首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Background  

It is well known that cytotoxic factors, such as lipopolysaccharides, derange nitrogen metabolism in hepatocytes and nitric oxide (NO) is involved among the other factors regulating this metabolic pathway. Hepatocytes have been shown to express large levels of NO following exposure to endotoxins, such as bacterial lipopolysaccharide and/or cytokines, such as tumour necrosis factor-α (TNFα), interleukin-1. The control role of arginine in both urea and NO biosynthesis is well known, when NO is synthesized from arginine, by the NOS reaction, citrulline is produced. Thus, the urea cycle is bypassed by the NOS reaction. Many authors demonstrated in other cellular types, like cardiomyocytes, that bradykinin caused the increase in reactive oxygen species (ROS) generation. The simultaneous increase of NO and ROS levels could cause peroxynitrite synthesis, inducing damage and reducing cell viability. The aim of this research is to study the effect of bradykinin, a proinflammatory mediator, on cell viability and on urea production in cultures of rat hepatocytes.  相似文献   

2.

Background  

Urea amidolyase breaks down urea into ammonia and carbon dioxide in a two-step process, while another enzyme, urease, does this in a one step-process. Urea amidolyase has been found only in some fungal species among eukaryotes. It contains two major domains: the amidase and urea carboxylase domains. A shorter form of urea amidolyase is known as urea carboxylase and has no amidase domain. Eukaryotic urea carboxylase has been found only in several fungal species and green algae. In order to elucidate the evolutionary origin of urea amidolyase and urea carboxylase, we studied the distribution of urea amidolyase, urea carboxylase, as well as other proteins including urease, across kingdoms.  相似文献   

3.
It has been proposed that key enzymes of ureagenesis and the alanine aminotransferase activity predominate in periportal hepatocytes. However, ureagenesis from alanine, when measured in the perfused liver, did not show periportal predominance and even the release of the direct products of alanine transformation, lactate and pyruvate, was higher in perivenous cells. An alternative way of analyzing the functional distributions of alanine aminotransferase and the urea cycle along the hepatic acini would be to measure alanine and urea production from precursors such as lactate or pyruvate plus ammonia. In the present work these aspects were investigated in the bivascularly perfused rat liver. The results of the present study confirm that gluconeogenesis and the associated oxygen uptake tend to predominate in the periportal region. Alanine synthesis from lactate and pyruvate plus ammonia, however, predominated in the perivenous region. Furthermore, no predominance of ureagenesis in the periportal region was found, except for conditions of high ammonia concentrations plus oxidizing conditions induced by pyruvate. These observations corroborate the view that data on enzyme activity or expression alone cannot be extrapolated unconditionally to the living cell. The current view of the hepatic ammonia-detoxifying system proposes that the small perivenous fraction of glutamine synthesizing perivenous cells removes a minor fraction of ammonia that escapes from ureagenesis in periportal cells. However, since urea synthesis occurs at high rates in all hepatocytes with the possible exclusion of those cells not possessing carbamoyl-phosphate synthase, it is probable that ureagenesis is equally important as an ammonia-detoxifying mechanism in the perivenous region.  相似文献   

4.
The coexpression of normally periportal and perivenous markers has been described in heterotopically transplanted hepatocytes. To determine whether such a coexpression might also occur in hepatocytes retaining their original intrahepatic location, we compared in bileduct-ligated livers and intrasplenically transplanted hepatocytes, the expression and distribution of the predominantly periportal glucose-6-phosphatase, succinate dehydrogenase, and lactate dehydrogenase, the predominantly perivenous glutamate dehydrogenase, NADPH-dehydrogenase, and -hydroxybutyrate dehydrogenase, and the strictly perivenous glutamine synthetase. The coexpression of high levels of the two periportal markers glucose-6-phosphatase and lactate dehydrogenase and of the perivenous marker NADPH dehydrogenase was observed in two situations: in clusters of hepatocytes isolated within the ductular proliferation in bile-duct-ligated livers and the majority of intrasplenically transplanted hepatocytes. The expression of glutamine synthetase was different according to the site. The protein was observed in certain intrasplenically transplanted hepatocytes bordering the splenic vessels but was never detected in hepatocyte clusters found in bile-duct-ligated livers. Our study therefore suggests that the coexpression of periportal and perivenous markers in the same hepatocytes is likely to be a non-specific consequence of the loss of the normal connections of hepatocytes with the normal liver microcirculation.  相似文献   

5.
Periportal and perivenous hepatocytes from rat liver were isolated by combined digitonin-collagenase perfusion, and gluconeogenesis, urea synthesis and fatty acid synthesis was measured both in freshly isolated cells and in primary culture. A periportal zonation of gluconeogenesis and urea synthesis of about 3 and 1.5 fold, respectively, was observed. This zonation persisted unchanged for 23 hours in culture under identical conditions of incubation for periportal and perivenous cells. Fatty acid synthesis was not zonated.  相似文献   

6.
Hepatocytes isolated from the periportal or perivenous zones of livers of fed rats were used to study the long-term (14 h) and short-term (2 h) effects of glucagon on gluconeogenesis and ketogenesis. Long-term culture with glucagon (100 nM) resulted in a greater increase (P less than 0.01) in gluconeogenesis in periportal than in perivenous cells (93 +/- 16 versus 30 +/- 14 nmol/h per mg of protein; 72% versus 30% increase), but short-term incubation (2 h) with glucagon resulted in similar stimulation in the two cell populations. Rates of ketogenesis (acetoacetate and D-3-hydroxybutyrate production) were not significantly higher in periportal cells cultured without glucagon, compared with perivenous cells. However, after long-term culture with glucagon, the periportal cells had a significantly higher rate of ketogenesis (from either palmitate or octanoate as substrate), but a lower 3-hydroxybutyrate/acetoacetate production ratio, suggesting a more oxidized mitochondrial NADH/NAD+ redox state despite the higher rate of beta-oxidation. Periportal hepatocytes had a higher activity of carnitine palmitoyltransferase but a lower activity of citrate synthase than did perivenous cells. These findings suggest that: (i) glucagon elicits greater long-term stimulation of gluconeogenesis in periportal than in perivenous hepatocytes maintained in culture; (ii) after culture with glucagon, the rates of ketogenesis and the mitochondrial redox state differ in periportal and perivenous hepatocytes.  相似文献   

7.
Glycogen synthesis in hepatocyte cultures is dependent on: (1) the nutritional state of the donor rat, (2) the acinar origin of the hepatocytes, (3) the concentrations of glucose and gluconeogenic precursors, and (4) insulin. High concentrations of glucose (15-25 mM) and gluconeogenic precursors (10 mM-lactate and 1 mM-pyruvate) had a synergistic effect on glycogen deposition in both periportal and perivenous hepatocytes. When hepatocytes were challenged with glucose, lactate and pyruvate in the absence of insulin, glycogen was deposited at a linear rate for 2 h and then reached a plateau. However, in the presence of insulin, the initial rate of glycogen deposition was increased (20-40%) and glycogen deposition continued for more than 4 h. Consequently, insulin had a more marked effect on the glycogen accumulated in the cell after 4 h (100-200% increase) than on the initial rate of glycogen deposition. Glycogen accumulation in hepatocyte cultures prepared from rats that were fasted for 24 h and then re-fed for 3 h before liver perfusion was 2-fold higher than in hepatocytes from rats fed ad libitum and 4-fold higher than in hepatocytes from fasted rats. The incorporation of [14C]lactate into glycogen was 2-4-fold higher in periportal than in perivenous hepatocytes in both the absence and the presence of insulin, whereas the incorporation of [14C]glucose into glycogen was similar in periportal and perivenous hepatocytes in the absence of insulin, but higher in perivenous hepatocytes in the presence of insulin. Rates of glycogen deposition in the combined presence of glucose and gluconeogenic precursors were similar in periportal and perivenous hepatocytes, whereas in the presence of glucose alone, rates of glycogen deposition paralleled the incorporation of [14C]glucose into glycogen and were higher in perivenous hepatocytes in the presence of insulin. It is concluded that periportal and perivenous hepatocytes utilize different substrates for glycogen synthesis, but differences between the two cell populations in the relative utilization of glucose and gluconeogenic precursors are dependent on the presence of insulin and on the nutritional state of the rat.  相似文献   

8.
Inverse acinar regulation of Mrp2 and 3 represents an adaptive response to hepatocellular cholestatic injury. We studied whether obstructive cholestasis (bile duct ligation) and LPS treatment affect the zonal expression of Bsep (Abcb11), Mrp4 (Abcc4), Ntcp (Slc10a1), and Oatp isoforms (Slco1a1, Slco1a4, and slco1b2) in rat liver, as analyzed by semiquantitative immunofluorescence. Contribution of TNF-alpha and IL-1beta to transporter zonation in obstructive cholestasis was studied by cytokine inactivation. In normal liver Bsep, Mrp4, Ntcp, and Oatp1a1 were homogeneously distributed in the acinus, whereas Oatp1a4 and Oatp1b2 expression increased from zone 1 to 3. Glutamine synthetase-positive pericentral hepatocytes exhibited markedly lower Oatp1a4 expression than the remaining zone 3 hepatocytes. In cholestatic liver Bsep and Ntcp immunofluorescence in periportal hepatocytes significantly decreased to 66 +/- 4% (P < 0.01) and 67 +/- 7% (P < 0.05), whereas it was not altered in pericentral hepatocytes. Oatp1a4 was significantly induced in hepatocytes with a primarily low expression, i.e., in periportal hepatocytes and in glutamine synthetase-positive pericentral hepatocytes. Likewise, Oatp1b2 was upregulated in periportal hepatocytes. Mrp4 zonal induction was homogeneous. Inactivation of TNF-alpha and IL-1beta prevented periportal downregulation of Bsep. Recruitment of neutrophils and polymorphonuclear cells mainly occurred in the periportal zone. Likewise, IL-1beta induction was largely found periportally. No significant transporter zonation was seen following LPS treatment. In conclusion, zonal downregulation of Bsep in obstructive cholestasis is associated with portal inflammation and is mediated by TNF-alpha and IL-1beta. Periportal downregulation of Ntcp and induction of Oatp1a4 and Oatp1b2 may represent adaptive mechanisms to reduce cholestatic injury in hepatocytes with profound downregulation of Bsep and Mrp2.  相似文献   

9.
Periportal hepatocytes isolated by digitonin/collagenase perfusion produced urea faster than did similarly prepared perivenous hepatocytes, in both the presence and the absence of amino acids and various urea precursors. There was no difference between the two cell types in rates of intracellular proteolysis. The initial difference in urea synthesis persisted for 5 days during primary culture, but then gradually disappeared. Our results demonstrate that the periportal dominance of urea formation is unrelated to the currently existing acinar microenvironment in the intact liver, but probably reflects differences in acinar key enzyme activities only slowly converging during culture.  相似文献   

10.
Summary Using a new biochemical microassay the activities of three peroxisomal oxidases in single microdissected periportal and perivenous zones of the liver acinus were measured. Whereas urate oxidase is homogeneously distributed through the acinus, the activities of D-aminoacid oxidase and -hydroxyacid oxidase are respectively 1.80-and 2.71-fold higher in the periportal hepatocytes than in the perivenous hepatocytes.  相似文献   

11.
The liver contains two systems for the removal of ammonia - the urea cycle and the enzyme glutamine synthetase. These systems are expressed in a complementary fashion in two distinct populations of hepatocytes, referred to as periportal and perivenous cells. One of the unresolved problems in hepatology has been to elucidate the molecular mechanisms responsible for induction and maintenance of the cellular heterogeneity for ammonia detoxification. There is now a potential molecular explanation for the zonation of the urea cycle and glutamine synthetase based on the Wnt/beta-catenin pathway.  相似文献   

12.
Periportal and perivenous hepatocytes were isolated by microdissection from lyophilized liver slices (16 micrometer) from fed and fasted rats and from a human patient. NADP/NADPH cycling was used to determine fructose-1,6-bisphosphatase activity in the isolated hepatocytes (10 ng dry weight). The periportal hepatocytes contain 3 times as much fructose-1,6-bisphosphatase activity as the perivenous hepatocytes. A 24 h fast led to two-fold increase in the activity in the periportal hepatocytes and a four-fold increase in the perivenous hepatocytes. Fructose-1,6-bisphosphatase parallels closely with the key enzyme phosphoenolpyruvate carboxykinase, and therefore can be considered a suitable marker for gluconeogenic capacity.  相似文献   

13.
A 3-methylcholanthrene-inducible enzyme form of UDP-glucuronosyltransferase has been localized within the liver lobule both immunohistochemically and enzymatically in microdissected centrilobular and periportal liver tissue. Livers of untreated, 3-methylcholanthrene- and phenobarbital-treated rats have been compared. The enzyme was detected in hepatocytes throughout the liver. However both immunohistochemical determination of the enzyme level and biochemical determination of its activity towards 1-naphthol revealed a heterogeneous distribution of the enzyme. In untreated controls and 3-methylcholanthrene-treated rats both enzyme activity and histochemical staining was highest in centrilobular hepatocytes. However, after phenobarbital-treatment enzyme staining and activity was highest in periportal hepatocytes, suggesting that the differentially inducible enzyme activities may be localized in different zones of the liver lobule. The results demonstrate that the 3-methylcholanthrene-inducible UDP-glucuronosyltransferase is preferentially expressed in centrilobular hepatocytes.  相似文献   

14.

Background  

Quantification of different types of cells is often needed for analysis of histological images. In our project, we compute the relative number of proliferating hepatocytes for the evaluation of the regeneration process after partial hepatectomy in normal rat livers.  相似文献   

15.
16.
17.
Summary It has been shown that pulse perfusion of rat liver with a digitonin-containing medium results in a highly zonated hepatocyte permeabilization, allowing selective sampling of cytosolic constituents from periportal and perivenous (centrolobular) hepatocytes in situ. In the present paper we provide an ultrastructural evaluation of the perfusion method. Identical changes in hepatocytes from affected periportal and perivenous zones are found. Affected hepatocytes appear light (electron-lucent) in electron micrographs with a sharp transition to normal hepatocytes. The most conspicuous ultrastructural findings are: (1) transformation of the sinusoidal part of the light hepatocytes, the lipocyte processes and the endothelium of affected zones apparently unifying into a continuous layer dominated by disrupted plasma membranes and 7-nm filaments; (2) deposition of osmiophilic digitonin-cholesterol complexes along the sinusoidal plasma membranes of affected zones; and (3) reduction of the cytoplasmic matrix (cytosol) in the light hepatocytes, a dilation of the mitochondrial intermembrane space with a preserved mitochondrial matrix, and a dilation of cisternae of the granular endoplasmic reticulum. The ultrastructural findings are consistent with marker-enzyme activity measured in eluates from digitonin-perfused livers, except that lysosomes appear intact, apparently contrasting with the observed eluation of amyloglucosidase (Quistorff et al. 1985).  相似文献   

18.
19.

Background  

Arsenic is an environmental pollutant, potent human toxicant, and oxidative stress agent with a multiplicity of health effects associated with both acute and chronic exposures. A semi-mechanistic cellular-level toxicokinetic (TK) model was developed in order to describe the uptake, biotransformation and clearance of arsenical species in human hepatocytes. Notable features of this model are the incorporation of arsenic-glutathione complex formation and a "switch-like" formulation to describe the antioxidant response of hepatocytes to arsenic exposure.  相似文献   

20.
Transforming growth factor-beta 1 (TGF-beta 1) is a potent mito-inhibiting substance that is thought to play an important function in regulating hepatocyte proliferation during liver regeneration. In this investigation, we have shown by immunohistochemistry that hepatocytes containing significant intracellular concentrations of TGF-beta 1 12 h after a two-thirds partial hepatectomy. This increase in hepatocyte TGF-beta 1 concentration was initially confined to those cells that resided in the periportal region of the liver. The elevation of intracellular TGF-beta 1 was, however, transient, and within 36 h, the hepatocytes positive for TGF-beta 1 had changed in a wavelike fashion from the periportal to the pericentral region of the liver lobules. By 48 h, most hepatocytes no longer contained TGF-beta 1. Interestingly, this temporary increase in TGF-beta 1 always preceded the onset of hepatocyte replication by approximately 3-6 h. Since TGF-beta 1 mRNA has been shown to be absent from hepatocytes normally and throughout liver regeneration, these results imply that the increase in intracellular TGF-beta 1 resulted from an augmented uptake. We have further shown that the insulin-like growth factor-II/mannose 6-phosphate (IGF-II/Man-6-P) receptors were up-regulated during liver regeneration and that the increased expression of this receptor co-localized in those hepatocytes containing elevated concentrations of TGF-beta 1. The latent TGF-beta 1 phosphomannosyl glycoprotein complex has been shown to bind to the IGF-II/Man-6-P receptor. Therefore, our data are consistent with the hypothesis that this latent complex is internalized through the IGF-II/Man-6-P receptor to the intracellular acidic prelysosomal/endosomal compartments where the mature TGF-beta 1 molecule could be activated by dissociation from the latent complex.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号