首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As a species for ecological engineering, Spartina alterniflora was introduced to Chongming Dongtan in 1995, and over the last 10 years, this species has rapidly invaded large areas of the Chongming Dongtan nature reserve. In this study, use of a normalized biomass size-spectra (NBSS) approach was explored to evaluate the possible impacts of S. alterniflora invasion on the benthic communities along gradients of intertidal zones and the invasion history of S. alterniflora within the nature reserve. The results showed that the characteristics of macrobenthic communities and the variation in macrobenthic communities described by the first two CCA axes revealed clearly the gradients of elevation and invasion history of S. alterniflora. The differences in the macrobenthic assemblages between the Spartina alterniflara marshes and the native Phragmites australis marshes decreased with increasing of invasion history of S. alterniflara. The macrobenthic biomass showed a decreasing trend, while the meiobenthic biomass showed a reverse trend along the elevation gradient. The macrobenthic biomass of S. alterniflora marshes with longer invasion history was higher than that at recently invaded S. alterniflora marshes, while the meiobenthic biomass was lower. The slopes of NBSS for the sampling sites showed a trend of steeper slopes with decreasing of elevation and at the recently invaded S. alterniflora marshes than that at marshes with longer invasion history, while the differences between the native P. australis marshes and the S. alterniflora marshes with long invasion history tended to be diminished. The NBSS approach could thus be used more widely to detect possible impacts of S. alterniflara invasion on benthic assemblages. This study also indicated the potential for this approach to provide valuable insights into the ecosystem ecology of invasive species, which could be very important for wetland biodiversity conservation and resource management in the Yangtze River Estuary and other such impacted areas.  相似文献   

2.
Although invasions by non-native species represent a major threat to biodiversity and ecosystem functioning, little attention has been paid to the potential impacts of these invasions on methane (CH4) emission and its 13C-CH4-isotope signature in salt marshes. An invasive perennial C4 grass Spartina alterniflora has spread rapidly along the east coast of China since its introduction from North America in 1979. Since its intentional introduction to the Jiuduansha Island in the Yangtze River estuary in 1997, S. alterniflora monocultures have become the dominant component of the Jiuduansha’s vegetation, where monocultures of the native plant Scirpus mariqueter (a C3 grass) used to dominate the vegetation for more than 30 years. We investigated seasonal variation in soil CH4 emission and its 13C-CH4-isotope signature from S. alterniflora and S. mariqueter marshes. The results obtained here show that S. alterniflora invasion increased soil CH4 emissions compared to native S. mariqueter, possibly resulting from great belowground biomass of S. alterniflora, which might have affected soil microenvironments and /or CH4 production pathways. CH4 emissions from soils in both marshes followed similar seasonal patterns in CH4 emissions that increased significantly from April to August and then decreased from August to October. CH4 emissions were positively correlated with soil temperature, but negatively correlated with soil moisture for both S. alterniflora and S. mariqueter soils (p?<?0.05). The δ13C values of CH4 from S. alterniflora, and S. mariqueter soils ranged from -39.0‰ to -45.0‰, and -37.3‰ to -45.7‰, respectively, with the lowest δ13C values occurring in August in both marshes. Although the leaves, roots and soil organic matter of S. alterniflora had significantly higher δ13C values than those of S. mariqueter, S. alterniflora invasion did not significantly change the 13C- isotopic signature of soil emitted CH4 (p?>?0.05). Generally, the CH4 emissions from both invasive S. alterniflora and native S. mariqueter soils in the salt marshes of Jiuduansha Island were very low (0.01–0.26 mg m-2 h-1), suggesting that S. alterniflora invasion along the east coast of China may not be a significant potential source of atmospheric CH4.  相似文献   

3.
To investigate how plant invasion affects sulfate-reducing bacteria (SRB) responsible for sulfate reduction, we conducted a comparative study of diversity and composition of SRB in rhizosphere soils of invasive exotic species (Spartina alterniflora) and two native species (Phragmites australis and Scirpus mariqueter) on Jiuduansha Island located in the Yangtze River estuary, China. Throughout the growing season, profiles of DGGE fingerprints of SRB had distinct variations in relation to phenological stages of these three plant species. The higher richness and abundance of SRB in the rhizospheres of native plants mainly occurred when the plants were in vegetative growth and reproductive stages. However, the higher richness and abundance of SRB also occurred in the late growing season (senescent stage) of S. alterniflora rhizosphere, during which Desulfobulbus, Desulfuromonas, Desulfovibrio, and Firmicutes were dominant. Our results adding to our previous studies suggested that abundant SRB in late stage might have close relationships with decomposition of soil organic matters produced by S. alterniflora.  相似文献   

4.
The Yangtze River estuary is an important ecoregion. However, Spartina alterniflora, native to North America, was introduced to the estuary in the 1990s through both natural dispersal and humans and now it is a dominant species in the estuarine ecosystems, with its invasions leading to multiple consequences to the estuary. S. alterniflora had great competitive effects on native species, including Scirpus mariqueter and Phragmites australis, and could potentially exclude the natives locally. The presence of S. alterniflora had little influence on the total density of soil nematodes and macrobenthonic invertebrates, but significantly altered the structure of trophic functional groups of nematode and macrobenthonic invertebrate communities. The conversion of mudflats to Spartina meadows had significant effects on birds of Charadriidae and Scolopacidae, which might be attributable to the reduction of food resources and the physical alterations of habitats for shorebirds. S. alterniflora invasions increased the primary productivity of the invaded ecosystems, and altered carbon and nitrogen cycling processes. Our studies focused mainly on the effects of S. alterniflora invasions on the structure of native ecosystems; thus further studies are clearly needed to investigate how ecosystem functioning is affected by the modification of the structure of estuarine ecosystems by S. alterniflora invasions.  相似文献   

5.
We quantified the independent impacts of flooding salinity, flooding depth, and flooding frequency on the native species, Phragmites australis and Scirpus mariqueter, and on the invasive species Spartina alterniflora in the Yangtze River Estuary, China. Total biomass of all three species decreased significantly with increasing salinity, but S. alterniflora was less severely affected than P. australis and S. mariqueter. Elevated flooding depth significantly decreased their live aboveground biomass of P. australis and S. mariqueter, while S. alterniflora still had high live aboveground biomass and total biomass even at the highest flooding depth. These findings indicated that S. alterniflora was more tolerant to experimental conditions than the two native species, and an unavoidable suggestion is the expansion of this non-native species in relation to the native counterparts in future scenarios of increased sea-level and saltwater intrusion. Even so, environmental stresses might lead to significant decreases in total biomass and live aboveground biomass of all three species, which would potentially weaken their ability to trap sediments and accumulate organic matter. However, the relatively high belowground-to-aboveground biomass ratio indicated phenotypic plasticity in response to stressful environmental conditions, which suggest that marsh species can adapt to sea-level rise and maintain marsh elevation.  相似文献   

6.
《Ecological Engineering》2007,29(2):164-172
This study investigated the population expansion pattern of an exotic species of Spartina alterniflora for a period of 7 years, after it had been newly introduced to the neonatal shoals of Jiuduansha (GPS), in the Yangtze Estuary, Shanghai. Remote sensing, in conjunction with geographical information systems (GIS) and global positioning systems (GPS) was used to map saltmarsh vegetation on the Jiuduansha shoals and the classifications were then checked using in situ field surveys of selected areas. The results showed that the S. alterniflora population had expanded from 55 hm2 when first introduced in 1997, to 1014 hm2 in 2004. The population expansion pattern of S. alterniflora on the Jiuduansha shoals was compatible with the common feature of invasions, i.e. the initial colonization, a lag time and the onset of rapid population growth and range expansion. In the first year of plantation (1997), about 35 hm2 of S. alterniflora was successfully colonized on the Jiuduansha shoals. The period between 1998 and 2000 was characterized by a lag time, and the area of S. alterniflora increased only to 101.6 hm2. The year 2000 marked an onset of rapid population growth and range expansion and the annual expanding rate reached 25–116%, which exceeded any of the indigenous species and indicated the strong competitive capability, rapid range expansion and wide ecological niche of S. alterniflora.The advent of remote sensing, in conjunction with geographical information systems and global positioning systems, provides a potential tool for mapping vegetation, and for monitoring population dynamics and range expansion of invasive species on a large scale. The implications for population and community dynamics, biodiversity conservation and wetland management in terms of the analysis of the sequence of events associated with the initial colonization, a lag time, rate of geographic spread and features of geographic spread of the exotic S. alterniflora and the native P. australis on the Jiuduansha shoals are discussed.  相似文献   

7.
盐度和淹水对长江口潮滩盐沼植物碳储量的影响   总被引:1,自引:0,他引:1  
薛莲  李秀珍  闫中正  张骞  丁文慧  黄星 《生态学报》2018,38(9):2995-3003
盐生植物是盐沼有机碳储存的"临时库",也是土壤有机碳累积的主要来源,其碳储量大小对盐沼生态系统"碳汇"功能的发挥十分重要。以长江口潮滩本地种芦苇(Phragmites australis)和海三棱藨草(Scirpus mariqueter),及入侵种互花米草(Spartina alterniflora)为研究对象,采用单因素盆栽实验,模拟分析淹水盐度(0、5、10、15、25和35)、淹水深度(0、10、20、40、60cm和80cm)和淹水频率(每天、每3天、每7天、每10天和每15天)变化对各盐生植物地上、地下和总体碳储量大小的影响。研究结果表明,随着淹水盐度增加,芦苇、互花米草和海三棱藨草地上部分与总体碳储量均显著降低。土壤盐度可分别解释其地上部分碳储量变异的47.2%、66.5%和72.7%,与总体碳储量变异的34.7%、45.0%和62.0%。随着淹水深度增加,芦苇地上部分、总体碳储量和海三棱藨草地上部分碳储量均显著降低,其变异的68.6%、28.5%和71.1%可由淹水深度变化(10—80cm)解释。互花米草在80cm淹水深度下仍有较高的地上部分碳储量和总体碳储量。3种盐生植物碳储量对淹水频率变化的响应差异均不显著,所有处理地下部分碳储量差异也未达到显著水平。总体而言,互花米草对水盐胁迫的耐受性要强于本地种芦苇和海三棱藨草。尽管互花米草和芦苇具有相对较高的碳储量,但水盐胁迫对其碳储量的显著抑制作用不容忽视。海三棱藨草碳储量本就不高,输入土壤的有机碳量较为有限,海平面上升及盐水入侵等逆境胁迫会使其对盐沼"碳汇"贡献更加微弱。  相似文献   

8.
For the purpose of ecological engineering, Spartina alterniflora was introduced to China in 1979 and now covers about 112,000 ha of China's coastal lands. It was hypothesized that S. alterniflora could actively change the habitat environment, thus facilitating its competition over native species. In Yancheng Nature Reserve, sulfur storage of sediments and plant tissues was compared among marshes dominated by the exotic S. alterniflora and adjacent native Suaeda salsa and Phragmites australis and bare mudflat. Results showed that the S. alterniflora marsh contained the highest content of water-soluble, adsorbed, carbonate-occluded and total sulfur in the sediment. The sulfur levels were higher in the center than at the edges of the S. alterniflora marsh. Native marshes showed no significant difference in sediment sulfur levels. With greater biomass and higher tissue sulfur concentrations, plant sulfur storage of S. alterniflora vegetation was also larger than those of the native vegetations. Because higher concentrations of sulfur increase the competitive advantage of S. alterniflora over native halophytes, the results of the research showing that S. alterniflora increased marsh sulfur storage may shed light on the mechanism of expansion of monospecific vegetation in coastal China.  相似文献   

9.
The grass shrimp Palaemonetes pugio, a species common to Spartina alterniflora-dominated marshes, may be sensitive to the invasion of the common reed Phragmites australis in northeastern US salt marshes. We examined two questions: (1) Do grass shrimp have a preference for the native plant over the non-native plant? (2) Are grass shrimp more effective foragers on P. australis? We tested the first hypothesis by comparing the amount of time shrimp spend in physical contact with the plant types over a 1-h period. Shrimp were observed under different arrangements of vegetation to control for differences in conspicuous structural features. Additionally, the amount of time shrimp spent foraging on S. alterniflora and P. australis shoots was compared to determine if shrimp graze more often on S. alterniflora. Shrimp spent significantly more time in contact with S. alterniflora only when plant types were grouped at opposite ends of aquaria, but did not exhibit a foraging preference for this plant type. To address our second question, we investigated the effects of shrimp foraging on stem epifauna, an assemblage of semi-aquatic invertebrates associated with macrophyte shoots. Previous research showed that P. australis supports a lower density of stem-dwelling epifauna relative to S. alterniflora. We hypothesized that the primary grazer of this community, P. pugio, can forage on P. australis stems more effectively due to structural differences between the two plants, causing the lower abundance of epifauna through top-down effects. We exposed individual shoots inhabited by epifauna to shrimp and compared faunal densities on exposed shoots to densities on control shoots after 18 h. The reduction of epifauna by predation was proportional on the two plant types. Therefore, top-down effects can be ruled out as an explanation for the patchy distribution of epifauna observed in P. australis–S. alterniflora marshes.  相似文献   

10.
Although the impact of plant invasions on benthic communities, especially burrowing crabs, has received increasing attention, the results from past studies are mixed. The exotic plant Spartina alterniflora has become the most abundant species in the salt marshes of the Yangtze River estuary since it was first found just over a decade ago, but its effects on crabs in the salt marshes is largely unknown. To examine whether the invasions of this exotic plant affected native crabs, we compared the biomass and abundance of the dominant burrowing crab Sesarma dehaani in an exotic Spartina marsh, native Phragmites australis marsh and mudflats of the Yangtze River estuary, China. To explain the differences of S. dehaani populations between different habitats, feeding preference of S. dehaani for Spartina and Phragmites was investigated. Results showed crab abundance and biomass in the Spartina marsh were significantly greater than those in the Phragmites marsh and mudflats. Soil water content and plant community characteristics in the Spartina marsh also significantly differed in the Phragmites marsh and mudflats. Moreover, the feeding preference experiment showed that crabs consumed Spartina more than twice as much as Phragmites. In summary, this study showed that Spartina provided compatible habitats for native crab S. dehaani through offering suitable food source and moderate environmental conditions.  相似文献   

11.
We investigated dynamics and spatial distribution of Scirpus mariqueter and Spartina alterniflora seed banks at Chongming Dongtan in the Yangtze River estuary, China. Five sites along an elevational gradient were chosen, one in each of the main zones (mudflat, Scirpus monoculture, Scirpus–Spartina mixture, Spartina monoculture and Spartina–Phragmites mixture). Three surveys were performed just after seed rain, before germination and after germination, respectively. During the period of November 2005 to May 2006, soil seed density of Scirpus mariqueter declined by 36%, and that of Spartina alterniflora by 58%. The spatial distributions of their seed banks were also different. Soil seed density of Scirpus mariqueter was not determined directly by seed production, but positively correlated with total aboveground biomass of the whole plant community. On the contrary, soil seed density of Spartina alterniflora just after seed rain (November) was significantly correlated with seed production, but had a poor relationship with the community's aboveground biomass. Our results indicated that other factors such as tidal movement might have had great influence on dispersal of Scirpus mariqueter, which would also affect its population dynamics. The understanding of this process can help us improve the conservation and restoration efforts.  相似文献   

12.
Dongtan of Chongming Island, Shanghai, China is a wetland of international importance, in which dominant vegetation is Scirpus mariqueter community that supports a great diversity of bird species. Spartina alterniflora, native to the eastern and gulf coasts of the USA, was intentionally introduced to the tidelands of Dongtan in May 2001. Field work were conducted at Dongtan from March 2002 to May 2003 to determine how introduced S. alterniflora affects S. mariqueter population dynamics. The results obtained here show that S. alterniflorahad strong competitive effects on S. mariqueter, and that the introduction of S. alterniflora to S. mariqueter community resulted in a significant decreases of S. mariqueter's abundance, coverage, seed and fresh corm output after two growing seasons. A concomitant consequence might be the decline in bird diversity. It is suggested that further introduction of S. alterniflora should be avoided to conserve the wetlands and their associated birds. A plan for controlling further spread of existing S. alterniflora populations in the Yangtze River estuary is urgently needed.  相似文献   

13.
《农业工程》2021,41(6):631-637
Spartina alterniflora (S. alterniflora) is a dominant invasive alien species that occurs in Yancheng Wetland National Nature Reserve, the largest coastal wetland in China. It expands rapidly and exerts great threats to local ecosystem. The main native species there are Phragmites australis (P. australis) and Suaeda salsa (S. salsa), respectively. In order to monitor their dynamics, it is of great significance to analyze their spectral discrimination. Canopy spectra of these typical species were measured in July and October in order to compare species differences, as well as the seasonal variation. The Normalized Difference Vegetation Index (NDVI) was calculated based on canopy spectra. The significances of differences in spectral characteristic among species were tested using the one-way analysis of variance (ANOVA) (P < 0.05). The results showed that the visible (VI) bands were the optimum wavelengths for species discrimination in both seasons. S. alterniflora always had the greatest green peak height and red absorption depth. S. salsa had no obvious green peak, but an obvious red reflection peak. P. australis generally had intermediate values. Spectra in the near-infrared (NIR) bands were not appropriate for delineating S. alterniflora and P. australis in summer, as they showed similar values in these wavelengths. But NIR bands could be used to distinguish S. salsa in summer, as it had significantly lower reflectance in NIR bands than the others. Meanwhile, the reflectance in short-wavelength infrared (SWIR) bands became another suitable approach for distinguishing species in autumn. S. salsa had significantly higher values than the others in SWIR regions. Significant NDVI differences between different species proved that it could improve the species discrimination. S. alterniflora always had the highest NDVI values, while S. salsa had the lowest values. The seasonal trend of canopy spectra was also revealed. With plant maturity, the reflectance values in green bands and NIR bands decreased significantly, but increased significantly around the yellow-red wavelengths. The green peak heights, red absorption depths, and NDVI values of the species decreased remarkably. Furthermore, S. alterniflora and P. australis illustrated obvious ‘blue shift’ of the red edge with senescence. These results pointed out the the potential bands and appropriate spectral parameters appropriate for species discrimination, and highlighted the influence of seasonality on spectral information. They provided an important basis for salt marshes identification and dynamic monitoring on a large scale.  相似文献   

14.
王倩  史欢欢  于振林  王天厚  汪承焕 《生态学报》2022,42(20):8300-8310
盐度和种间作用是影响湿地植物群落构建的关键因子。然而,已有研究主要集中于植物成体阶段,我们对生活史早期更新阶段的种间相互作用了解十分有限。崇明东滩国家级自然保护区是位于长江口的重要湿地,外来入侵植物互花米草对优势土著物种海三棱藨草的竞争排斥对当地生态系统造成了严重的负面影响。通过受控实验探讨了盐度及种间作用对海三棱藨草和互花米草种子萌发及生长的影响,以深入了解更新过程在盐沼湿地植物群落构建中的作用。结果表明,在培养皿中盐度对海三棱藨草的萌发有显著抑制作用,互花米草的萌发率受盐度影响不显著但萌发进程被延迟。混种处理对两者的萌发存在一定促进效应,且其作用强度受到盐度的调控。海三棱藨草与互花米草种子在萌发阶段的相互促进并非是通过化感作用实现的,可能是由于萌发过程对盐分的吸收减弱了盐胁迫的影响。盆栽条件下,两物种混种时的萌发及生长表现(高度、地上生物量)较单种时有所下降,但差异不显著。种间竞争受环境胁迫程度及生活史阶段的影响,竞争作用在胁迫较弱的淡水环境及生活史后期更强。盐沼湿地植物群落在形成早期受到盐度等环境因子的影响较大,不同植物对盐胁迫的响应是影响种群建成的主导因素,后期种间竞争的重要性不断增加,最终决定了植物群落的整体格局。  相似文献   

15.
Many invading species impact native species through predation, parasitism or competition, while others affect natives indirectly by restructuring their habitat. How invasive plants affect native animals, and to what extent native animals respond to changes in their habitat and the novel selection pressures that follow, is not well known. We investigated the impacts of a habitat-altering invader, the Atlantic cordgrass Spartina alterniflora, on the nesting success of Alameda song sparrows (Melospiza melodia pusillula), a California Species of Special Concern, in tidal marshes in three sites in San Francisco Bay. Date of laying was the most influential factor in determining daily survival rate of nests, but whether the nest was placed in exotic Spartina was the most important ecological variable. Nests placed in exotic Spartina had a success rate that was 30% lower than those placed in native vegetation. Nests in exotic Spartina were significantly more likely to fail due to tidal flooding than were nests placed in native vegetation, because the densest stands of exotic Spartina occurred at significantly lower elevations relative to the tides. Our results suggest that exotic Spartina may be an ecological trap for song sparrows in San Francisco Bay, attracting birds to nest sites that are often destroyed by tidal flooding.  相似文献   

16.
Spartina alterniflora has widely invaded the saltmarshes of the Yangtze River Estuary and brought negative effects to the ecosystem. Remote sensing technique has recently been used to monitor its distribution, but the similar morphology and canopy structure among S. alterniflora and its neighbor species make it difficult even with high-resolution images. Nevertheless, these species have divergence on phenological stages throughout the year, which cause distinguishing spectral characteristics among them and provide opportunities for discrimination. The field spectra of the S. alterniflora community as well as its major victims, native Phragmites australis and Scirpus mariqueter, were measured in 2009 and 2010 at multi-phenological stages in the Yangtze River Estuary, aiming to find the most appropriate periods for mapping S. alterniflora. Collected spectral data were analyzed separately for every stage firstly by re-sampling reflectance curves into continued 5-nm-wide hyper-spectral bands and then by re-sampling into broad multi-spectral bands – the same as the band ranges of the TM sensor, as well as calculating commonly used vegetation indices. The results showed that differences among saltmarsh communities’ spectral characteristics were affected by their phenological stages. The germination and early vegetative growth stage and the flowering stage were probably the best timings to identify S. alterniflora. Vegetation indices like NDVI, ANVI, VNVI, and RVI are likely to enhance spectral separability and also make it possible to discriminate S. alterniflora at its withering stage.  相似文献   

17.
Many studies have found that plant invasion can enhance soil organic carbon (SOC) pools, by increasing net primary production (NPP) and/or decreased soil respiration. While most studies have focused on C input, little attention has been paid to plant invasion effects on soil respiration, especially in wetland ecosystems. Our study examined the effects of Spartina alterniflora invasion on soil respiration and C dynamics in the Yangtze River estuary. The estuary was originally occupied by two native plant species: Phragmites australis in the high tide zone and Scirpus mariqueter in the low tide zone. Mean soil respiration rates were 185.8 and 142.3 mg CO2 m−2 h−1 in S. alterniflora and P. australis stands in the high tide zone, and 159.7 and 112.0 mg CO2 m−2 h−1 in S. alterniflora and S. mariqueter stands in the low tide zone, respectively. Aboveground NPP (ANPP), SOC, and microbial biomass were also significantly higher in the S. alterniflora stands than in the two native plant stands. S. alterniflora invasion did not significantly change soil inorganic carbon or pH. Our results indicated that enhanced ANPP by S. alterniflora exceeded invasion-induced C loss through soil respiration. This suggests that S. alterniflora invasion into the Yangtze River estuary could strengthen the net C sink of wetlands in the context of global climate change.  相似文献   

18.
The Yangtze River delta is characterized by rapidly accreting sediments that form tidal flats that are quickly colonized by emergent vegetation including Scirpus mariqueter and the invasive species Spartina alterniflora. We measured soil surface elevation, water table depth, soil salinity, water content and compaction in the tidal flat, the Scirpus and Spartina zones and their borders to identify relationships between environmental factors and colonization by Scirpus and Spartina. With increasing elevation from tidal flat to Spartina, inundation frequency and duration, moisture and depth to water table decreased whereas soil salinity, temperature and compaction increased. High soil moisture and groundwater and low salinity were the characteristics of the tidal flat and its border with Scirpus. The Spartina zone and its border with Scirpus were characterized by greater salinity and elevation relative to the other zones. Our findings suggest that soil salinity controls patterns of plant zonation in the newly formed tidal salt marshes whereas elevation is of secondary importance. Our results suggest that patterns of vegetation zonation in tidal marshes of the Yangtze River delta are controlled by environmental factors, especially (low) salinity that favors colonization by Scirpus in the lower elevations of the marsh.  相似文献   

19.
Maritime Spartina spp. are powerful ecosystem engineers that accrete sediment, define shorelines, create habitat, and generate prodigious primary productivity both where they are native and where they have been introduced. Invasive Spartina spp. can compete vigorously with native species, diminish biota, change hydrology, and confound human uses of estuaries. Herbicides have been effective in controlling several Spartina spp. invasions. One of the most recent successes is a 15-year campaign that has virtually eliminated S. alterniflora from the large, century-old invasion in Willapa Bay, WA, USA. Hybridization between native and introduced Spartina spp. has created new species and hybrid swarms. In San Francisco Bay, CA, USA (SF Bay) a complicated situation continues to play out from the purposeful introduction of S. alterniflora, which hybridized with native California cordgrass, S. foliosa. The hybrids spread rapidly and led to a long list of environmental problems, which led to an herbicide program that was successful in greatly diminishing the hybrid and saving the open mud habitat of migratory shorebirds. However, it was belatedly realized that the non-migratory, endangered Ridgeway’s rail uses the tall, dense hybrid Spartina as a surrogate for habitat that was lost during the twentieth century to urbanization and agricultural transformation of marshes around SF Bay. This realization has made difficult the simultaneous management of hybrid Spartina, wildlife conservation, and marsh restoration in San Francisco Bay. Restoration of native vegetation could satisfy the multiple goals of preserving open mud and conserving Ridgeway’s rail.  相似文献   

20.
Physical conditions and biotic interactions are believed to be the determinants of plant zonation in saltmarshes. However, in rapidly developing estuarine marshes, succession is regarded as the primary process responsible for plant zonation and it is controlled mainly by environmental factors. Salinity and inundation are two important factors responsible for the distribution pattern of dominant plants in coastal saltmarshes. Here we conducted a common garden experiment as well as a field transplanting to examine the responses of four dominant saltmarsh plants (native Scirpus mariqueter, Scirpus triqueter and Phragmites australis, and exotic Spartina alterniflora) in the Yangtze River estuary to environmental gradients, which may help us understand their current and potential zonation. The results showed that Scirpus adapted to freshwater and less inundated habitats, Phragmites performed well in brackish or freshwater environments with less inundation, and Spartina tolerated the highest salinity and deepest inundation. In the harshest environments (the highest salinity and water level), only Spartina performed well. In the mild environments, however, there were only minor differences in the performances among the four species. The potential ranges of Phragmites and Spartina were predicted to be larger than their current ones, and their lower boundaries might be set by tidal scour rather than edaphic factors. With the saltmarsh succession, invasive Spartina in the Yangtze River estuary might ultimately replace Scirpus, and alter the zonal patterns of native saltmarsh plants, which will lead to severe ecosystem consequences. Thus, proper management measures (e.g., repeated mowing) need to be implemented to control this invasive exotic plant, and restore the vulnerable ecosystems invaded by Spartina in the Yangtze River estuary.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号