首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
An approach is described for the simultaneous identification and quantitation of oxidant-sensitive cysteine thiols in a complex protein mixture using a thiol-specific, acid-cleavable isotope-coded affinity tag (ICAT) reagent (Applied Biosystems, USA). The approach is based on the fact that only free cysteine thiols are susceptible to labeling by the iodoacetamide-based ICAT, and that mass spectrometry can be used to quantitate the relative labeling of free thiols. Applying this approach, we have identified cysteine thiols of proteins in a rabbit heart membrane fraction that are sensitive to a high concentration of hydrogen peroxide. Previously known and some novel proteins with oxidant-sensitive cysteines were identified. Of the many protein thiols labeled by the ICAT, only relatively few were oxidized more than 50% despite the high concentration of oxidant used, indicating that oxidant-sensitive thiols are relatively rare, and denoting their specificity and potential functional relevance.  相似文献   

2.
Quantitative proteomics based on isotopic labeling has become the method of choice to accurately determine changes in protein abundance in highly complex mixtures. Isotope‐coded protein labeling (ICPL), which is based on the nicotinoylation of proteins at lysine residues and free N‐termini was used as a simple, reliable and fast method for the comparative analysis of three different cellular states of the halophilic archaeon Halobacterium salinarum through pairwise comparison. The labeled proteins were subjected to SDS‐PAGE, in‐gel digested and the proteolytic peptides were separated by LC and analyzed by MALDI‐TOF/TOF MS. Automated quantitation was performed by comparing the MS peptide signals of 12C and 13C nicotinoylated isotopic peptide pairs. The transitions between (i) aerobic growth in complex versus synthetic medium and (ii) aerobic versus anaerobic/phototrophic growth, both in complex medium, provide a wide span in nutrient and energy supply for the cell and thus allowed optimal studies of proteome changes. In these two studies, 559 and 643 proteins, respectively, could be quantified allowing a detailed analysis of the adaptation of H. salinarum to changes of its living conditions. The subtle cellular response to a wide variation of nutrient and energy supply demonstrates a fine tuning of the cellular protein inventory.  相似文献   

3.
Quantitative proteomics of complex mixtures   总被引:1,自引:0,他引:1  
Measurement of biologically important effector protein molecules has been a long-standing essential component of biological research. Advances in biotechnology, in the form of high-resolution mass spectrometers, and in bioinformatics, now allow the simultaneous quantitative analysis of thousands of proteins. While these techniques still do not allow definitive identification of the entire proteome of complex mixtures, such as cells, quantitative analyses of hundreds to thousands of proteins in such complex mixtures provides a means to elucidate molecular alterations that occur during perturbation of cellular systems. This article will outline considerations of reducing sample complexity, by strategies such as multidimensional separations (gel-based and chromatography-based, including multidimensional protein identification technology). In addition, some of the most common methods used to quantitatively measure proteins in complex mixtures (2D difference in-gel electrophoresis, isotope-coded affinity tags, isotope-coded protein labeling, tandem mass tags, isobaric tags for relative and absolute quantitation, stable isotope labeling of amino acids in cell culture and label-free), as well as recent examples of each strategy, are described.  相似文献   

4.
The posttranslational processing enzyme peptidylglycine alpha-amidating monooxygenase (PAM) occurs naturally in integral membrane and soluble forms. With the goal of understanding the targeting of these proteins to secretory granules, we have compared the maturation, processing, secretion, and storage of PAM proteins in stably transfected AtT-20 cells. Integral membrane and soluble PAM proteins exit the ER and reach the Golgi apparatus with similar kinetics. Biosynthetic labeling experiments demonstrated that soluble PAM proteins were endoproteolytically processed to a greater extent than integral membrane PAM; this processing occurred in the regulated secretory pathway and was blocked by incubation of cells at 20 degrees C. 16 h after a biosynthetic pulse, a larger proportion of soluble PAM proteins remained cell-associated compared with integral membrane PAM, suggesting that soluble PAM proteins were more efficiently targeted to storage granules. The nonstimulated secretion of soluble PAM proteins peaked 1-2 h after a biosynthetic pulse, suggesting that release was from vesicles which bud from immature granules during the maturation process. In contrast, soluble PAM proteins derived through endoproteolytic cleavage of integral membrane PAM were secreted in highest amount during later times of chase. Furthermore, immunoprecipitation of cell surface-associated integral membrane PAM demonstrated that very little integral membrane PAM reached the cell surface during early times of chase. However, when a truncated PAM protein lacking the cytoplasmic tail was expressed in AtT-20 cells, > 50% of the truncated PAM-1 protein reached the cell surface within 3 h. We conclude that the trafficking of integral membrane and soluble secretory granule-associated enzymes differs, and that integral membrane PAM proteins are less efficiently retained in maturing secretory granules.  相似文献   

5.
Abstract: The incorporation of [U-14C] protein hydrolysate and [U-14C]leucine into the trichloroacetic acid (TCA)-insoluble membrane and the soluble synaptoplasm proteins of synaptosomes was studied. Following treatment with the depolarizing agents veratrine, Tityus toxin, or potassium, the specific radioactivity of both precursor pool and proteins was measured to examine the link between protein labeling and the fall in the free amino acid pool due to depolarization-induced release of glutamate and aspartate. By reducing the size of the fall in precursor pool due to depolarization by using a nontransmitter amino acid such as leucine (as compared with the usual use of protein hydrolysate), it was shown that the amount by which the pool is reduced is proportional to the change in the protein labeling observed. These results confirm that membrane depolarization causes a large increase in the labeling of membrane-bound proteins as compared with the soluble synaptosomal proteins.  相似文献   

6.
Membrane proteins play a critical role in the process of neural stem cell self-renewal and differentiation. Here, we apply the SILAC (stable isotope labeling by amino acids in cell culture) approach to quantitatively compare the membrane proteome of the self-renewing and the astroglial differentiating cells. High-resolution analysis on a linear ion trap-Orbitrap instrument (LTQ-Orbitrap) at sub-ppm mass accuracy resulted in confident identification and quantitation of more than 700 distinct membrane proteins during the astroglial differentiation. Of the 735 quantified proteins, seven cell surface proteins display significantly higher expression levels in the undifferentiated state membrane compared to astroglial differentiating membrane. One cell surface protein transferrin receptor protein 1 may serve as a new candidate for NSCs surface markers. Functional clustering of differentially expressed proteins by Ingenuity Pathway Analysis revealed that most of overexpressed membrane proteins in the astroglial differentiation neural stem cells are involved in cellular growth, nervous system development, and energy metabolic pathway. Taken together, this study increases our understanding of the underlying mechanisms that modulate complex biological processes of neural stem cell proliferation and differentiation.  相似文献   

7.
The postsynaptic density contains multiple protein complexes that together relay the presynaptic neurotransmitter input to the activation of the postsynaptic neuron. In the present study we took two independent proteome approaches for the characterization of the protein complement of the postsynaptic density, namely 1) two-dimensional gel electrophoresis separation of proteins in conjunction with mass spectrometry to identify the tryptic peptides of the protein spots and 2) isolation of the trypsin-digested sample that was labeled with isotope-coded affinity tag, followed by liquid chromatography-tandem mass spectrometry for the partial separation and identification of the peptides, respectively. Functional grouping of the identified proteins indicates that the postsynaptic density is a structurally and functionally complex organelle that may be involved in a broad range of synaptic activities. These proteins include the receptors and ion channels for glutamate neurotransmission, proteins for maintenance and modulation of synaptic architecture, sorting and trafficking of membrane proteins, generation of anaerobic energy, scaffolding and signaling, local protein synthesis, and correct protein folding and breakdown of synaptic proteins. Together, these results imply that the postsynaptic density may have the ability to function (semi-) autonomously and may direct various cellular functions in order to integrate synaptic physiology.  相似文献   

8.
A method has been developed, called the mass western experiment in analogy to the Western blot, to detect the presence of specific proteins in complex mixtures without the need for antibodies. Proteins are identified with high sensitivity and selectivity, and their abundances are compared between samples. Membrane protein extracts were labeled with custom isotope-coded affinity tag reagents and digested, and the labeled peptides were analyzed by liquid chromatography-tandem mass spectrometry. Ions corresponding to anticipated tryptic peptides from the proteins of interest were continuously subjected to collision-induced dissociation in an ion trap mass spectrometer; heavy and light isotope-coded affinity tag-labeled peptides were simultaneously trapped and fragmented accomplishing identification and quantitation in a single mass spectrum. This application of ion trap selective reaction monitoring maximizes sensitivity, enabling analysis of peptides that would otherwise go undetected. The cell surface proteins prostate stem cell antigen (PSCA) and ErbB2 were detected in prostate and breast tumor cell lines in which they are expressed in known abundances spanning orders of magnitude.  相似文献   

9.
YidC of Escherichia coli belongs to the evolutionarily conserved Oxa1/Alb3/YidC family. Members of the family have all been implicated in membrane protein biogenesis of respiratory and energy transducing proteins. The number of proteins identified thus far to require YidC for their membrane biogenesis remains limited and the identification of new substrates may allow the elucidation of properties that define the YidC specificity. To this end we investigated changes in the membrane proteome of E. coli upon YidC depletion using metabolic labeling of proteins with 15N/14N combined with a MS‐centered proteomics approach and compared the effects of YidC depletion under aerobic and anaerobic growth conditions. We found that YidC depletion resulted in protein aggregation/misfolding in the cytoplasm as well as in the inner membrane of E. coli. A dramatic increase was observed in the chaperone‐mediated stress response upon YidC depletion and this response was limited to aerobically grown cells. A number of transporter proteins were identified as possible candidates for the YidC‐dependent insertion and/or folding pathway. These included the small metal ion transporter CorA, numerous ABC transporters, as well as the MFS transporters KgtP and ProP, providing a new subset of proteins potentially requiring YidC for membrane biogenesis.  相似文献   

10.
The soil-dwelling lithoautotrophic bacterium Ralstonia eutropha H16 utilizes hydrogen as the key source of energy during aerobic growth on hydrogen and carbon dioxide. We examined the soluble and membrane protein complements of lithoautotrophically grown cells and compared them to the protein complements of cells grown organoheterotrophically on succinate. (14)N/(15)N-based inverse metabolic labeling in combination with GeLC-MS led to the identification of 1452 proteins, 1174 of which could be quantitated. Far more proteins were found to be more abundant in the lithoautotrophically than in the organoheterotrophically grown cells. In addition to the induction of the key enzymes of hydrogen oxidation and carbon dioxide fixation, we observed several characteristic alterations in the proteome correlated with lithoautotrophic growth. (I) Genes for three terminal oxidases were upregulated. (II) NAD(P) transhydrogenase and enzymes for the accumulation of poly(3-hydroxybutyrate) (PHB) showed increased protein abundance. (III) Lithoautotrophically grown cells were equipped with an enhanced inventory of transport systems. (IV) The expression of cell surface appendages involved in cell movement was markedly increased, while proteins involved in cell adhesion were decreased. Our data show that the hydrogen-based lifestyle of R. eutropha H16 relies on an extensive protein repertoire adapting the organism to the alternative energy and carbon sources.  相似文献   

11.
定量蛋白质组学中的同位素标记技术   总被引:2,自引:0,他引:2  
定量蛋白质组学的目的是对复杂的混合体系中所有的蛋白质进行鉴定,并对蛋白质的量及量的变化进行准确的测定,是当前系统生物科学研究的重要内容。近年来,由于质谱技术和生物信息学的进步,定量蛋白质组学在分析蛋白质组或亚蛋白质组方面已取得了令人瞩目的成就,但其最显著的成就应该归功于稳定同位素标记技术的应用。该技术使用针对某一类蛋白具有特异性的化学探针来标记目的蛋白质或肽段,同时化学探针要求含有用以精确定量的稳定同位素信号。在此基础上,实现了对表达的蛋白质差异和翻译后修饰的蛋白质差异进行精确定量分析。综述了在定量蛋白质组学中使用的各种同位素标记技术及其应用。  相似文献   

12.
Toward multiplexed, comprehensive, and robust quantitation of the membrane proteome, we report a strategy combining gel-assisted digestion, iTRAQ (isobaric tags for relative and absolute quantitation) labeling, and LC-MS/MS. Quantitation of four independently purified membrane fractions from HeLa cells gave high accuracy (<8% error) and precision (<12% relative S.D.), demonstrating a high degree of consistency and reproducibility of this quantitation platform. Under stringent identification criteria (false discovery rate = 0%), the strategy efficiently quantified membrane proteins; as many as 520 proteins (91%) were membrane proteins, each quantified based on an average of 14.1 peptides per integral membrane protein. In addition to significant improvements in signal intensity for most quantified proteins, most remarkably, topological analysis revealed that the biggest improvement was achieved in detection of transmembrane peptides from integral membrane proteins with up to 19 transmembrane helices. To the best of our knowledge, this level of coverage exceeds that achieved previously using MS and provides superior quantitation accuracy compared with other methods. We applied this approach to the first proteomics delineation of phenotypic expression in a mouse model of autosomal dominant polycystic kidney disease (ADPKD). By characterizing kidney cell plasma membrane from wild-type versus PKD1 knock-out mice, 791 proteins were quantified, and 67 and 37 proteins showed > or =2-fold up-regulation and down-regulation, respectively. Some of these differentially expressed membrane proteins are involved in the mechanisms underlying major abnormalities in ADPKD, including epithelial cell proliferation and apoptosis, cell-cell and cell-matrix interactions, ion and fluid secretion, and membrane protein polarity. Among these proteins, targeting therapeutics to certain transporters/receptors, such as epidermal growth factor receptor, has proven effective in preclinical studies of ADPKD; others are known drug targets in various diseases. Our method demonstrates how comparative membrane proteomics can provide insight into the molecular mechanisms underlying ADPKD and the identification of potential drug targets, which may lead to new therapeutic opportunities to prevent or retard the disease.  相似文献   

13.
Consequences of membrane protein overexpression in Escherichia coli   总被引:1,自引:0,他引:1  
Overexpression of membrane proteins is often essential for structural and functional studies, but yields are frequently too low. An understanding of the physiological response to overexpression is needed to improve such yields. Therefore, we analyzed the consequences of overexpression of three different membrane proteins (YidC, YedZ, and LepI) fused to green fluorescent protein (GFP) in the bacterium Escherichia coli and compared this with overexpression of a soluble protein, GST-GFP. Proteomes of total lysates, purified aggregates, and cytoplasmic membranes were analyzed by one- and two-dimensional gel electrophoresis and mass spectrometry complemented with flow cytometry, microscopy, Western blotting, and pulse labeling experiments. Composition and accumulation levels of protein complexes in the cytoplasmic membrane were analyzed with improved two-dimensional blue native PAGE. Overexpression of the three membrane proteins, but not soluble GST-GFP, resulted in accumulation of cytoplasmic aggregates containing the overexpressed proteins, chaperones (DnaK/J and GroEL/S), and soluble proteases (HslUV and ClpXP) as well as many precursors of periplasmic and outer membrane proteins. This was consistent with lowered accumulation levels of secreted proteins in the three membrane protein overexpressors and is likely to be a direct consequence of saturation of the cytoplasmic membrane protein translocation machinery. Importantly accumulation levels of respiratory chain complexes in the cytoplasmic membrane were strongly reduced. Induction of the acetate-phosphotransacetylase pathway for ATP production and a down-regulated tricarboxylic acid cycle indicated the activation of the Arc two-component system, which mediates adaptive responses to changing respiratory states. This study provides a basis for designing rational strategies to improve yields of membrane protein overexpression in E. coli.  相似文献   

14.
Shoots of germinating rice (Oryza sativa L.) seedlings are able to grow under anoxia and to withstand long periods of anoxic treatment. Mitochondria were purified from aerobically germinated and anaerobically treated rice shoots by differential and isopycnic centrifugation and were found to consist of two subpopulations. The mitochondrial subpopulation of higher density was used for further characterization. Ultrastructural studies showed anaerobic mitochondria to be significantly different from aerobic mitochondria, with a matrix of lower density and more developed cristae. Aerobic and anaerobic mitochondria also differed in their specific activities for fumarase and succinate dehydrogenase, which were significantly lower after the anoxic treatment. In vivo labeling of seedlings with l-[35S]methionine and subsequent isolation of the mitochondria indicated that anoxia induced a drastic decrease, but not a total inactivation, of the synthesis of mitochondrial proteins. In organello protein synthesis showed that anaerobic mitochondria were able to synthesize most of the polypeptides synthesized by aerobic mitochondria, although only in the presence of exogenous ATP, as would occur under anoxia. Anaerobic mitochondria, but not aerobic mitochondria, could carry out protein synthesis without a functional respiratory chain. Thus, mitochondrial protein synthesis was found to be potentially functional in the rice shoot under anoxia.  相似文献   

15.
HPLC has emerged as a valuable tool for separating proteins. To address the analysis of complex proteomes and quantitative changes of proteins therein, we developed a multidimensional LC (MDLC)-based approach followed by large gel 1-D SDS-PAGE. Here we present a novel strategy that allows for simultaneously identifying and quantifying differentially regulated proteins following three separation and fractionation steps. This MDLC platform integrates advantages of dual protein labelling using both fluorescence and isotope-coded tags for subsequent detection and quantification of abundance ratios of proteins by MS.  相似文献   

16.
For high-throughput protein structural analyses, it is essential to develop a reliable protein overexpression system. Although many protein overexpression systems, such as ones involving Escherichia coli cells, have been developed, the number of overexpressed proteins exhibiting the same biological activities as those of the native ones is limited. A novel wheat germ cell-free protein synthesis system was developed recently, and most of the synthesized proteins that should function in solution were found to be in soluble forms. This suggests the applicability of this protein synthesis method to determination of the functional structures of soluble proteins. In our previous work, we developed a selective labeling technique for amino acids having amide functional groups (other than proline residues) involving the use of several inhibitors for transaminases. This paper in turn describes a proline-selective labeling technique. Based on our results, we have succeeded in constructing a complete amino acid selective labeling technique for the wheat germ cell-free protein synthesis system.  相似文献   

17.
In Escherichia coli, Lon is an ATP-dependent protease which degrades misfolded proteins and certain rapidly-degraded regulatory proteins. Given that oxidatively damaged proteins are generally degraded rather than repaired, we anticipated that Lon deficient cells would exhibit decreased viability during aerobic, but not anaerobic, carbon starvation. We found that the opposite actually occurs. Wild-type and Lon deficient cells survived equally well under aerobic conditions, but Lon deficient cells died more rapidly than the wild-type under anaerobiosis. Aerobic induction of the Clp family of ATP-dependent proteases could explain these results, but direct quantitation of Clp protein established that its level was not affected by Lon deficiency and overexpression of Clp did not rescue the cells under anaerobic conditions. We conclude that the Lon protease supports survival during anaerobic carbon starvation by a mechanism which does not depend on Clp. Shen Luo and Megan McNeill contributed equally to this research.  相似文献   

18.
This study reports the comprehensive comparison of (15)N metabolic labeling and label free proteomic strategies for quantitation, with particular focus on plant proteomics. Our investigation of proteome coverage, dynamic range and quantitative precision for a wide range of mixing ratios and protein loadings aim to aid the investigators in the decision making process during experimental design. One of the main characteristics of the label free strategy is the applicability to all starting material, which is a limitation to the metabolic labeling. However, particularly at mixing ratios up to 10-fold the (15)N metabolic labeling proved to be more precise. Contrary to usual practice based on the results from this study, we suggest that nonequal mixing ratios in metabolic labeling could further increase the proteome coverage for quantitation. On the other hand, the label free strategy, in combination with low protein loading allows the extension of the dynamic range for quantitation and it is more precise at very high ratios, which could be important for certain types of experiments.  相似文献   

19.
The schistosome egg is the key agent responsible both for transmission of the parasite from human to molluscan host, and is the primary cause of pathogenesis in schistosomiasis. Characterisation of its proteome is a crucial step in understanding the egg’s interactions with the mammalian host. We devised a scheme to isolate undeveloped eggs from mature schistosome eggs by Percoll gradient and then fractionate the mature egg into miracidial, hatch fluid and secreted protein preparations. The soluble proteins contained within the five preparations were separated by two-dimensional electrophoresis and their spot patterns compared by image analysis. Large numbers of representative spots were then excised and subjected to tandem mass spectrometry to obtain identities. In this way, the principal components of each sub-proteome were established. Chaperones were the most abundant category, with heat shock protein 70 (HSP70) dominant in the undeveloped egg and Schistosoma mansoni protein 40 (Smp-40) in the miracidium. Cytoskeletal proteins were expressed at similar levels in the undeveloped egg and miracidium, with tubulins the most abundant. The proteins of energy metabolism reflected the change from anaerobic to aerobic metabolism as the miracidium developed. None of the above categories was abundant in the hatch fluid but this peri-miracidial compartment was highly enriched for defence proteins such as thioredoxin. Hatch fluid also contained several host proteins and schistosome proteins of unknown function, highlighting its distinct nature and potentially its role. The egg secretions could not be compared with the other preparations due to their unique composition featuring the previously characterised IL-4-inducing principal of S. mansoni eggs (IPSE), Omega-1, egg secreted protein 15 (ESP15), a micro-exon gene 2 (MEG-2) protein and two members of the recently described MEG-3 family. This last preparation contains the subset of egg proteins that probably enables eggs to escape from host tissues and may also initiate granuloma formation, emphasising the need to establish fully the roles of its components in schistosome biology.  相似文献   

20.
Punta M  Maritan A 《Proteins》2003,50(1):114-121
In this article, a membrane-propensity scale for amino acids is derived using only two ingredients: (i) a set of transmembrane helices segments from membrane protein crystal structures and (ii) the request that each component of the set has a free energy lower than that of a typical soluble protein sequence of the same length. Although the most widely used hydropathy scales satisfy this request, we use an optimization procedure that allows for extraction of an optimal scale, which correlates equally well with those scales. We show that, if the choice of the sequence database is accurate, significant knowledge-based scales, which are robust with respect to changes in the learning set, can be easily derived. The obtained scales can be used for transmembrane helices prediction. The predictive power of one of these scales is tested on membrane proteins, soluble proteins, and signal peptides databases, finding that its performances is comparable with those of the hydropathy scales.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号