首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 40 毫秒
1.
In seawater, several trace metals with biological significance are highly complexed with organic matter. Marine cyanobacteria are an important phytoplanktonic group, with the ability to release trace metal-binding compounds to the seawater medium, which in turn modulates their bioavailability and influences their biogeochemical cycles. Such interactions may allow cyanobacteria to more easily access less available trace metals essential for their metabolic processes, or, conversely, keep the toxic forms of the trace metals from reaching intolerable levels. In this minireview, Cu and Fe interactions with cyanobacteria received special attention, although other trace metals (Co, Pb, Zn, and Cd) are also covered. Recent research has shed light on many aspects of trace metal–cyanobacteria ecology in seawater; nevertheless, the biochemical processes behind this dynamics and the structure of the vast majority of the metal binding compounds remain unclear.  相似文献   

2.
Either an overabundance or a deficiency of trace metals in the food chain can ultimately affect adversely the health of livestock and man. Increasing interest in the United States in the distribution of metals in the environment and in metal pollutants has led to widespread interdisciplinary research sponsored by governmental, private and academic groups concerning the availability of trace elements for absorption by plants and animals, and the effects of trace elements throughout the food chain. The state of the art and the needs for research are reviewed by interdisciplinary committees in the National Academy of Sciences and in many government agencies. Research is encouraged through contracts and grants awarded by federal and state agencies and the National Science Foundation to universities for studies of specific metals, specific diseases and correlations between metals and health in specific geographic areas. Effects on the environment of coal-fired power plants, the mining and processing of metals, asbestos, and phosphate, and the disposal of industrial and nuclear wastes have also received much attention in the past few years.  相似文献   

3.
4.
Owing to their induction by metals metallothioneins (MTs) have been proposed as biomarkers of the metallic contamination of the environment. On the other hand, bivalves are regarded as very convenient bioindicators of the aquatic ecosystems and an extensive literature has been dedicated to their response to metals. Among studies supporting the involvement of MTs in metal detoxification some discrepancy appears due to inter- and intra-specific variations, or to heterogeneous exposure conditions. A lesser number of papers are dealing with the use of metallothionein levels as biomarkers, and sometimes they evidence that natural factors influencing metallothionein synthesis have to be taken into account before final conclusions can been drawn. Moreover, there is still a large number of non-intercalibrated protocols used to quantify amounts of metallothioneins in organisms. As comparisons are necessary to assess the relative abundance of metallothioneins in a studied species, more work has to be completed before such comparisons could be validated. In the present paper we wish to establish the limits of the use of mollusc metallothioneins as a biomarker of aquatic ecosystem contamination by trace metals, using published and recent data as support for our conclusions and perspectives.  相似文献   

5.
李婷  吴明辉  王越  杨化菊  唐春东  段昌群 《生态学报》2020,40(13):4679-4688
重金属元素在自然界中主要分布于岩石和土壤当中,通过生物地球化学循环进入其他圈层。工业革命以后,矿物开采、冶炼、农业等传统人类活动和电子产业、交通运输等现代人类活动的不断发展,增加了岩层中重金属元素进入环境的总量,还改变了它们在不同环境介质中的迁移速率、方向、形态和生物毒性,进而增加危害人类健康的风险。只有充分了解人类扰动下重金属元素生物地球化学循环的新过程和新特征,才能抓住关键环节并且科学地建立高效可行的重金属污染修复方法与技术。总结了人类扰动及其引起的一系列环境变化对几种关键重金属元素生物地球化学循环的影响,综述分析表明由于人类扰动增加重金属源头释放并加速其在水中迁移速率,日后的修复工作应该着重于矿山、电子垃圾场等特殊区域的修复和监管并利用多种修复方式联用遏制重金属在水体中的快速迁移,这为重金属污染修复技术的研究提供导向和依据。  相似文献   

6.
In any well-defined study, a sample preservation and storage scheme compatible with the information or analyte sought should be incorporated. This article emphasizes the need for preservation and storage of biological fluids collected for trace element determination; cites the major factors, such as container material, container pretreatment, storage time, storage temperature, and contamination of the laboratory environment affecting preservation; presents a historical account of the available literature studies on the preservation and storage of trace metals in whole blood, plasma, serum, and urine; and makes recommendations on the most effective storage and preservation methods.  相似文献   

7.
In coastal environments, plants are used for phytoremediation of contamination. Organic and inorganic contaminants may be due to natural and/or anthropogenic sources. The aim of this study is to compare inorganic (trace metal) and organic (PAH) contamination in Posidonia oceanica and to analyse the relationship between these types of pollutants indeed very few studies have been interested in their correlations and common sources. P. oceanica leaves were collected in two sites exhibiting different levels of human-induced pressure. Higher values were recorded in the more polluted site (Toulon) for trace metals (Ag, Hg, Pb) as well as for PAHs (Medium Molecular Weight and High Molecular Weight) due to the presence of the city and/or harbour in proximity. For the first time in a coastal environment, correlations were observed between metals and PAHs.  相似文献   

8.
Bacteria are fundamental associates of animals, and recent studies have highlighted their major role in host behaviour, immunity or reproductive investment. Thus, any environmental factor modifying bacterial community may affect host fitness. In birds, trace metals emitted by anthropogenic activities accumulate onto the plumage where they may alter bacterial community and ultimately affect bird fitness. Although trace metals are current major environmental issues in urban habitats, their effects on feather bacterial community have never been investigated. Here, we supplemented feral pigeons Columba livia, an emblematic urban species, with zinc and/or lead in drinking and bath water. As expected, lead and zinc supplementations modified plumage bacterial community composition. Zinc decreased bacterial load, while lead decreased bacterial richness and the frequency of preening behaviour in birds, known to regulate feather bacteria. Our results demonstrate for the first time the effects of common urban trace metals on plumage bacterial community and shed light on one of the mechanisms by which trace metals can affect bird fitness. Further studies are now needed to investigate how this effect modulates avian life history traits known to depend on plumage bacterial community.  相似文献   

9.
The partitioning of trace metals and hydrophobic organic contaminants to phytoplankton determines their toxicity as well as their fate and transport in aquatic ecosystems. Accurate impact assessments, therefore, depend on a good understanding of the factors regulating the sorption of these compounds to biotic particles. The accumulation of chlorinated organic compounds in phytoplankton is generally considered as being due solely to physical sorption, described by reversible equilibrium models based on Langmuir or Freundlich isotherms. On the other hand, the uptake of trace metals is a two phase process: a fast sorption component viewed as an ionexchange or a covalent bonding process with cell surface ligands, followed by an intracellular transport phase that is dependent on cellular metabolic activity. The uptake of inorganic and hydrophobic organic pollutants and their bioaccumulation are influenced in a complex manner by duration of exposure and cell density, by environmental factors such as pH, the concentration of cations and of dissolved and colloidal organic matter, as well as by phytoplankton physiological condition. High concentrations of H+, Ca2+, and Mg2+ ions will reduce trace metal sorption by directly competing for uptake sites on the cell's surface, whereas the presence of dissolved organic carbon such as natural and synthetic chelators and phytoplankton exudates will reduce the bioavailability of both trace metals and hydrophobic organic contaminants. Thus, the impact of toxic contaminants on phytoplankton may be determined as much by the factors influencing uptake and partitioning as by the potency of the toxicants and interspecies differences in sensitivity. Recommendations for improving toxicity assessments are presented.  相似文献   

10.
Biogeochemistry of manganese- and iron-rich sediments in Toolik Lake,Alaska   总被引:2,自引:2,他引:0  
The sediments within Toolik Lake in arctic Alaska are characterized by extremely low rates of organic matter sedimentation and unusually high concentrations of iron and manganese. Pore water and solid phase measurements of iron, manganese, trace metals, carbon, nitrogen, phosphorus, and sulfur are consistent with the hypothesis that the reduction of organic matter by iron and manganese is the most important biogeochemical reaction within the sediment. Very low rates of dissolved oxygen consumption by the sediments result in an oxidizing environment at the sediment-water interface. This results in high retention of upwardly-diffusing iron and manganese and the formation of metal-enriched sediment. Phosphate in sediment pore waters is strongly adsorbed by the metal-enriched phases. Consequently, fluxes of phosphorus from the sediments to overlying waters are very small and contribute to the oligotrophic nature of the Toolik Lake aquatic system. Toolik Lake contains an unusual type of lacustrine sediment, and in many ways the sediments are similar to those found in oligotrophic oceanic environments.  相似文献   

11.
Since the toxicity of one metal or metalloid can be dramatically modulated by the interaction with other toxic or essential metals, studies addressing the chemical interactions between trace elements are increasingly important. In this study correlations between the main toxic (As, Cd, Hg and Pb) and nutritional essential (Ca, Co, Cr, Cu, Fe, Mn, Mo, Ni, Se, Zn) elements were evaluated in the tissues (liver, kidney and muscle) of 120 cattle from NW Spain, using Spearman rank correlation analysis based on analytical data obtained by ICP-AES. Although accumulation of toxic elements in cattle in this study is very low and trace essential metals are generally within the adequate ranges, there were significant associations between toxic and essential metals. Cd was positively correlated with most of the essential metals in the kidney, and with Ca, Co and Zn in the liver. Pb was significantly correlated with Co and Cu in the liver. A large number of significant associations between essential metals were found in the different tissues, these correlations being very strong between Ca, Cu, Fe, Mn, Mo and Zn in the kidney. Co was moderately correlated with most of the essential metals in the liver. In general, interactions between trace elements in this study were similar to those found in polluted areas or in experimental studies in animals receiving diets containing high levels of toxic metals or inadequate levels of nutritional essential elements. These interactions probably indicate that mineral balance in the body is regulated by important homeostatic mechanisms in which toxic elements compete with the essential metals, even at low levels of metal exposure. The knowledge of these correlations may be essential to understand the kinetic interactions of metals and their implications in the trace metal metabolism.  相似文献   

12.
Results of geobotanical and biogeochemical studies carried out on the known lead-zinc deposits of Zawar Mines and Khetri Copper Deposits, India, are discussed. A wild variety of Impatiens balsamina was found to be the most characteristic species on lead-zinc metal dumps, which can be regarded as a local 'bioindicator' for these metals. A number of 'accumulators' for lead, zinc, copper with high BAC values, as well as some 'excluders' are also discussed.  相似文献   

13.
Trace metals and neoplasia   总被引:1,自引:0,他引:1  
  相似文献   

14.
Fly ash, a by-product of power plants, is currently being used extensively in India for soil amendment. However, the toxic elements sorbed in the fly ash might pose a serious threat to the environment, causing soil and water contamination. Vermicomposting of fly ash is expected to reduce the contamination of toxic trace metal and could improve the mobility of essential trace element. The current study is focused on characterizing different species of trace metals and their bio-availability in the vermicomposted fly ash (VCFA)-treated lateritic soil. As a fertilizer, different doses (10%, 20%, 30%, 40%, and 50%) of VCFA were applied to the soil and sequential extraction was carried out to analyze trace elements. In the different fractions, Cr < Mn < Pb < Fe were found to be sorbed more to Fe-Mn oxide-bound fractions, whereas Cd, Cu, and Zn were bound more to organic-matter-bound fractions; Cr and Ni were mostly bound to residual fraction. The Fe-Mn oxides and organic-matter-bound fractions may be bio-available with the appropriate environmental condition, whereas chromium and nickel mostly associated with residual fraction are very difficult to release into the environment. The mobility factor index showed the midlevel substitution (i.e., 10% to 30% of VCFA to lateritic soil) to be beneficial as these doses increased the bio-availability of some essential trace elements and restricted the availability toxic trace metals in the soil. At higher doses, the toxic trace metals were found to be released in the bio-available form, which could be hazardous to the environment.  相似文献   

15.
Trace elements in agroecosystems and impacts on the environment.   总被引:21,自引:0,他引:21  
Trace elements mean elements present at low concentrations (mg kg-1 or less) in agroecosystems. Some trace elements, including copper (Cu), zinc (Zn), manganese (Mn), iron (Fe), molybdenum (Mo), and boron (B) are essential to plant growth and are called micronutrients. Except for B, these elements are also heavy metals, and are toxic to plants at high concentrations. Some trace elements, such as cobalt (Co) and selenium (Se), are not essential to plant growth but are required by animals and human beings. Other trace elements such as cadmium (Cd), lead (Pb), chromium (Cr), nickel (Ni), mercury (Hg), and arsenic (As) have toxic effects on living organisms and are often considered as contaminants. Trace elements in an agroecosystem are either inherited from soil parent materials or inputs through human activities. Soil contamination with heavy metals and toxic elements due to parent materials or point sources often occurs in a limited area and is easy to identify. Repeated use of metal-enriched chemicals, fertilizers, and organic amendments such as sewage sludge as well as wastewater may cause contamination at a large scale. A good example is the increased concentration of Cu and Zn in soils under long-term production of citrus and other fruit crops. Many chemical processes are involved in the transformation of trace elements in soils, but precipitation-dissolution, adsorption-desorption, and complexation are the most important processes controlling bioavailability and mobility of trace elements in soils. Both deficiency and toxicity of trace elements occur in agroecosystems. Application of trace elements in fertilizers is effective in correcting micronutrient deficiencies for crop production, whereas remediation of soils contaminated with metals is still costly and difficult although phytoremediation appears promising as a cost-effective approach. Soil microorganisms are the first living organisms subjected to the impacts of metal contamination. Being responsive and sensitive, changes in microbial biomass, activity, and community structure as a result of increased metal concentration in soil may be used as indicators of soil contamination or soil environmental quality. Future research needs to focus on the balance of trace elements in an agroecosystem, elaboration of soil chemical and biochemical parameters that can be used to diagnose soil contamination with or deficiency in trace elements, and quantification of trace metal transport from an agroecosystem to the environment.  相似文献   

16.
We monitored the concentration of 21 trace elements in zooplankton samples collected in a Northwestern Mediterranean coastal ecosystem (Italy). In the last 20 years, this area has been the target of important anthropogenic impacts including maritime traffic and substantial industrial activities. Zooplankton contributes to the transfer of trace metals to higher trophic levels and constitute one of the recommended groups for the baseline studies of metals in the marine environment. The essential trace elements (As, Cu, Mn, Zn, Fe, Mo, Co, Cr, Se, Ni) and the nonessential trace elements (Al, Be, Cd, Pb, Sb, Sn, V) were generally found at concentrations of no concern in the analyzed zooplankton samples, but showed important variations between seasons and different water depths. The zooplankton was found to be a significant accumulator of metals, and bioaccumulation factors were in the range of 28 (Co) to 10,9015 (Fe) in marine surficial waters, with increasing values at increasing water depth. Zooplankton is a useful bioindicator to assess metal contamination and its impact in the marine environment.  相似文献   

17.
Early diagenetic processes and anthropogenic activities are responsible for metal enrichment in estuarine sediments. The Tagus estuary (Portugal) is no exception, and as a result of past and present pressures, surface sediment contamination is still an issue in some areas. Since such metal loads may be incorporated by benthic organisms, this study analyzed the accumulation of trace metals in the Lusitanian toadfish (Halobatrachus didactylus) in the Tagus estuary. In order to determine the role played by the seasonal reproductive cycle of the Lusitanian toadfish in the bioaccumulation process of trace metals in its tissues, the concentrations of Cd, Co, Cr, Cu, Ni, Pb and Zn were determined in the liver of male and female specimens captured during reproductive and non-reproductive periods. The results showed that metal accumulation in the liver was related simultaneously with gender and season, with females having higher levels of Cd, Cu and Zn during the reproductive period. The metabolic roles of Cu and Zn in embryonic development may explain such results, as both metals accumulated in the female liver to be transported to the gonads later on. Cd, on the other hand, does not have a metabolic role, and the higher concentrations of this metal found in spawning females could be related to the high affinity of Cd to vitellogenin, which is produced in the liver. To assess the species’ potential as an indicator of metal contamination, the concentrations of the seven elements were compared in the muscle tissue of adult, type I males (age ≥5), from two areas with distinct sediment metal loads. Non-essential metals in the muscle reflected the same differences between areas that were found in the sediment samples, evidencing H. didactylus as a potential indicator of those elements bioavailability from the sediment. The results showed that the muscle tissue of adult specimens of a relatively sedentary species such as H. didactylus is a useful indicator of long term accumulation of trace metals. On the contrary, liver concentrations of trace metals showed variation according to the reproductive status, which could lead to overestimate of the environmental status concerning trace metals bioavailability. Spawning season and liver tissue should thus be avoided in biomonitoring studies targeting this benthic fish.  相似文献   

18.
Although knowledge of the total concentrations of trace metals in the environment and living organisms is still the essential starting point for any toxicological evaluation, it is, however, not sufficient to explain the mechanisms responsible for retention and toxic effect of trace metals. Differentiation between their chemical and biochemical forms is necessary. The need to resolve the total concentration of trace metals into single chemical species poses great experimental difficulties and imposes the use of very sensitive analytical techniques for trace metal determinations after specific preseparation procedures of the different chemical species. Thus, once the chemical or biochemical metal species have been selectively isolated, the speciation becomes merely an analytical problem, which requires high sensitivity and accuracy, as well as the evaluation of matrix effects, blanks, contamination, loss, and sampling. This paper describes the use of nuclear and radiochemical techniques related to chemical and biochemical speciation problems at the Joint Research Centre, Ispra, with carrier-free radiotracers and radiochemical neutron activation analysis.  相似文献   

19.
This review paper is focused predominantly on the role of the cell wall in the defense response of plants to trace metals. It is generally known that this compartment accumulates toxic divalent and trivalent metal cations both during their uptake by the cell from the environment and at the final stage of their sequestration from the protoplast. However, from results obtained in recent years, our understanding of the role played by the cell wall in plant defense response to toxic metals has markedly altered. It has been shown that this compartment may function not only as a sink for toxic trace metal accumulation, but that it is also actively modified under trace metal stress. These modifications lead to an increase in the capacity of the cell wall to accumulate trace metals and a decrease of its permeability for trace metal migration into the protoplast. One of the most striking alterations is the enhancement of the level of low-methylesterified pectins: the polysaccharides able to bind divalent and trivalent metal ions. This review paper will present the most recent results, especially those that are concerned with polysaccharide level, composition and distribution under trace metal stress, and describe in detail the polysaccharides responsible for metal binding and immobilization in different groups of plants (algae and higher plants). The review also contains information related to the entry pathways of trace metals into the cell wall and their detection methods.  相似文献   

20.
Uptake of trace metals by sediments and suspended particulates: a review   总被引:10,自引:3,他引:7  
Hart  Barry T. 《Hydrobiologia》1982,91(1):299-313
This review addresses three of the possible mechanisms by which trace metals can be concentrated by sediments and suspended particulate matter. These are physico-chemical adsorption from the water column, biological uptake particularly by bacteria and algae, and the sedimentation and physical entrapment of enriched particulate matter. The relative importance of these three mechanisms will be different, depending upon the aqueous system, but there have been insufficient studies to allow the establishment of even rule-of-thumb guidelines, as yet, about their quantitative importance under different conditions.The importance of natural organic matter in the cycling of trace metals in aquatic systems has been stressed. This organic matter may complex with the trace metals and keep them in solution, or it may enhance the association of the trace metals with particulate matter by becoming adsorbed to the particulate surface and then complexing with the trace metals in the solution phase. Enhanced metal-particulate associations may also arise if the metal-organic complexes are able to adsorb to the surface.The behaviour of natural organic matter may be the single most important influence on trace metal cycling in aquatic systems and should receive considerably more attention in the future.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号