首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An integrated molecular marker map of the chickpea genome was established using 130 recombinant inbred lines from a wide cross between a cultivar resistant to fusarium wilt caused by Fusarium oxysporum Schlecht. emend. Snyd. &. Hans f. sp. ciceri (Padwick) Snyd & Hans, and an accession of Cicer reticulatum (PI 489777), the wild progenitor of chickpea. A total of 354 markers were mapped on the RILs including 118 STMSs, 96 DAFs, 70 AFLPs, 37 ISSRs, 17 RAPDs, eight isozymes, three cDNAs, two SCARs and three loci that confer resistance against different races of fusarium wilt. At a LOD-score of 4.0, 303 markers cover 2077.9 cM in eight large and eight small linkage groups at an average distance of 6.8 cM between markers. Fifty one markers (14.4%) were unlinked. A clustering of markers in central regions of linkage groups was observed. Markers of the same class, except for ISSR and RAPD markers, tended to generate subclusters. Also, genes for resistance to races 4 and 5 of fusarium wilt map to the same linkage group that includes an STMS and a SCAR marker previously shown to be linked to fusarium wilt race 1, indicating a clustering of several fusarium-wilt resistance genes around this locus. Significant deviation from the expected 1 : 1 segregation ratio was observed for 136 markers (38.4%, P<0.05). Segregation was biased towards the wild progenitor in 68% of the cases. Segregation distortion was similar for all marker types except for ISSRs that showed only 28.5% aberrant segregation. The map is the most extended genetic map of chickpea currently available. It may serve as a basis for marker-assisted selection and map-based cloning of fusarium wilt resistance genes and other agronomically important genes in future. Received: 17 November 1999 / Accepted: 4 June 2000  相似文献   

2.
 We describe a simple and new approach, based on inter-simple sequence repeats (ISSRs), for finding markers linked to clusters of disease resistance genes. In this approach, simple sequence repeats (SSR) are used directly in PCR reactions, and markers found to be linked to disease resistance genes provide important information for the selection of other sequences which can be used with PCR to find other linked markers. Based on an ISSR marker linked to a gene of interest, many new markers can be identified in the same region. We previously demonstrated that ISSR markers are useful in gene tagging and identified a marker, UBC-855500, linked to the gene for resistance to fusarium wilt race 4 in chickpea. This ISSR marker provided the information used in the present study for selecting other primers which amplified a region linked to the gene for resistance to fusarium wilt race 4. The primers were based on homology with the (AC)n sequence and were used for PCR amplifications. Changes in the sequence were at the anchor region of the primers. The repeat (AC)8T amplified a marker, UBC-8251200, which was located 5.0 cM from the gene for resistance to fusarium wilt race 4 and was closer than other markers. These results indicated that ISSR markers can provide important information for the design of other primers and that by making changes at the 3′ and 5′ anchors close linkage to the desired gene can be found. The approach allows rapid scanning of the targeted region and may provide important information for genome analysis of plant species. Received: 20 January 1998 / Accepted: 19 March 1998  相似文献   

3.
Fusarium wilt (Fusarium oxysporum Schlecht. f. sp. melongenae) is a vascular disease of eggplant (Solanum melongena L.). The objectives of this work were (1) to confirm the monogenic inheritance of fusarium wilt resistance in eggplant, (2) to identify molecular markers linked to this resistance, and (3) to develop SCAR markers from most informative markers. We report the tagging of the gene for resistance to fusarium wilt (FOM) in eggplant using SRAP, RGA, SRAP-RGA and RAPD markers. Analysis of segregation data confirmed the monogenic inheritance of resistance. DNA from F2 and BC1 populations of eggplant segregating for fusarium wilt resistance was screened with 2,316 primer combinations to detect polymorphism. Three markers were linked within 2.6 cM of the gene. The codominant SRAP marker Me8/Em5 and dominant SRAP-RGA marker Em12/GLPL2 were tightly linked to each other and mapped 1.2 cM from the resistance gene, whereas RAPD marker H12 mapped 2.6 cM from the gene and on the same side as the other two markers. The SRAP marker was converted into two dominant SCAR markers that were confirmed to be linked to the resistance gene in the F2, BC1 and F2 of BC3 generations of the same cross. These markers provide a starting point for mapping the eggplant FOM resistance gene in eggplant and for exploring the synteny between solanaceous crops for fusarium wilt resistance genes. The SCAR markers will be useful for identifying fusarium wilt-resistant genotypes in marker-assisted selection breeding programs using segregating progenies of the resistant eggplant progenitor used in this study.  相似文献   

4.
Microsatellites have currently become the markers of choice for molecular mapping and marker-assisted selection for key traits such as disease resistance in many crop species. We report here on the mapping of microsatellites which had been identified from a genomic library of lentil (Lens culinaris Medik.). The majority of microsatellite-bearing clones contained imperfect di-nucleotide repeats. A total of 41 microsatellite and 45 amplified fragment length polymorphism (AFLP) markers were mapped on 86 recombinant inbred lines derived from the cross ILL 5588 × L 692-16-1(s), which had been previously used for the construction of a random amplified polymorphic DNA and AFLP linkage map. Since ILL 5588 was resistant to fusarium vascular wilt caused by the fungus Fusarium oxysporum Shlecht. Emend. Snyder & Hansen f.sp. lentis Vasud. & Srini., the recombinant inbreds were segregating for this character. The resulting map contained 283 markers covering about 751 cM, with an average marker distance of 2.6 cM. The fusarium vascular wilt resistance was localized on linkage group 6, and this resistance gene was flanked by microsatellite marker SSR59-2B and AFLP marker p17m30710 at distances of 8.0 cM and 3.5 cM, respectively. These markers are the most closely linked ones known to date for this agronomically important Fw gene. Using the information obtained in this investigation, the development and mapping of microsatellite markers in the existing map of lentil could be substantially increased, thereby providing the possibility for the future localization of various loci of agronomic interest.  相似文献   

5.
A population of 131 recombinant inbred lines from a wide cross between chickpea ( Cicer arietinum L., resistant parent) and Cicer reticulatum (susceptible parent) segregating for the closely linked resistances against Fusarium oxysporum f.sp. ciceri races 4 and 5 was used to develop DNA amplification fingerprinting markers linked to both resistance loci. Bulked segregant analysis revealed 19 new markers on linkage group 2 of the genetic map on which the resistance genes are located. Closest linkage (2.0 cM) was observed between marker R-2609-1 and the race 4 resistance locus. Seven other markers flanked this locus in a range from 4.1 to 9.0 cM. These are the most closely linked markers available for this locus up to date. The sequences of the linked markers were highly similar to genes encoding proteins involved in plant pathogen response, such as a PR-5 thaumatin-like protein and an important regulator of the phytoalexin pathway, anthranilate N-hydroxycinnamoyl-benzoyltransferase. Others showed significant alignments to genes encoding housekeeping enzymes such as the MutS2 DNA-mismatch repair protein. In the Arabidopsis genome, similar genes are located on short segments of chromosome 1 and 5, respectively, suggesting synteny between the fusarium resistance gene cluster of chickpea and the corresponding regions in the Arabidopsis genome. Three marker sequences were similar to retrotransposon-derived and/or satellite DNA sequences. The markers developed here provide a starting point for physical mapping and map-based cloning of the fusarium resistance genes and exploration of synteny in this highly interesting region of the chickpea genome.  相似文献   

6.
An integrated molecular linkage map of pepper (Capsicum annuum L.), including mainly RFLP and RAPD markers, has been constructed by alignment of three intraspecific linkage maps generated by segregating doubled-haploid progenies. A total of 85 markers covered approximately 820 cM in 14 linkage groups. Four linkage groups were assigned to 4 chromosomes. Two new genes of agronomic interest were located: L controlling hypersensitive resistance to TMV and up controlling the erect habit of the fruits. The C gene controlling the fruit pungency was more precisely located. This map is estimated to represent from 36 to 59% of the total pepper genome. An examination of segregation data has revealed several genomic regions with aberrant segregation ratios often favouring the agronomic big-fruited parents, particularly in crosses involving the exotic parent CM334, suggesting that these genome regions are subjected to selection during the process of doubled-haploid production. The suitability of doubled-haploid progenies for mapping projects and the differences observed between this intraspecific integrated map with earlier published interspecific pepper maps are discussed.  相似文献   

7.
8.
 The inheritance of an inter-simple-sequence-repeat (ISSR) polymorphism was studied in a cross of cultivated chickpea (Cicer arietinum L.) and a closely related wild species (C. reticulatum Lad.) using primers that anneal to a simple repeat of various lengths, sequences and non-repetitive motifs. Dinucleotides were the majority of those tested, and provided all of the useful banding patterns. The ISSR loci showed virtually complete agreement with expected Mendelian ratios. Twenty two primers were used for analysis and yielded a total of 31 segregating loci. Primers based on (GA)n repeats were the most abundant while primers with a (TG)n repeat gave the largest number of polymorphic loci. Nucleotides at the 5′ and 3′ end of the primers played an important role in detecting polymorphism. All the markers showed dominance. We found an ISSR marker linked to the gene for resistance to fusarium wilt race 4. The marker concerned, UBC-855500, was found to be linked in repulsion with the fusarium wilt resistance gene at a distance of 5.2 cM. It co-segregated with CS-27700, a RAPD marker previously shown to be linked to the gene for resistance to fusarium wilt race 1, and was mapped to linkage group 6 of the Cicer genome. This indicated that genes for resistance to fusarium wilt races 1 and 4 are closely linked. The marker UBC-855500 is located 0.6 cM from CS-27700 and is present on the same side of the wilt resistance gene. To our knowledge this is the first report of the utility of an ISSR marker in gene tagging. These markers may provide valuable information for the development of sequence-tagged microsatellite sites (STMS) at a desired locus. Received: 10 August 1997 / Accepted: 6 October 1997  相似文献   

9.

Background  

The construction of genetic linkage maps for cultivated peanut (Arachis hypogaea L.) has and continues to be an important research goal to facilitate quantitative trait locus (QTL) analysis and gene tagging for use in a marker-assisted selection in breeding. Even though a few maps have been developed, they were constructed using diploid or interspecific tetraploid populations. The most recently published intra-specific map was constructed from the cross of cultivated peanuts, in which only 135 simple sequence repeat (SSR) markers were sparsely populated in 22 linkage groups. The more detailed linkage map with sufficient markers is necessary to be feasible for QTL identification and marker-assisted selection. The objective of this study was to construct a genetic linkage map of cultivated peanut using simple sequence repeat (SSR) markers derived primarily from peanut genomic sequences, expressed sequence tags (ESTs), and by "data mining" sequences released in GenBank.  相似文献   

10.
A composite linkage map was constructed based on two interspecific recombinant inbred line populations derived from crosses between Cicer arietinum (ILC72 and ICCL81001) and Cicer reticulatum (Cr5-10 or Cr5-9). These mapping populations segregate for resistance to ascochyta blight (caused by Ascochyta rabiei), fusarium wilt (caused by Fusarium oxysporum f. sp. ciceris) and rust (caused by Uromyces ciceris-arietini). The presence of single nucleotide polymorphisms in ten resistance gene analogs (RGAs) previously isolated and characterized was exploited. Six out of the ten RGAs were novel sequences. In addition, classes RGA05, RGA06, RGA07, RGA08, RGA09 and RGA10 were considerate putatively functional since they matched with several legume expressed sequences tags (ESTs) obtained under infection conditions. Seven RGA PCR-based markers (5 CAPS and 2 dCAPS) were developed and successfully genotyped in the two progenies. Six of them have been mapped in different linkage groups where major quantitative trait loci conferring resistance to ascochyta blight and fusarium wilt have been reported. Genomic locations of RGAs were compared with those of known Cicer R-genes and previously mapped RGAs. Association was detected between RGA05 and genes controlling resistance to fusarium wilt caused by races 0 and 5.  相似文献   

11.
 Genetic maps facilitate the study of genome structure and evolution, and the identification of monogenic traits or Mendelian components of quantitative traits. We evaluated 228 RAPD, microsatellite and AFLP markers for linkage analysis in melon (Cucumis melo L.) varieties MR-1 (resistant to Fusarium wilt, powdery and downy mildews) and Ananas Yokneum (AY; susceptible to these diseases) and constructed a detailed genetic map. The mapping population consisted of 66 backcross progenies derived from AY×(MR-1×AY). Despite a relatively low level of polymorphism in the species, AFLP markers were found to be more efficient in mapping the melon genome than RAPD or microsatellite markers. The map contains 197 AFLPs, six RAPDs and one microsatellite marker assigned to 14 major and six minor linkage groups, and covers 1942 cM with the average distance between adjacent markers of approximately 10 cM. The maximum distance allowed between markers is 27.5 cM. About 11% of the intervals (20 out of 173) are over 20 cM (but less than 27.5 cM). The map has immediate utility for identifying markers linked to disease resistance genes that are suitable for marker-assisted breeding. The use of microsatellite markers for integration with other maps is also discussed. Received: 12 March 1997 / Accepted: 20 May 1997  相似文献   

12.
Fusarium oxysporum f.sp. tracheiphilum (Fot) is a soil-borne fungal pathogen that causes vascular wilt disease in cowpea. Fot race 3 is one of the major pathogens affecting cowpea production in California. Identification of Fot race 3 resistance determinants will expedite delivery of improved cultivars by replacing time-consuming phenotypic screening with selection based on perfect markers, thereby generating successful cultivars in a shorter time period. Resistance to Fot race 3 was studied in the RIL population California Blackeye 27 (resistant) x 24-125B-1 (susceptible). Biparental mapping identified a Fot race 3 resistance locus, Fot3-1, which spanned 3.56 cM on linkage group one of the CB27 x 24-125B-1 genetic map. A marker-trait association narrowed the resistance locus to a 1.2 cM region and identified SNP marker 1_1107 as co-segregating with Fot3-1 resistance. Macro and microsynteny was observed for the Fot3-1 locus region in Glycine max where six disease resistance genes were observed in the two syntenic regions of soybean chromosomes 9 and 15. Fot3-1 was identified on the cowpea physical map on BAC clone CH093L18, spanning approximately 208,868 bp on BAC contig250. The Fot3-1 locus was narrowed to 0.5 cM distance on the cowpea genetic map linkage group 6, flanked by SNP markers 1_0860 and 1_1107. BAC clone CH093L18 was sequenced and four cowpea sequences with similarity to leucine-rich repeat serine/threonine protein kinases were identified and are cowpea candidate genes for the Fot3-1 locus. This study has shown how readily candidate genes can be identified for simply inherited agronomic traits when appropriate genetic stocks and integrated genomic resources are available. High co-linearity between cowpea and soybean genomes illustrated that utilizing synteny can transfer knowledge from a reference legume to legumes with less complete genomic resources. Identification of Fot race 3 resistance genes will enable transfer into high yielding cowpea varieties using marker-assisted selection (MAS).  相似文献   

13.

Background

Molecular marker-assisted breeding provides an efficient tool to develop improved crop varieties. A major challenge for the broad application of markers in marker-assisted selection is that the marker phenotypes must match plant phenotypes in a wide range of breeding germplasm. In this study, we used the legume crop species Lupinus angustifolius (lupin) to demonstrate the utility of whole genome sequencing and re-sequencing on the development of diagnostic markers for molecular plant breeding.

Results

Nine lupin cultivars released in Australia from 1973 to 2007 were subjected to whole genome re-sequencing. The re-sequencing data together with the reference genome sequence data were used in marker development, which revealed 180,596 to 795,735 SNP markers from pairwise comparisons among the cultivars. A total of 207,887 markers were anchored on the lupin genetic linkage map. Marker mining obtained an average of 387 SNP markers and 87 InDel markers for each of the 24 genome sequence assembly scaffolds bearing markers linked to 11 genes of agronomic interest. Using the R gene PhtjR conferring resistance to phomopsis stem blight disease as a test case, we discovered 17 candidate diagnostic markers by genotyping and selecting markers on a genetic linkage map. A further 243 candidate diagnostic markers were discovered by marker mining on a scaffold bearing non-diagnostic markers linked to the PhtjR gene. Nine out from the ten tested candidate diagnostic markers were confirmed as truly diagnostic on a broad range of commercial cultivars. Markers developed using these strategies meet the requirements for broad application in molecular plant breeding.

Conclusions

We demonstrated that low-cost genome sequencing and re-sequencing data were sufficient and very effective in the development of diagnostic markers for marker-assisted selection. The strategies used in this study may be applied to any trait or plant species. Whole genome sequencing and re-sequencing provides a powerful tool to overcome current limitations in molecular plant breeding, which will enable plant breeders to precisely pyramid favourable genes to develop super crop varieties to meet future food demands.

Electronic supplementary material

The online version of this article (doi:10.1186/s12864-015-1878-5) contains supplementary material, which is available to authorized users.  相似文献   

14.
Crop genome sequencing projects generate massive amounts of genomic sequence information, and the utilization of this information in applied crop improvement programs has been augmented by the availability of sophisticated bioinformatics tools. Here, we present the possible direct utilization of sequence data from a sorghum genome sequencing project in applied crop breeding programs. Based on sequence homology, we aligned all publicly available simple sequence repeat markers on a sequence-based physical map for sorghum. Linking this physical map with already existing linkage map(s) provides better options for applied molecular breeding programs. When a new set of markers is made available, the new markers can be first aligned on a sequence-based physical map, and those located near the quantitative trait locus (QTL) can be identified from this map, thereby reducing the number of markers to be tested in order to identify polymorphic flanking markers for the QTL for any given donor × recurrent parent combination. Polymorphic markers that are expected (on the basis of their position on the sequence-based physical map) to be closely linked to the target can be used for foreground selection in marker-assisted breeding. This map facilitates the identification of a set of markers representing the entire genome, which would provide better resolution in diversity analyses and further linkage disequilibrium mapping. Filling the gaps in existing linkage maps and fine mapping can be achieved more efficiently by targeting the specific genomic regions of interest. It also opens up new exciting opportunities for comparative mapping and for the development of new genomic resources in related crops, both of which are lagging behind in the current genomic revolution. This paper also presents a number of examples of potential applications of sequence-based physical map for sorghum.  相似文献   

15.
The potential for introgression of Prunus davidiana, a wild species related to peach, was evaluated with respect to problems of non-Mendelian segregation or suppressed recombination which often hamper breeding processes based on interspecific crosses. Three connected (F1, F2 and BC2) populations, derived from a cross between P. davidiana clone P1908 and the peach cultivar Summergrand were used. The intraspecific map of P. davidiana already established using the F1 progeny was complemented, and two interspecific maps, for the F2 and BC2 progenies, were built with a set of markers selected from the Prunus reference map. With the molecular data collected for the F2 map construction, regions with distorted marker segregation were detected on the genome; one third of all loci deviated significantly from the expected Mendelian ratios. However, some of these distorted segregations were probably not due to the interspecific cross. On linkage group 6, a skewed area under gametic selection was most likely influenced by the self-incompatibility gene of P. davidiana. Using anchor loci, a good colinearity between the three maps built and the Prunus reference map was demonstrated. Comparative mapping also revealed that homologous recombination occurred normally between P. davidiana and the Prunus persica genome. This confirmed the closeness of the two species. Higher recombination rates were generally observed between P. davidiana and P. persica than between Prunus amygdalus and P. persica. The consequences for plant breeding strategy are discussed. The three maps of the F1, F2 and BC2 progenies provide useful tools for QTL detection and marker-assisted selection, as well as for assessing the efficiency of the peach breeding scheme applied to introgress P. davidiana genes into peach cultivated varieties.  相似文献   

16.
A genetic linkage map of the tetraploid water yam (Dioscorea alata L.) genome was constructed based on 469 co-dominantly scored amplified fragment length polymorphism (AFLP) markers segregating in an intraspecific F1 cross. The F1 was obtained by crossing two improved breeding lines, TDa 95/00328 as female parent and TDa 87/01091 as male parent. Since the mapping population was an F1 cross between presumed heterozygous parents, marker segregation data from both parents were initially split into maternal and paternal data sets, and separate genetic linkage maps were constructed. Later, data analysis showed that this was not necessary and thus the combined markers from both parents were used to construct a genetic linkage map. The 469 markers were mapped on 20 linkage groups with a total map length of 1,233 cM and a mean marker spacing of 2.62 cM. The markers segregated like a diploid cross-pollinator population suggesting that the water yam genome is allo-tetraploid (2n = 4x = 40). QTL mapping revealed one AFLP marker E-14/M52-307 located on linkage group 2 that was associated with anthracnose resistance, explaining 10% of the total phenotypic variance. This map covers 65% of the yam genome and is the first linkage map reported for D. alata. The map provides a tool for further genetic analysis of traits of agronomic importance and for using marker-assisted selection in D. alata breeding programmes. QTL mapping opens new avenues for accumulating anthracnose resistance genes in preferred D. alata cultivars.  相似文献   

17.
A composite map of the Vicia faba genome based on morphological markers, isozymes, RAPDs, seed protein genes and microsatellites was constructed. The map incorporates data from 11 F2 families for a total of 654 individuals all sharing the common female parent Vf 6. The integrated map is arranged in 14 major linkage groups (five of which were located in specific chromosomes). These linkage groups include 192 loci and cover 1,559 cM with an overall average marker interval of 8 cM. By joining data of a new F2 population segregating for resistance to ascochyta, broomrape and others traits of agronomic interest, have been saturated new areas of the genome. The combination of trisomic segregation, linkage analysis among loci from different families with a recurrent parent, and the analysis of new physically located markers, has allowed the establishment of the present status of the V. faba map with a wide coverage. This map provides an efficient tool in breeding applications such as disease-resistance mapping, QTL analyses and marker-assisted selection.Communicated by J.W. Snape  相似文献   

18.
Two recombinant inbred line (RIL) populations derived from intraspecific crosses with a common parental line (JG62) were employed to develop a chickpea genetic map. Molecular markers, flower colour, double podding, seed coat thickness and resistance to fusarium wilt race 0 (FOC-0) were included in the study. Joint segregation analysis involved a total of 160 markers and 159 RILs. Ten linkage groups (LGs) were obtained that included morphological markers and 134 molecular markers (3 ISSRs, 13 STMSs and 118 RAPDs). Flower colour (B/b) and seed coat thickness (Tt/tt) appeared to be linked to STMS (GAA47). The single-/double-podding locus was located on LG9 jointly with two RAPD markers and STMS TA80. LG3 included a gene for resistance to FOC-0 (Foc01/foc01) flanked by RAPD marker OPJ20600 and STMS marker TR59. The association of this LG with FOC-0 resistance was confirmed by QTL analysis in the CA2139 × JG62 RIL population where two genes were involved in the resistance reaction. The STMS markers enabled comparison of LGs with preceding maps.  相似文献   

19.
Fusarium wilt caused by Fusarium oxysporum f. sp. conglutinans is one of the most important diseases of Brassica crops, resulting in severe reductions in yield and quality. To characterize the inheritance pattern of fusarium resistance, a cross between a susceptible broccoli and a resistant cabbage was subjected to segregation analysis. Results indicated that resistance was controlled by a single dominant allele. This gene was named Foc-Bo1 and mapped to linkage group seven (O7) by both the segregation test and quantitative trait locus (QTL) analysis. The QTL on O7 was detected with a logarithm of odds score (LOD) of 19.5, which was above the threshold value with genome-wide 1% significance level (2.01). A minor QTL was also detected on O4 with a LOD score of 2.06. Inoculation tests indicated that stable expression of fusarium resistance at high temperatures required Foc-Bo1 homozygosity. The association between Foc-Bo1 and the closest simple sequence repeat marker (KBrS003O1N10) was analyzed in three F3 populations. Based on these studies, KBrS003O1N10 represents an effective marker-assisted selection (MAS) tool for breeding fusarium wilt resistance into Brassica oleracea crops. To our knowledge, this is the first paper to map the fusarium-resistance gene in Brassica species and to validate the effectiveness of MAS in improving fusarium resistance in these important plants.  相似文献   

20.

Background

Restriction-site associated DNA sequencing (RADseq) technology was recently employed to identify a large number of single nucleotide polymorphisms (SNP) for linkage mapping of a North American and Eastern Asian Populus species. However, there is also the need for high-density genetic linkage maps for the European aspen (P. tremula) as a tool for further mapping of quantitative trait loci (QTLs) and marker-assisted selection of the Populus species native to Europe.

Results

We established a hybrid F1 population from the cross of two aspen parental genotypes diverged in their phenological and morphological traits. We performed RADseq of 122 F1 progenies and two parents yielding 15,732 high-quality SNPs that were successfully identified using the reference genome of P. trichocarpa. 2055 SNPs were employed for the construction of maternal and paternal linkage maps. The maternal linkage map was assembled with 1000 SNPs, containing 19 linkage groups and spanning 3054.9 cM of the genome, with an average distance of 3.05 cM between adjacent markers. The paternal map consisted of 1055 SNPs and the same number of linkage groups with a total length of 3090.56 cM and average interval distance of 2.93 cM. The linkage maps were employed for QTL mapping of one-year-old seedlings height variation. The most significant QTL (LOD = 5.73) was localized to LG5 (96.94 cM) of the male linkage map, explaining 18% of the phenotypic variation.

Conclusions

The set of 15,732 SNPs polymorphic in aspen and high-density genetic linkage maps constructed for the P. tremula intra-specific cross will provide a valuable source for QTL mapping and identification of candidate genes facilitating marker-assisted selection in European aspen.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号