rejection. To address this problem we examined the role of lymphotoxin-related molecules in CD8(+) T cell-mediated rejection of murine intestinal allografts. Targeting membrane lymphotoxin by means of a fusion protein, mAb, or genetic mutation inhibited rejection of intestinal allografts by CD8(+) T cells. This effect was associated with decreased monokine induced by IFN-gamma (Mig) and secondary lymphoid chemokine (SLC) gene expression within allografts and spleens respectively. Blocking membrane lymphotoxin did not inhibit rejection mediated by CD4(+) T cells. Combining disruption of membrane lymphotoxin and treatment with CTLA4-Ig inhibited rejection in wild-type mice. These data demonstrate that membrane lymphotoxin is an important regulatory molecule for CD8(+) T cells mediating rejection and suggest a strategy to avoid costimulation blockade-resistant rejection.  相似文献   

20.
CD4 T cell-dependent mechanisms promoting allograft rejection include expression of inflammatory functions within the graft and the provision of help for donor-reactive CD8 T cell and Ab responses. These studies tested CD4 T cell-mediated rejection of MHC-mismatched cardiac allografts in the absence of both CD8 T and B lymphocytes. Whereas wild-type C57BL/6 recipients depleted of CD8 T cells rejected A/J cardiac grafts within 10 days, allografts were not rejected in B cell-deficient B6.muMT(-/-) recipients depleted of CD8 T cells. Isolated wild-type C57BL/6 and B6.muMT(-/-) CD4 T cells had nearly equivalent in vivo alloreactive proliferative responses. CD4 T cell numbers in B6.muMT(-/-) spleens were 10% of that in wild-type mice but were only slightly decreased in peripheral lymph nodes. CD8 T cell depletion did not abrogate B6.muMT(-/-) mice rejection of A/J skin allografts and this rejection rendered these recipients able to reject A/J cardiac allografts. Redirection of the alloimmune response to the lymph nodes by splenectomy conferred the ability of B6.muMT(-/-) CD4 T cells to reject cardiac allografts. These results indicate that the low number of splenic CD4 T cells in B6.muMT(-/-) mice underlies the inability to reject cardiac allografts and this inability is overcome by diverting the CD4 T cell response to the peripheral lymph nodes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号