首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Development of the cartilaginous capsule of the inner ear is dependent on interactions between otic epithelium and its surrounding periotic mesenchyme. During these tissue interactions, factors endogenous to the otic epithelium influence the differentiation of the underlying periotic mesenchyme to form a chondrified otic capsule. We report the localization of Sonic hedgehog (Shh) protein and expression of the Shh gene in the tissues of the developing mouse inner ear. We demonstrate in cultures of periotic mesenchyme that Shh alone cannot initiate otic capsule chondrogenesis. However, when Shh is added to cultured periotic mesenchyme either in combination with otic epithelium or otic epithelial-derived fibroblast growth factor (FGF2), a significant enhancement of chondrogenesis occurs. Addition of Shh antisense oligonucleotide (AS) to cultured periotic mesenchyme with added otic epithelium decreases levels of endogenous Shh and suppresses the chondrogenic response of the mesenchyme cells, while supplementation of Shh AS-treated cultures with Shh rescues cultures from chondrogenic inhibition. We demonstrate that inactivation of Shh by targeted mutation produces anomalies in the developing inner ear and its surrounding capsule. Our results support a role for Shh as a regulator of otic capsule formation and inner ear development during mammalian embryogenesis.  相似文献   

2.
Morphogenesis of the cartilaginous otic capsule is directed by interactions between the epithelial anlage of the membranous labyrinth (otocyst) and its associated periotic mesenchyme. Utilizing a developmental series of high-density (micromass) cultures of periotic mesenchyme to model capsule chondrogenesis, we have shown that the early influence of otic epithelium in cultures of 10.5- or 14-gestation day (gd) periotic mesenchyme results in initiation or suppression of chondrogenesis, respectively. Furthermore, we have shown that introduction of otic epithelium at two distinct times during in vitro development to cultures of 10.5-gd mesenchyme cells results first in an initiation and then in an inhibition of their chondrogenic response. These influences of epithelial tissue on chondrogenic differentiation by periotic mesenchyme are not tissue specific but are characterized by temporal selectivity. The ability of otic epithelium to influence chondrogenesis and the competence of the periotic mesenchyme to respond to its signals are dependent upon the developmental stage of both tissues. This study provides conclusive evidence that otic epithelium acts as a developmental "switch" during otic capsule morphogenesis, signaling first the turning on and then the turning off of chondrogenic programs in the responding cephalic mesenchyme.  相似文献   

3.
Interactions between epithelial and mesenchymal tissues in the developing inner ear direct the formation of its cartilaginous capsule. Recent work indicates that many growth factors are distributed in the early embryo in vivo in a temporal-spatial pattern that correlates with sites of ongoing morphogenetic events. We report here that the localization of transforming growth factor beta 1 (TGF-beta 1) in both epithelial and mesenchymal tissues of the mouse inner ear between 10 and 16 days of embryonic development (E10-E16). In addition, utilizing a high-density culture system as an in vitro model of otic capsule chondrogenesis, we show that modulation of chondrogenesis by TGF-beta 1 in cultured mouse periotic mesenchyme mimics the in vitro effects of otic epithelium on the expression of chondrogenic potential. We provide evidence of a causal relationship of this growth factor to otic capsule formation in situ by demonstrating that the actual sequence of chondrogenic events that occur in the developing embryo is reproduced in culture by the addition of exogenous TGF-beta 1 peptide. Furthermore, in cultures of mesenchyme containing otic epithelium, we demonstrate the localization of endogenous TGF-beta 1, first within the epithelial tissue and later within both the epithelium and its surrounding periotic mesenchyme, contrasted to an absence of endogenous TGF-beta 1 in cultures of mesenchyme alone. Our results suggest that TGF-beta 1 is one of the signal molecules that mediate the effects of otic epithelium in influencing the formation of the cartilaginous otic capsule.  相似文献   

4.
Endochondral ossification, in which cartilaginous templates are progressively replaced by marrow and bone, represents the dominant mode of development of the axial and appendicular skeleton of vertebrates. Chondrocyte differentiation within the cartilaginous core of these skeletal elements is tightly regulated, both spatially and temporally. Here, we describe the expression of Dlx5 in the cartilaginous core of limb skeletal elements in chicken and mouse embryos. We find that Dlx5 is one of the earliest genes expressed in condensing limb mesenchyme that will give rise to the limb skeleton. Later, when proliferating and differentiating chondrocytes are found in spatially distinct regions of the cartilaginous model, Dlx5 is expressed in the zone of hypertrophy and in proliferating chondrocytes that are poised to differentiate. Consistent with this pattern of expression, we show that forced expression of Dlx5 potentiates early and late chondrocyte differentiation and inhibits proliferation in cultured cells. Examination of the limbs of mutant Dlx5 mouse embryos revealed that they displayed a delay in chondrocyte maturation compared with wild type littermates. Taken together, our data reveal a positive role for Dlx5 during multiple stages of chondrocyte differentiation and, along with previous studies of Dlx5 and osteogenesis, identify Dlx5 as a general regulator of differentiation in the mouse skeleton.  相似文献   

5.
To elucidate mechanisms that may control development of the gross anatomical nerve pattern, motoneuron outgrowth into the chick hindlimb was examined using orthograde labeling, scanning and transmission electron microscopy, and Alcian blue staining. Results show that growth cones are not guided by contact with oriented extracellular fibrils, aligned mesenchyme cells, the myotome, or the vasculature. Pathways are not delineated by cell-free space or channels of lower cell density; however, densely packed mesenchyme may form barriers that channel outgrowth. In addition, abundant mesenchymal cell death was seen at the nerve front. This cell death may provide space that encourages growth cone advancement. Pathways often lie along interfaces between areas that stain darkly and lightly with Alcian blue, which specifically stains glycosaminoglycans, and growth cones never penetrate areas that stain intensely, such as the pelvic girdle, which is known to be a barrier to outgrowth. Leading growth cones form specialized contacts with mesenchyme cells, but the predominant contacts are interneuronal. It is proposed that the anatomical pattern of outgrowth is determined by the distribution of preferred substrata, the most preferred substratum being other neurites. Further, neurites tend to prefer loose mesenchyme to dense mesenchyme or areas rich in glycosaminoglycans.  相似文献   

6.
Cell Density and Cell Division in the Early Morphogenesis of the Chick Wing   总被引:5,自引:0,他引:5  
THE early development of the chick wing involves cell differentiation, pattern formation and growth1. In general terms, its morphogenesis can be seen in terms of how the growth of the mesenchyme and ectoderm is controlled, so that the very simple initial protrusion is transformed into an elongated paddle-like structure. At the same time a spatial pattern of differentiation must be specified within the mesenchyme, the cells forming cartilage and muscle so that the major skeletal and muscular features are laid down. In a previous paper2 we described the changing pattern of the distribution of mitoses in the mesenchyme. We found that there was an overall fall in mitotic index from early stages (18–19 Hamburger-Hamilton) but that this occurred more rapidly in the proximal regions after about stage 23 so that a graded proximo-distal increase in mitotic index became established. We also suggested that the overall form was determined by the ectoderm and not the mesenchyme. This raised specific problems about the control of growth of the mesenchyme: we could not account for the observed distribution of mitoses but wondered whether this involved a temporal programme or was related to positional information. Our investigations of the so-called mesenchymal condensations which are supposed to be the prelude to cartilage formation3 have led to detailed analysis of cell density during early morphogenesis. We show here that the cell density varies in a very regular manner and is closely correlated with mitotic index: mitotic index is inversely proportional to cell density. This finding is not only important in its own right because it may be the first demonstration of density dependent growth control4in vivo, but because it provides a new mechanism for the control of growth and pattern formation in limb morphogenesis.  相似文献   

7.
《Organogenesis》2013,9(2):45-51
Current interest in the potential use of pancreatic stem-cells in the treatment of insulin dependent diabetes mellitus has led to increased research into normal pancreatic development. Pancreatic organogenesis involves branching morphogenesis of undifferentiated epithelium within surrounding mesenchyme. Current understanding is that the pancreatic islets develop exclusively from the epithelium of the embryonic buds. However, a cellular contribution to islets by mesenchyme has not been conclusively excluded. We present evidence that the mesenchyme of both the dorsal pancreatic bud and stomach rudiment make a substantial contribution of cells to islets during development in a three-dimensional avian model. These data suggest that mesenchyme can be a source not only of signals but also of cells for the definitive epithelia, making pancreatic organogenesis more akin to that of the kidney than to other endodermal organs. This raises the possibility for the use of mesenchymal cells as stem- or progenitor- cells for islet transplantation.  相似文献   

8.
Mesenchymal control of branching pattern in the fetal mouse lung   总被引:1,自引:0,他引:1  
The effect of mesenchyme on specialization of respiratory epithelium in the fetal mouse was tested in organ cultures. Heterologous combinations were made between respiratory and non-respiratory lung epithelia and the corresponding mesenchymes. Isolated terminal respiratory buds of fetal mouse lungs were recombined with mesenchyme from chick lung parabronchi, mouse trachea or from the avascular, non-respiratory air sacs of chick lungs. Isolated non-branching chick air sacs were combined with mouse terminal bud mesenchyme or mesenchyme from the respiratory branches of chick lungs. Air sac epithelia branched in a pattern characteristic of the chick lung when combined with chick respiratory mesenchyme and in a pattern characteristic of mouse lung when combined with mouse terminal bud mesenchyme. Mouse terminal bud epithelia did not branch with either mouse tracheal mesenchyme or chick air sac mesenchyme but branched in a chick pattern with chick parabronchial mesenchyme. Electron microscopic examination of the cultures showed that all chick air sac epithelial cultures failed to produce surfactant (lamellar bodies) even when they branched. Control cultures of mouse terminal buds contained large numbers of lamellar bodies; mesenchyme which suppressed branching reduced the number of lamellar bodies to only a few in a small proportion of the cells. Culture medium supplemented with growth factors and hormones increased the number of lamellar bodies in heterologous mouse combinations but did not bring the number to control levels. Supplemented medium had no effect on lamellar body production by chick air sac epithelium. The results indicate that branching pattern is determined by the mesenchyme surrounding the epithelial primordium. However, the capacity to synthesize surfactant is determined by the source of the epithelium; mesenchyme may control the degree of expression but not the absolute presence or absence of the differentiated condition.  相似文献   

9.
During development, the embryos and larvae of the starfish Asterina pectinifera possess a single type of mesenchyme cell. The aim of this study was to determine the patterns of behavior of mesenchyme cells during the formation of various organs. To this end, we used a monoclonal antibody (mesenchyme cell marker) to identify the distribution patterns and numbers of mesenchyme cells. Our results revealed the following: (i) mesenchyme cell behavior differs in the formation of different organs, showing temporal variations and an uneven pattern of distribution; and (ii) mesenchyme cells continue to be generated throughout development, and their numbers are tightly regulated in proportion to total cell numbers.  相似文献   

10.
11.
The distribution of the extracellular matrix glycoprotein tenascin was studied by immunofluorescence in the developmental history of the mouse mammary gland from embryogenesis to carcinogenesis. Tenascin appeared only in the mesenchyme immediately surrounding the epithelia just starting morphogenesis, that is, in embryonic mammary glands from 13th to 16th day of gestation, in mammary endbuds which are a characteristic structure starting development during maturation of the mammary gland, and in the stroma of malignant mammary tumors. However, tenascin was absent in the elongating ducts of embryonic, adult, proliferating, and involuting mammary glands and preneoplastic hyperplastic alveolar nodules. The transplantation of embryonic submandibular mesenchyme into adult mammary glands induces the development of duct-alveolus nodules, which morphologically resemble developing endbuds. Tenascin reappeared around those nodules during the initial stages of their development. Tenascin expression could be induced experimentally in several ways. First, tenascin was detected at the site where the first mammary tumor cells GMT-L metastasized. Second, tenascin was detected in the connective tissue in the tumors derived from the injected C3H mammary tumor cell line CMT315 into Balb/c nude mouse. Cross-strain marker anti-CSA antiserum clearly showed that the tenascin-positive fibroblasts were of Balb/c origin. Third, when embryonic mammary epithelium was explanted on to embryonic mammary fat pad cultures, the mesenchymal cells condensed immediately surrounding the epithelium. Tenascin was detected in these condensed cells. From these three observations we conclude that both embryonic and neoplastic epithelium induced tenascin synthesis in their surrounding mesenchyme.  相似文献   

12.
We have shown earlier that epidermal growth factor (EGF) inhibits morphogenesis and cell differentiation in mouse embryonic teeth in organ culture. This inhibition depends on the stage of tooth development so that only teeth at early developmental stages respond to EGF (A-M. Partanen, P. Ekblom, and I. Thesleff (1985) Dev. Biol. 111, 84-94). We have now studied the quantity and pattern of EGF binding in teeth at various stages of development by incubating the dissected tooth germs with 125I-labeled EGF. Although the quantity of 125I-EGF binding per microgram DNA stays at the same level, localization of 125I-EGF binding by autoradiography reveals that the distribution of binding sites changes dramatically. In bud stage the epithelial tooth bud that is intruding into the underlying mesenchyme has binding sites for EGF, but the condensation of dental mesenchymal cells around the bud does not bind EGF. At the cap stage of development the dental mesenchyme binds EGF, but the dental epithelium shows no binding. This indicates that the dental mesenchyme is the primary target tissue for the inhibitory effect of EGF on tooth morphogenesis during early cap stage. During advanced morphogenesis the binding sites of EGF disappear also from the dental papilla mesenchyme, but the dental follicle which consists of condensed mesenchymal cells surrounding the tooth germ, binds EGF abundantly. We have also studied EGF binding during the development of other embryonic organs, kidney, salivary gland, lung, and skin, which are all formed by mesenchymal and epithelial components. The patterns of EGF binding in various tissues suggest that EGF may have a role in the organogenesis of epitheliomesenchymal organs as a stimulator of epithelial proliferation during initial epithelial bud formation and branching morphogenesis. The results of this study indicate that EGF stimulates or maintains proliferation of undifferentiated cells during embryonic development and that the expression of EGF receptors in different organs is not related to the age of the embryo, but is specific to the developmental stage of each organ.  相似文献   

13.
Current interest in the potential use of pancreatic stem-cells in the treatment of insulin dependent diabetes mellitus has led to increased research into normal pancreatic development. Pancreatic organogenesis involves branching morphogenesis of undifferentiated epithelium within surrounding mesenchyme. Current understanding is that the pancreatic islets develop exclusively from the epithelium of the embryonic buds. However, a cellular contribution to islets by mesenchyme has not been conclusively excluded. We present evidence that the mesenchyme of both the dorsal pancreatic bud and stomach rudiment make a substantial contribution of cells to islets during development in a three-dimensional avian model. These data suggest that mesenchyme can be a source not only of signals but also of cells for the definitive epithelia, making pancreatic organogenesis more akin to that of the kidney than to other endodermal organs. This raises the possibility for the use of mesenchymal cells as stem-or progenitor-cells for islet transplantation.Key Words: islets, stem-cells, development, epithelium, mesenchyme, pancreas, stomach, chick-quail, 3-dimensional, endocrine  相似文献   

14.
The juxtaposition of a dense capillary network to lung epithelial cells is essential for air-blood gas exchange. Defective lung vascular development can result in bronchopulmonary dysplasia and alveolar capillary dysplasia. Although vascular endothelial growth factor A (Vegfa) is required for formation of the lung capillary network, little is known regarding the factors that regulate the density and location of the distal capillary plexus and the expression pattern of Vegfa. Here, we show that fibroblast growth factor 9 (FGF9) and sonic hedgehog (SHH) signaling to lung mesenchyme, but not to endothelial cells, are each necessary and together sufficient for distal capillary development. Furthermore, both gain- and loss-of-function of FGF9 regulates Vegfa expression in lung mesenchyme, and VEGF signaling is required for FGF9-mediated blood vessel formation. FGF9, however, can only partially rescue the reduction in capillary density found in the absence of SHH signaling, and SHH is unable to rescue the vascular phenotype found in Fgf9(-/-) lungs. Thus, both signaling systems regulate distinct aspects of vascular development in distal lung mesenchyme. These data suggest a molecular mechanism through which FGF9 and SHH signaling coordinately control the growth and patterning of the lung capillary plexus, and regulate the temporal and spatial expression of Vegfa.  相似文献   

15.
Prostatic growth and development are regulated by FGF10.   总被引:10,自引:0,他引:10  
  相似文献   

16.
(1) In the mouse embryo there are changes in lactate dehydrogenase activity and isoenzyme pattern during the differentiation of cartilage and bone. (2) The specific activity of lactate dehydrogenase rises during chondrogenesis and falls during osteogenesis. (3) Identical isoenzyme transitions occur in parallel in both tissues: undifferentiated limb bud mesenchyme contains isoenzymes 1-5 whereas in both the cartilaginous and bony portions of a long bone developing from the mesenchyme, there is a progressive shift towards a predominance of the 'anaerobic' isoenzymes 4 and 5.  相似文献   

17.
Summary In the mucosal epithelium of the digestive tract of two marine teleost bony fish, one cartilaginous fish, one cyclostome, and in that of two of three representatives of deuterostomian invertebrates studied, endocrine cells of open type were found, exhibiting immunoreactivity with antisera against C-terminal sequences of mammalian neurotensin and of the structurally closely related amphibian neurohormonal peptide xenopsin.From these observations, and from those of previous studies, it is suggested that neurotensin cells do not occur in the digestive tract mucosa until at the evolutionary level of the more highly developed deuterostomian invertebrates. Three evolutionary stages seem to exist in the distribution pattern. The first stage, characterized by few, widely scattered cells, is found in the uro- and cephalochordates, the cyclostomes, the cartilaginous fish, and the stomachless bony fish. In the second stage, comprising the remaining submammalian classes, including more highly developed bony fish, the typical distribution pattern is that of numerous neurotensin immunoreactive cells in the antrum, pylorus, and duodenum. The final stage of neurotensin evolution is found in higher mammals and is characterized by a great density of neurotensin immunoreactive cells in the ileum.Dedicated to Prof. Dr. J. Staubesand on the occasion of this 60th birthday  相似文献   

18.
We have examined whether the production of hypertrophic cartilage matrix reflecting a late stage in the development of chondrocytes which participate in endochondral bone formation, is the result of cell lineage, environmental influence, or both. We have compared the ability of cultured limb mesenchyme and mesectoderm to synthesize type X collagen, a marker highly selective for hypertrophic cartilage. High density cultures of limb mesenchyme from stage 23 and 24 chick embryos contain many cells that react positively for type II collagen by immunohistochemistry, but only a few of these initiate type X collagen synthesis. When limb mesenchyme cells are cultured in or on hydrated collagen gels or in agarose (conditions previously shown to promote chondrogenesis in low density cultures), almost all initiate synthesis of both collagen types. Similarly, collagen gel cultures of limb mesenchyme from stage 17 embryos synthesize type II collagen and with some additional delay type X collagen. However, cytochalasin D treatment of subconfluent cultures on plastic substrates, another treatment known to promote chondrogenesis, induces the production of type II collagen, but not type X collagen. These results demonstrate that the appearance of type X collagen in limb cartilage is environmentally regulated. Mesectodermal cells from the maxillary process of stages 24 and 28 chick embryos were cultured in or on hydrated collagen gels. Such cells initiate synthesis of type II collagen, and eventually type X collagen. Some cells contain only type II collagen and some contain both types II and X collagen. On the other hand, cultures of mandibular processes from stage 29 embryos contain chondrocytes with both collagen types and a larger overall number of chondrogenic foci than the maxillary process cultures. Since the maxillary process does not produce cartilage in situ and the mandibular process forms Meckel's cartilage which does not hypertrophy in situ, environmental influences, probably inhibitory in nature, must regulate chondrogenesis in mesectodermal derivatives. (ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

19.
《The Journal of cell biology》1987,105(6):2569-2579
The tissue distribution of the extracellular matrix glycoprotein, tenascin, during cartilage and bone development in rodents has been investigated by immunohistochemistry. Tenascin was present in condensing mesenchyme of cartilage anlagen, but not in the surrounding mesenchyme. In fully differentiated cartilages, tenascin was only present in the perichondrium. In bones that form by endochondral ossification, tenascin reappeared around the osteogenic cells invading the cartilage model. Tenascin was also present in the condensing mesenchyme of developing bones that form by intramembranous ossification and later was present around the spicules of forming bone. Tenascin was absent from mature bone matrix but persisted on periosteal and endosteal surfaces. Immunofluorescent staining of wing bud cultures from chick embryos showed large amounts of tenascin in the forming cartilage nodules. Cultures grown on a substrate of tenascin produced more cartilage nodules than cultures grown on tissue culture plastic. Tenascin in the culture medium inhibited the attachment of wing bud cells to fibronectin-coated substrates. We propose that tenascin plays an important role in chondrogenesis by modulating fibronectin-cell interactions and causing cell rounding and condensation.  相似文献   

20.
The patterns of orientation of individual mesenchyme cells have been evaluated in the hindlimb of the mouse embryo during the period of transition from early aggregation (Day 12) to cartilage formation (Day 13). Orientation was measured by determining the angular relationship between the Golgi-nucleus axis of each cell relative to either the longitudinal limb axis or the center of the cartilaginous aggregate. Patterns were assessed qualitatively and quantitatively in horizontal, vertical, and transverse sections of the proximal, middle, and distal precartilage mesenchyme. These analyses showed that the mesenchyme cells are oriented predominantly toward the longitudinal axes of both the early (Day 12) and late (Day 13) aggregates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号