首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Two murine monoclonal antibodies, G3.519, recognizing the CD4-binding region, and BAT123, a variable region of gp120 of human immunodeficiency virus, were chemically coupled to pokeweed antiviral protein isolated from seeds (PAP-S). The immunoconjugates were purified by Sephacryl S-200 gel filtration and Mono S ion exchange chromatography. Immunoconjugate G3.519-PAP-S specifically killed human T cells, H9, infected with three diverse HIV-1 strains, HTLV-IIIB, -IIIMN, and -IIIRF. Inhibition of thymidine incorporation by the immunoconjugate was concentration-dependent, with the ID50 ranging from 1.4 x 10(-10) M to 1.7 x 10(-9) M. Immunoconjugate BAT123-PAP-S was effective in killing H9 cells infected with HTLV-IIIB (ID50 = 4.3 x 10(-11) M) and -IIIMN (ID50 = 4.7 x 10(-10) M), but not -IIIRF. Both immunoconjugates did not inhibit thymidine incorporation in uninfected H9 cells up to a concentration of 5.3 x 10(-8) M, and their cytotoxic activities could be competitively blocked by the respective unconjugated antibodies. The immunoconjugates retained the ability to neutralize HIV virions to infect T cells and to prevent the syncytium formation. These in vitro studies suggest that the use of immunoconjugates capable of killing HIV-infected T cells and neutralizing virus may provide an alternative treatment for HIV-infected persons.  相似文献   

2.
Murine mAb BAT123, which was made against the envelope glycoprotein gp120 of HTLV-IIIB strain of HIV type 1 (HIV-1), is capable of neutralizing HTLV-IIIB in vitro. It also inhibits the fusion between uninfected CD4+ cells and HIV-1-infected cells to form syncytia. As a step to explore the potential utility of the anti-HIV antibody in vivo, we have constructed a mouse-human chimeric antibody by rDNA techniques. The chimeric antibody, which bears the variable domains of mouse antibody BAT123 and constant domains Cr1 and C kappa of human Ig retains the Ag specificity of BAT123 as determined by its reactivity with HIV-1-infected H9 cells, gp120 in Western blot analysis, and the oligopeptide recognized by BAT123. The antiviral activities of the chimeric antibody in neutralizing HIV-1 infection as well as inhibiting the syncytia formation are also found identical to those of the parent murine antibody. Moreover, in the presence of human blood mononuclear cells, the chimeric antibody but not BAT123 (mouse IgG1) induces antibody-dependent cellular cytotoxicity. The findings point to the potential usefulness of the chimeric antibody in treating patients infected with HIV-1.  相似文献   

3.
Two monoclonal antibodies designated BAT085 and G3-136 were raised by immunizing BALB/c mice with gp120 purified from human immunodeficiency virus type 1 (HIV-1) IIIB-infected H9 cell extracts. Among three HIV-1 laboratory isolates (IIIB, MN, and RF), BAT085 neutralized only IIIB infection of CEM-SS cells, whereas G3-136 neutralized both IIIB and RF. These antibodies also neutralized a few primary HIV-1 isolates in the infection of activated human peripheral blood mononuclear cells. In indirect immunofluorescence assays, BAT085 bound to H9 cells infected with IIIB or MN, while G3-136 bound to H9 cells infected with IIIB or RF, but not MN. Using sequence-overlapping synthetic peptides of HIV-1 IIIB gp120, the binding site of BAT085 and G3-136 was mapped to a peptidic segment in the V2 region (amino acid residues 169 to 183). The binding of these antibodies to immobilized gp120 was not inhibited by the antibodies directed to the principal neutralization determinant in the V3 region or to the CD4-binding domain of gp120. In a competition enzyme-linked immunosorbent assay, soluble CD4 inhibited G3-136 but not BAT085 from binding to gp120. Deglycosylation of gp120 by endo-beta-N-acetylglucosaminidase H or reduction of gp120 by dithiothreitol diminished its reactivity with G3-136 but not with BAT085. These results indicate that the V2 region of gp120 contains multiple neutralization determinants recognized by antibodies in both a conformation-dependent and -independent manner.  相似文献   

4.
Sera from individuals infected by HIV-1 usually neutralize multiple viral isolates. To determine the extent to which these neutralizing antibodies recognize a principal neutralizing determinant in the V3 region of the envelope protein gp120 (amino acids 308-332), one broadly neutralizing serum was fractionated by affinity chromatography on immobilized peptide columns. Antibodies that neutralize one isolate (HTLV-IIIMN) were substantially but not completely absorbed by the peptide corresponding to a portion of its V3 determinant, whereas the antibodies that neutralize two other isolates (HTLV-IIIB and HTLV-IIIRF) were not absorbed by homologous peptides corresponding to their neutralizing determinants. Neutralizing antibodies also failed to be absorbed by full length envelope protein gp160 and by two other envelope peptides previously reported to be broadly neutralizing epitopes (amino acids 254-274 and 735-752). We conclude that the infected individual had raised a type-restricted neutralizing response targeted at a linear epitope in the V3 region, and that broad neutralization resulted from recognition of epitopes not yet identified.  相似文献   

5.
A monoclonal antibody was produced to the exterior envelope glycoprotein (gp120) of the human T-cell lymphotropic virus (HTLV)-IIIB isolate of the human immunodeficiency virus (HIV). This antibody binds to gp120 of HTLV-IIIB and lymphadenopathy-associated virus type 1 (LAV-1) and to the surface of HTLV-IIIB- and LAV-1-infected cells, neutralizes infection by cell-free virus, and prevents fusion of virus-infected cells. In contrast, it does not bind, or weakly binds, the envelope of four heterologous HIV isolates and does not neutralize heterologous isolates HTLV-IIIRF and HTLV-IIIMN. The antibody-binding site was mapped to a 24-amino-acid segment, using recombinant and synthetic segments of HTLV-IIIB gp120. This site is within a segment of amino acid variability known to contain the major neutralizing epitopes (S. D. Putney, T. J. Matthews, W. G. Robey, D. L. Lynn, M. Robert-Guroff, W. T. Mueller, A. J. Langlois, J. Ghrayeb, S. R. Petteway, K. J. Weinhold, P. J. Fischinger, F. Wong-Staal, R. C. Gallo, and D. P. Bolognesi, Science 234:1392-1395, 1986). These results localize an epitope of HIV type-specific neutralization and suggest that neutralizing antibodies may be effective in controlling cell-associated, as well as cell-free, virus infection.  相似文献   

6.
Identification of broadly cross-reactive HIV-1-neutralizing antibodies (bnAbs) may assist vaccine immunogen design. Here we report a novel human monoclonal antibody (mAb), designated m43, which co-targets the gp120 and gp41 subunits of the HIV-1 envelope glycoprotein (Env). M43 bound to recombinant gp140 s from various primary isolates, to membrane-associated Envs on transfected cells and HIV-1 infected cells, as well as to recombinant gp120 s and gp41 fusion intermediate structures containing N-trimer structure, but did not bind to denatured recombinant gp140 s and the CD4 binding site (CD4bs) mutant, gp120 D368R, suggesting that the m43 epitope is conformational and overlaps the CD4bs on gp120 and the N-trimer structure on gp41. M43 neutralized 34% of the HIV-1 primary isolates from different clades and all the SHIVs tested in assays based on infection of peripheral blood mononuclear cells (PBMCs) by replication-competent virus, but was less potent in cell line-based pseudovirus assays. In contrast to CD4, m43 did not induce Env conformational changes upon binding leading to exposure of the coreceptor binding site, enhanced binding of mAbs 2F5 and 4E10 specific for the membrane proximal external region (MPER) of gp41 Envs, or increased gp120 shedding. The overall modest neutralization activity of m43 is likely due to the limited binding of m43 to functional Envs which could be increased by antibody engineering if needed. M43 may represent a new class of bnAbs targeting conformational epitopes overlapping structures on both gp120 and gp41. Its novel epitope and possibly new mechanism(s) of neutralization could helpdesign improved vaccine immunogens and candidate therapeutics.  相似文献   

7.
Both IgG and secretory IgA Abs in mucosal secretions have been implicated in blocking the earliest events in HIV-1 transit across epithelial barriers, although the mechanisms by which this occurs remain largely unknown. In this study, we report the production and characterization of a human rIgA(2) mAb that carries the V regions of IgG1 b12, a potent and broadly neutralizing anti-gp120 Ab which has been shown to protect macaques against vaginal simian/HIV challenge. Monomeric, dimeric, polymeric, and secretory IgA(2) derivatives of b12 reacted with gp120 and neutralized CCR5- and CXCR4-tropic strains of HIV-1 in vitro. With respect to the protective effects of these Abs at mucosal surfaces, we demonstrated that IgG1 b12 and IgA(2) b12 inhibited the transfer of cell-free HIV-1 from ME-180 cells, a human cervical epithelial cell line, as well as Caco-2 cells, a human colonic epithelial cell line, to human PBMCs. Inhibition of viral transfer was due to the ability of b12 to block both viral attachment to and uptake by epithelial cells. These data demonstrate that IgG and IgA MAbs directed against a highly conserved epitope on gp120 can interfere with the earliest steps in HIV-1 transmission across mucosal surfaces, and reveal a possible mechanism by which b12 protects the vaginal mucosal against viral challenge in vivo.  相似文献   

8.
Through an integrated study of the reactivity of a monoclonal antibody, 803-15.6, with synthetic peptides and native recombinant HIV-1 envelope glycoprotein gp120, we have obtained structure-functional information on a region of rgp120 not yet elucidated by X-ray crystallography. mAb 803-15.6 binds with high affinity and broad cross-clade specificity to the conserved C-terminal region (amino acids 502-516) of HIV-1 rgp120. Phage display selection from a random peptide library identified the core binding motif as AXXKXRH, homologous to residues 502-508. Using quantitative binding analyses, the affinity of mAb 803-15.6 for native, monomeric recombinant gp120HXB2 (rgp120) was found to be similar to that for the synthetic gp120 peptide (502-516). Circular dichroism studies indicate that the synthetic peptide largely has a random coil conformation in solution. The results therefore suggest that the 803-15.6 epitope is fully accessible on rgp120 and that this region of rgp120 is as flexible as the synthetic peptide. Residues 502-504 are on the edge of a putative gp41 binding site that has been postulated to change conformation on CD4 binding. However, the affinity of mAb 803-15.6 for rgp120 is not affected by binding of CD4 and vice-versa. These results suggest either that the 502-504 region does not change conformation upon CD4 binding, or that recombinant gp120 does not undergo the same changes as occur in the native viral gp120-gp41 oligomer. The detailed characterization of the 803-15.6 epitope may be useful for further study of the role of the C5 region of gp120 in the viral attachment and fusion process.  相似文献   

9.
A panel of seven monoclonal antibodies against the relatively conserved CD4-binding domain on human immunodeficiency virus type 1 (HIV-1) gp120 was generated by immunizing mice with purified gp120. These monoclonal antibodies reacted specifically with gp120 in an enzyme-linked immunosorbent assay and Western blots (immunoblots). By using synthetic peptides as antigens in the immunosorbent assay, the epitopes of these seven monoclonal antibodies were mapped to amino acid residues 423 to 437 of gp120. Further studies with radioimmunoprecipitation assays showed that they cross-reacted with both gp120 and gp160 of diverse HIV-1 isolates (HTLV-IIIB, HTLV-IIIRF, HTLV-IIIAL, and HTLV-IIIWMJ). They also bound specifically to H9 cells infected with HTLV-IIIB, HTLV-IIIRF, HTLV-IIIAL, HTLV-IIIZ84, and HTLV-IIIZ34 in indirect immunofluorescence studies. In addition, they blocked effectively the binding of HIV-1 to CD4+ C8166 cells. Despite the similarity of these properties, the monoclonal antibodies differed in neutralizing activity against HTLV-IIIB, HTLV-IIIRF, and HTLV-IIIAL, as demonstrated in both syncytium-forming assays and infectivity assays. Our findings suggest that these group-specific monoclonal antibodies to the putative CD4-binding domain on gp120 are potential candidates for development of therapeutic agents against acquired immunodeficiency disease syndrome.  相似文献   

10.
Monoclonal antibodies (MAbs) to defined peptide epitopes on gp120 from human immunodeficiency virus type 1 were used to investigate the involvement of their epitopes in gp120 binding to the CD4 receptor. Recombinant vaccinia viruses were constructed that expressed either full-length gp120 (v-ED6), or a truncated gp120 lacking 44 amino acids at the carboxyl terminus (v-ED4). Binding of these glycoproteins to the CD4 receptor was detected directly with metabolically labeled gp120 or indirectly with the gp120 MAbs. Truncated gp120 from v-ED4 bound to CD4-positive cells less than 1/12 as well as gp120 from v-ED6, indicating that the C-terminal region of gp120, which is conserved in numerous isolates of human immunodeficiency virus type 1, is critical for CD4 binding. However, MAb 110-1, which recognizes a peptide contained in the region deleted from v-ED4 (amino acids 489 through 511), did not inhibit binding of gp120 to CD4. MAb 110-1 also reacted with gp120 bound to the CD4 receptor, indicating that the epitope for this antibody does not directly interact with CD4. A second MAb, 110-4, which recognizes a peptide epitope located between amino acids 303 and 323 and has potent viral neutralizing activity, also bound to gp120 on the CD4 receptor. Furthermore, pretreatment of gp120 with MAb 110-4 at concentrations approximately 1,000-fold higher than those required for complete virus neutralization inhibited subsequent CD4 binding by only about 65%. Taken together, these data suggest that neutralization mediated by antibody 110-4 does not result from binding of this MAb to the CD4-binding site of gp120.  相似文献   

11.
The aim of this study was to dissect neutralizing anti-gp120 antibody populations in seropositive asymptomatic individuals. Murine anti-Id mAb were raised against polyclonal affinity-purified human anti-gp120 antibodies. These anti-Id mAb were used to fractionate anti-gp120 antibodies from a pool of HIV-positive sera into idiotypically distinct anti-gp120 antibody (Id+Ab) preparations. Immunochemical and neutralization studies indicated that all Id+Ab that neutralized HIV-1 in vitro interacted with either the V3 loop or the CD4 attachment site of gp120. The V3-specific Id+Ab neutralized HIV-1 in a strain-restricted manner. Id+Ab specific for the CD4 attachment site exhibited different spectra of neutralizing activities against multiple strains of HIV-1. This finding indicates that multiple, antigenically diverse epitopes reside around the CD4 attachment site of gp120. Significantly, depletion of the Id+Ab from affinity-purified total anti-gp120 antibodies abrogated most of the neutralizing activities of these antibodies, suggesting that neutralizing anti-gp120 antibodies consist of two major specificities, either to the V3 region or to the CD4 attachment site. The understanding of specificities and neutralizing activities of different anti-gp120 antibodies in seropositive healthy individuals will be helpful for designing effective vaccines and immunotherapeutic strategies for AIDS.  相似文献   

12.
Infection of CD4+ T lymphocytes is enhanced by the capture and subsequent transfer of HIV-1 by dendritic cells (DCs) via the interaction with C-type lectins such as the DC-specific ICAM-grabbing nonintegrin (DC-SIGN). Numerous HIV-1 envelope-directed neutralizing Abs have been shown to successfully block the infection of CD4(+) T lymphocytes. In this study, we find that HIV-1-neutralized with the mAb 2F5 is more efficiently captured by immature monocyte-derived DCs (iMDDCs) and DC-SIGN-expressing Raji cells (Raji-DC-SIGN). Furthermore, a 2F5-neutralized virus captured by these cells was able to subsequently infect CD4+ T lymphocytes upon the release of HIV-1 from iMDDCs, thereby enhancing infection. We show that upon transfer via DC-SIGN-expressing cells, HIV-1 is released from immune-complexes with the Abs 2F5 and 4E10 (gp41-directed) and 2G12, 4.8D, and 1.7b (gp120-directed). The nonneutralizing V3-21 (V3 region of the gp120-directed) Ab enhanced HIV-1 infection upon capture and transfer via Raji-DC-SIGN cells, whereas no infection was observed with the neutralizing b12 Ab (gp120-directed), indicating that different Abs have variant effects on inhibiting HIV-1 transfer to CD4+ T lymphocytes. The increased capture of the 2F5-neutralized virus by iMDDCs was negated upon blocking the Fc receptors. Blocking DC-SIGN on iMDDCs resulted in a 70-75% inhibition of HIV-1 capture at 37 degrees C, whereas at 4 degrees C a full block was observed, showing that the observed transfer is mediated via DC-SIGN. Taken together, we propose that DC-SIGN-mediated capture of neutralized HIV-1 by iMDDCs has the potential to induce immune evasion from the neutralization effects of HIV-1 Abs, with implications for HIV-1 pathogenesis and vaccine development.  相似文献   

13.
以H5N1型禽流感病毒HA蛋白广谱中和单抗8H5为基础,利用噬菌体展示肽库技术及类病毒颗粒融合表达技术研究HA模拟表位。ELISA检测结果显示:筛选获得模拟HA表位的模拟肽123,进行类病毒颗粒融合蛋白表达后,仍具有与8H5单抗特异结合的能力。免疫荧光检测结果说明,类病毒颗粒免疫小鼠后产生了能与HA交叉反应的抗体。禽流感病毒HA模拟表位的研究与性质的分析及类病毒颗粒融合蛋白的表达与活性分析、免疫原性分析,都为研制禽流感通用表位疫苗奠定了基础。  相似文献   

14.
The linear peptide 12p1 (RINNIPWSEAMM) was previously isolated from a phage display library and was found to inhibit interaction of HIV-1 gp120 with both CD4 and a CCR5 surrogate, mAb 17b [Ferrer, M., and Harrison, S. (1999) J. Virol. 73, 5795-5802]. In this work, we investigated the mechanism that leads to this dual inhibition of gp120 binding. We found that there is a direct interaction of 12p1 with gp120, which occurs with a binding stoichiometry of 1:1. The peptide inhibits binding of monomeric YU2 gp120 to both sCD4 and 17b at IC(50) values of 1.1 and 1.6 microM, respectively. The 12p1 peptide also inhibited the binding of these ligands to trimeric envelope glycoproteins, blocked the binding of gp120 to the native coreceptor CCR5, and specifically inhibited HIV-1 infection of target cells in vitro. Analyses of sCD4 saturation of monomeric gp120 in the presence or absence of a fixed concentration of peptide suggest that 12p1 suppression of CD4 binding to gp120 is due to allosteric inhibitory effects rather than competitive inhibition of CD4 binding. Using a panel of gp120 mutants that exhibit weakened inhibition by 12p1, the putative binding site of the peptide was mapped to a region immediately adjacent to, but distinguishable from, the CD4 binding footprint. In the case of the peptide, the effects of single-12p1 residue substitutions and various peptide truncations indicate that the side chain of Trp7 and other structural elements of 12p1 are critical for gp120 binding or efficient inhibition of binding of a ligand to gp120. Finally, 12p1 was unable to inhibit binding of sCD4 to a gp120 mutant that is believed to resemble the CD4-induced conformation of gp120. These results suggest that 12p1 preferentially binds gp120 prior to engagement of CD4; binding of the peptide to gp120 limits the interaction with ligands (CD4 and CCR5) that are generally crucial for viral entry. More importantly, these results indicate that 12p1 binds to a unique site that may prove to be a prototypic target for novel CD4-gp120 inhibitors.  相似文献   

15.

Background

The isolation of human monoclonal antibodies (mAbs) that neutralize a broad spectrum of primary HIV-1 isolates and the characterization of the human neutralizing antibody B cell response to HIV-1 infection are important goals that are central to the design of an effective antibody-based vaccine.

Methods and Findings

We immortalized IgG+ memory B cells from individuals infected with diverse clades of HIV-1 and selected on the basis of plasma neutralization profiles that were cross-clade and relatively potent. Culture supernatants were screened using various recombinant forms of the envelope glycoproteins (Env) in multiple parallel assays. We isolated 58 mAbs that were mapped to different Env surfaces, most of which showed neutralizing activity. One mAb in particular (HJ16) specific for a novel epitope proximal to the CD4 binding site on gp120 selectively neutralized a multi-clade panel of Tier-2 HIV-1 pseudoviruses, and demonstrated reactivity that was comparable in breadth, but distinct in neutralization specificity, to that of the other CD4 binding site-specific neutralizing mAb b12. A second mAb (HGN194) bound a conserved epitope in the V3 crown and neutralized all Tier-1 and a proportion of Tier-2 pseudoviruses tested, irrespective of clade. A third mAb (HK20) with broad neutralizing activity, particularly as a Fab fragment, recognized a highly conserved epitope in the HR-1 region of gp41, but showed striking assay-dependent selectivity in its activity.

Conclusions

This study reveals that by using appropriate screening methods, a large proportion of memory B cells can be isolated that produce mAbs with HIV-1 neutralizing activity. Three of these mAbs show unusual breadth of neutralization and therefore add to the current panel of HIV-1 neutralizing antibodies with potential for passive protection and template-based vaccine design.  相似文献   

16.
The structure of VRC01 in complex with the HIV-1 gp120 core reveals that this broadly neutralizing CD4 binding site (CD4bs) antibody partially mimics the interaction of the primary virus receptor, CD4, with gp120. Here, we extended the investigation of the VRC01-gp120 core interaction to the biologically relevant viral spike to better understand the mechanism of VRC01-mediated neutralization and to define viral elements associated with neutralization resistance. In contrast to the interaction of CD4 or the CD4bs monoclonal antibody (MAb) b12 with the HIV-1 envelope glycoprotein (Env), occlusion of the VRC01 epitope by quaternary constraints was not a major factor limiting neutralization. Mutagenesis studies indicated that VRC01 contacts within the gp120 loop D, the CD4 binding loop, and the V5 region were necessary for optimal VRC01 neutralization, as suggested by the crystal structure. In contrast to interactions with the soluble gp120 monomer, VRC01 interaction with the native viral spike did not occur in a CD4-like manner; VRC01 did not induce gp120 shedding from the Env spike or enhance gp41 membrane proximal external region (MPER)-directed antibody binding to the Env spike. Finally, VRC01 did not display significant reactivity with human antigens, boding well for potential in vivo applications. The data indicate that VRC01 interacts with gp120 in the context of the functional spike in a manner distinct from that of CD4. It achieves potent neutralization by precisely targeting the CD4bs without requiring alterations of Env spike configuration and by avoiding steric constraints imposed by the quaternary structure of the functional Env spike.  相似文献   

17.
The human immunodeficiency virus type 1 (HIV-1) envelope glycoprotein gp120 is a vaccine immunogen that can signal via several cell surface receptors. To investigate whether receptor biology could influence immune responses to gp120, we studied its interaction with human, monocyte-derived dendritic cells (MDDCs) in vitro. Gp120 from the HIV-1 strain JR-FL induced IL-10 expression in MDDCs from 62% of donors, via a mannose C-type lectin receptor(s) (MCLR). Gp120 from the strain LAI was also an IL-10 inducer, but gp120 from the strain KNH1144 was not. The mannose-binding protein cyanovirin-N, the 2G12 mAb to a mannose-dependent gp120 epitope, and MCLR-specific mAbs inhibited IL-10 expression, as did enzymatic removal of gp120 mannose moieties, whereas inhibitors of signaling via CD4, CCR5, or CXCR4 were ineffective. Gp120-stimulated IL-10 production correlated with DC-SIGN expression on the cells, and involved the ERK signaling pathway. Gp120-treated MDDCs also responded poorly to maturation stimuli by up-regulating activation markers inefficiently and stimulating allogeneic T cell proliferation only weakly. These adverse reactions to gp120 were MCLR-dependent but independent of IL-10 production. Since such mechanisms might suppress immune responses to Env-containing vaccines, demannosylation may be a way to improve the immunogenicity of gp120 or gp140 proteins.  相似文献   

18.
Synthetic mimetics of the CD4-binding site of HIV-1 gp120 are promising candidates for HIV-1 entry inhibition, as well as immunogen candidates for the elicitation of virus-neutralizing antibodies. On the basis of the crystal structure of gp120 in complex with CD4, we have used a recently introduced strategy for the generation of structurally diverse scaffolds to design and synthesize a scaffolded peptide, in which three fragments, making up the sequentially discontinuous binding site of gp120 for CD4, are presented in a nonlinear and discontinuous fashion through a molecular scoffold, which restrains conformational flexibility. The affinities of this molecule to CD4, as well as to the broadly neutralizing antibody mAb b12, whose epitope overlaps the CD4-binding site of gp120, were determined in competitive binding assays.  相似文献   

19.
The conserved HIV-1 site of coreceptor binding is protected from antibody-directed neutralization by conformational and steric restrictions. While inaccessible to most human antibodies, the coreceptor site has been shown to be accessed by antibody fragments. In this study, we used X-ray crystallography, surface plasmon resonance, and pseudovirus neutralization to characterize the gp120-envelope glycoprotein recognition and HIV-1 neutralization of a heavy chain-only llama antibody, named JM4. We describe full-length IgG2b and IgG3 versions of JM4 that target the coreceptor-binding site and potently neutralize over 95% of circulating HIV-1 isolates. Contrary to established trends that show improved access to the coreceptor-binding region by smaller antibody fragments, the single-domain (VHH) version of JM4 neutralized less well than the full-length IgG2b version of JM4. The crystal structure at 2.1-Å resolution of VHH JM4 bound to HIV-1 YU2 gp120 stabilized in the CD4-bound state by the CD4-mimetic miniprotein, M48U1, revealed a JM4 epitope that combined regions of coreceptor recognition (including the gp120 bridging sheet, V3 loop, and β19 strand) with gp120 structural elements involved in recognition of CD4 such as the CD4-binding loop. The structure of JM4 with gp120 thus defines a novel CD4-induced site of vulnerability involving elements of both coreceptor- and CD4-binding sites. The potently neutralizing JM4 IgG2b antibody that targets this newly defined site of vulnerability adds to the expanding repertoire of broadly neutralizing antibodies that effectively neutralize HIV-1 and thereby potentially provides a new template for vaccine development and target for HIV-1 therapy.  相似文献   

20.
Synthetic mimetics of the CD4-binding site of HIV-1 gp120 are promising candidates for HIV-1 entry inhibition, as well as immunogen candidates for the elicitation of virus-neutralizing antibodies. On the basis of the crystal structure of gp120 in complex with CD4, we have used a recently introduced strategy for the generation of structurally diverse scaffolds to design and synthesize a scaffolded peptide, in which three fragments, making up the sequentially discontinuous binding site of gp120 for CD4, are presented in a nonlinear and discontinuous fashion through a molecular scoffold, which restrains conformational flexibility. The affinities of this molecule to CD4, as well as to the broadly neutralizing antibody mAb b12, whose epitope overlaps the CD4-binding site of gp120, were determined in competitive binding assays.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号