首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Germline mutations of the human patched gene, PTCH, are responsible for the nevoid basal cell carcinoma (NBCC) syndrome or Gorlin's syndrome, characterized by multiple skin cancers, internal cancers and severe developmental abnormalities. The patched gene codes for a developmental regulator protein implicated in the sonic hedgehog (SHH) signalling pathway which plays an important role in oncogenic transformation. Patched exhibits tumor suppression function and has been shown to be mutated in skin cancers isolated from DNA repair-proficient patients or from xeroderma pigmentosum (XP), a DNA repair-deficient syndrome.

We have reviewed and analyzed in detail the different mutation spectra found on the PTCH gene in these various models. The type and distribution of mutations are quite different between germline, sporadic and XP cancers. Among the germline alterations, there is a preponderance (70%) of rearrangements compared to other tumour types analysed where less than 30% of rearrangements is observed. Typical UV-induced mutations of the patched gene are found prominently in XP basal cell carcinomas (BCCs) and in particular, a significantly higher level (63%) of the UV signature tandem mutations is found compared to sporadic BCC (11%). The location of mutations along the PTCH protein delineates several important functional domains implicated in the biology of this transmembrane receptor.  相似文献   


2.
3.
Cowden syndrome (CS) is a difficult-to-recognize multiple hamartoma syndrome with high risks of breast, thyroid, and other cancers. Germline mutations in PTEN on 10q23 were found to cause 85% of CS when accrued from tertiary academic centers, but prospective accrual from the community over the last 12 years has revealed a 25% PTEN mutation frequency. PTEN is the phosphatase that has been implicated in a heritable cancer syndrome and subsequently in multiple sporadic cancers and developmental processes. PTEN antagonizes the AKT1/PI3K signaling pathway and has roles in cell cycle, migration, cell polarity, and apoptosis. We report that 8 of 91 (8.8%) unrelated CS individuals without germline PTEN mutations carried 10 germline PIK3CA mutations (7 missense, 1 nonsense, and 2 indels) and 2 (2.2%) AKT1 mutations. These mutations result in significantly increased P-Thr308-AKT and increased cellular PIP3. Our observations suggest that PIK3CA and AKT1 are CS susceptibility genes.  相似文献   

4.
The MSSE gene predisposes to the development of multiple invasive but self-healing skin tumours (multiple self-healing squamous epitheliomata, MSSE). MSSE (previously named ESS1) was mapped to chromosome 9q by linkage analysis; haplotype analysis in families then suggested a common founder mutation and indicated that the gene lies in the interval D9S1–D9S29 (9q22–q31). Squamous cell carcinomata also develop as one of the complications of xeroderma pigmentosum, and one of the xeroderma pigmentosum genes (XPA) maps within the MSSE interval. We have investigated the hypothesis that a novel dominant mutation in XPA is responsible for MSSE. We screened the entire coding region, 3′ untranslated region (UTR) and 5′UTR of XPA for germline mutations in MSSE families by single-stranded conformation polymorphism analysis and by direct DNA sequencing. No mutations were detected but a novel intragenic polymorphism was identified in the 5′UTR of XPA, in both MSSE-affected and unrelated normal individuals. This XPA polymorphism and nine new polymorphic markers that map in the MSSE region were typed in eleven MSSE families; XPA was excluded as the MSSE gene and the most likely location of MSSE was reduced to the interval between D9S197 and (D9S287, D9S1809). The Patched (PTCH) gene, which is mutated in naevoid basal cell carcinoma syndrome (NBCCS or Gorlin syndrome) lies in this interval and all MSSE families have been shown to share a common haplotype at three novel intragenic PTCH polymorphisms. Although no mutation has been detected in MSSE families, PTCH has not been excluded as the MSSE gene. Received: 6 May 1997 / Accepted: 3 September 1997  相似文献   

5.
Gorlin syndrome is an autosomal dominant disorder that predisposes to basal cell carcinomas of the skin, ovarian fibromas, and medulloblastomas. Unlike other hereditary disorders associated with cancer, it features widespread developmental defects. To investigate the possibility that the syndrome is caused by mutation in a tumor suppressor gene, we searched for loss of heterozygosity in 16 sporadic basal cell carcinomas, 2 hereditary basal cell carcinomas, and 1 hereditary ovarian fibroma and performed genetic linkage studies in five Gorlin syndrome kindreds. Eleven sporadic basal cell carcinomas and all 3 hereditary tumors had allelic loss of chromosome 9q31, and all informative kindreds showed tight linkage between the Gorlin syndrome gene and a genetic marker in this region. Loss of heterozygosity at this chromosomal location, particularly in hereditary tumors, implies that the gene is homozygously inactivated and normally functions as a tumor suppressor. In contrast, hemizygous germline mutations lead to multiple congenital anomalies.  相似文献   

6.
Although the association of germline BRCA2 mutations with pancreatic adenocarcinoma is well established, the role of BRCA1 mutations is less clear. We hypothesized that the loss of heterozygosity at the BRCA1 locus occurs in pancreatic cancers of germline BRCA1 mutation carriers, acting as a “second-hit” event contributing to pancreatic tumorigenesis. Seven germline BRCA1 mutation carriers with pancreatic adenocarcinoma and nine patients with sporadic pancreatic cancer were identified from clinic- and population-based registries. DNA was extracted from paraffin-embedded tumor and nontumor samples. Three polymorphic microsatellite markers for the BRCA1 gene, and an internal control marker on chromosome 16p, were selected to test for the loss of heterozygosity. Tumor DNA demonstrating loss of heterozygosity in BRCA1 mutation carriers was sequenced to identify the retained allele. The loss of heterozygosity rate for the control marker was 20%, an expected baseline frequency. Loss of heterozygosity at the BRCA1 locus was 5/7 (71%) in BRCA1 mutation carriers; tumor DNA was available for sequencing in 4/5 cases, and three demonstrated loss of the wild-type allele. Only 1/9 (11%) sporadic cases demonstrated loss of heterozygosity at the BRCA1 locus. Loss of heterozygosity occurs frequently in pancreatic cancers of germline BRCA1 mutation carriers, with loss of the wild-type allele, and infrequently in sporadic cancer cases. Therefore, BRCA1 germline mutations likely predispose to the development of pancreatic cancer, and individuals with these mutations may be considered for pancreatic cancer-screening programs.  相似文献   

7.
The LKB1 tumor suppressor gene is frequently mutated in sporadic lung adenocarcinomas and cervical cancers and germline mutations are causative for Peutz-Jeghers syndrome characterized by gastrointestinal polyposis. The intracellular LKB1 kinase is implicated in regulating polarity, metabolism, cell differentiation, and proliferation – all functions potentially contributing to tumor suppression. LKB1 acts as an activating kinase of at least 14 kinases mediating LKB1 functions in a complex signaling network with partial overlaps. Regulation of the LKB1 signaling network is highly context dependent, and spatially organized in various cellular compartments. Also the mechanisms by which LKB1 activity suppresses tumorigenesis is context dependent, where recent observations are providing hints on the molecular mechanisms involved.  相似文献   

8.
Xeroderma pigmentosum (XP), a rare hereditary syndrome, is characterized by a hypersensitivity to solar irradiation due to a defect in nucleotide excision repair resulting in a predisposition to squamous and basal cell carcinomas as well as malignant melanomas appearing at a very early age. The mutator phenotype of XP cells is evident by the higher levels of UV specific modifications found in key regulatory genes in XP skin tumors compared to those in the same tumor types from the normal population. Thus, XP provides a unique model for the study of unrepaired DNA lesions, mutations and skin carcinogenesis. The high level of ras oncogene activation, Ink4a-Arf and p53 tumor suppressor gene modifications as well as alterations of the different partners of the mitogenic sonic hedgehog signaling pathway (patched, smoothened and sonic hedgehog), characterized in XP skin tumors have clearly demonstrated the major role of the UV component of sunlight in the development of skin tumors. The majority of the mutations are C to T or tandem CC to TT UV signature transitions, occurring at bipyrimidine sequences, the specific targets of UV induced lesions. These characteristics are also found in the same genes modified in sporadic skin cancers but with lower frequencies confirming the validity of studying the XP model. The knowledge gained by studying XP tumors has given us a greater perception of the contribution of genetic predisposition to cancer as well as the consequences of the many alterations which modulate the activities of different genes affecting crucial pathways vital for maintaining cell homeostasis.  相似文献   

9.
Mutations in the human patched gene have recently been detected in patients with naevoid basal cell carcinoma syndrome. We have characterised a further 5 novel germ line mutations in patients presenting with multiple odontogenic keratocysts. Four mutations cause premature stop codons and one mutation results in an amino-acid substitution towards the carboxyl terminus of the predicted patched protein. No obvious genotype-phenotype correlations could be interpreted, consistent with previous studies. Received: 10 February 1997 / Accepted: 13 May 1997  相似文献   

10.
Summary The cause of Li-Fraumeni syndrome, a rare group syndrome of familial cancers, has recently been identified. Patients with this inherited condition are highly susceptible to specific neoplasms, including early-onset breast cancers. The available evidence links Li-Fraumeni syndrome to inherited mutations of the tumor suppressor gene p53. Moreover, somatically acquired p53 mutations and gene deletions are common feature in breast cancer of sporadic origin. These findings suggest that germline p53 mutations are important in familial and, possibly sporadic, breast tumors. We have therefore screened lymphocyte DNA from 19 unrelated bilateral cancer patients for germline p53 mutations in exons 5, 6, 7 and 8. We have however detected no germline mutations by means of the single-strand confirmation polymorphism technique in any of the lymphocyte DNAs examined and conclude that p53 mutations are not generally involved in bilateral breast cancer.  相似文献   

11.

Background

Multiple primary cancers (MPC) have been identified as two or more cancers without any subordinate relationship that occur either simultaneously or metachronously in the same or different organs of an individual. Lynch syndrome is an autosomal dominant genetic disorder that increases the risk of many types of cancers. Lynch syndrome patients who suffer more than two cancers can also be considered as MPC; patients of this kind provide unique resources to learn how genetic mutation causes MPC in different tissues.

Methods

We performed a whole genome sequencing on blood cells and two tumor samples of a Lynch syndrome patient who was diagnosed with five primary cancers. The mutational landscape of the tumors, including somatic point mutations and copy number alternations, was characterized. We also compared Lynch syndrome with sporadic cancers and proposed a model to illustrate the mutational process by which Lynch syndrome progresses to MPC.

Results

We revealed a novel pathologic mutation on the MSH2 gene (G504 splicing) that associates with Lynch syndrome. Systematical comparison of the mutation landscape revealed that multiple cancers in the proband were evolutionarily independent. Integrative analysis showed that truncating mutations of DNA mismatch repair (MMR) genes were significantly enriched in the patient. A mutation progress model that included germline mutations of MMR genes, double hits of MMR system, mutations in tissue-specific driver genes, and rapid accumulation of additional passenger mutations was proposed to illustrate how MPC occurs in Lynch syndrome patients.

Conclusion

Our findings demonstrate that both germline and somatic alterations are driving forces of carcinogenesis, which may resolve the carcinogenic theory of Lynch syndrome.
  相似文献   

12.
RET tyrosine kinase signaling in development and cancer   总被引:9,自引:0,他引:9  
The variety of diseases caused by mutations in RET receptor tyrosine kinase provides a classic example of phenotypic heterogeneity. Gain-of-function mutations of RET are associated with human cancer. Gene rearrangements juxtaposing the tyrosine kinase domain to heterologous gene partners have been found in sporadic papillary carcinomas of the thyroid (PTC). These rearrangements generate chimeric RET/PTC oncogenes. In the germline, point mutations of RET are responsible for multiple endocrine neoplasia type 2 (MEN 2A and 2B) and familial medullary thyroid carcinoma (FMTC). Both MEN 2 mutations and PTC gene rearrangements potentiate the intrinsic tyrosine kinase activity of RET and, ultimately, activate the RET downstream targets. Loss-of-function mutations of RET cause Hirschsprung's disease (HSCR) or colonic aganglionosis. A deeper understanding of the molecular signaling of normal versus abnormal RET activity in cancer will enable the development of potential new treatments for patients with sporadic and inherited thyroid cancer or MEN 2 syndrome. We now review the role and mechanisms of RET signaling in development and carcinogenesis.  相似文献   

13.
The significance of DNA repair to human health has been well documented by studies on xeroderma pigmentosum (XP) patients, who suffer a dramatically increased risk of cancer in sun-exposed areas of their skin [1] and [2]. This autosomal recessive disorder has been directly associated with a defect in nucleotide excision–repair (NER) [1] and [2]. Like human XP individuals, mice carrying homozygous mutations in XP genes manifest a predisposition to skin carcinogenesis following exposure to ultraviolet (UV) radiation [3], [4] and [5]. Recent studies have suggested that, in addition to roles in apoptosis [6] and cell-cycle checkpoint control [7] in response to DNA damage, p53 protein may modulate NER [8]. Mutations in the p53 gene have been observed in 50% of all human tumors [9] and have been implicated in both the early [10] and late [11] stages of skin cancer. To examine the consequences of a combined deficiency of the XPC and the p53 proteins in mice, we generated double-mutant animals. We document a spectrum of neural tube defects in XPC p53 mutant embryos. Additionally, we show that, following exposure to UV-B radiation, XPC p53 mutant mice have more severe solar keratosis and suffer accelerated skin cancer compared with XPC mutant mice that are wild-type with respect to p53.  相似文献   

14.
NF1 is a tumour suppressor gene, germline mutations of which lead to neurofibromatosis type 1 syndrome. Patients develop benign tumours from several types of cells including neural crest‐derived cells. NF1 somatic mutations also occur in 15% of sporadic melanoma, a cancer originating from melanocytes. Evidence now suggests the involvement of NF1 mutations in melanoma resistance to targeted therapies. Although NF1 is ubiquitously expressed, genetic links between NF1 and genes involved in melanocyte biology have been described, implying the lineage‐specific mechanisms. In this review, we summarize and discuss the latest advances related to the roles of NF1 in melanocyte biology and in cutaneous melanoma.  相似文献   

15.
Nevoid basal cell carcinoma syndrome (NBCCS; basal cell nevus syndrome or Gorlin syndrome) is a cancer-predisposition syndrome characterized by multiple basal cell carcinomas (BCCs) and diverse developmental defects. The gene for NBCCS has been mapped to 9q23.1-q31 in North American and European families. In addition, loss of heterozygosity (LOH) for genetic markers in this region has been detected in sporadic BCCs, indicating that the NBCCS gene is probably a tumor-suppressor gene. In this study we have determined that the NBCCS gene is also linked to this region in Australasian pedigrees and that there is no significant evidence of heterogeneity. We have defined the localization of the gene by multipoint and haplotype analysis of 15 families, using four microsatellite markers. LOH at these loci was detected in 50% of sporadic BCCs, a rate that is significantly higher than that in other skin lesions used as controls.  相似文献   

16.
Individuals with germline mutations in the tumor suppressor gene phosphatase and tensin homolog (PTEN), irrespective of clinical presentation, are diagnosed with PTEN hamartoma tumor syndrome (PHTS). PHTS confers a high risk of breast, thyroid, and other cancers or autism spectrum disorder (ASD) with macrocephaly. It remains unclear why mutations in one gene can lead to seemingly disparate phenotypes. Thus, we sought to identify differences in ASD vs. cancer-associated germline PTEN missense mutations by investigating putative structural effects induced by each mutation. We utilized a theoretical computational approach combining in silico structural analysis and molecular dynamics (MD) to interrogate 17 selected mutations from our patient population: six mutations were observed in patients with ASD (only), six mutations in patients with PHTS-associated cancer (only), four mutations shared across both phenotypes, and one mutation with both ASD and cancer. We demonstrate structural stability changes where all six cancer-associated mutations showed a global decrease in structural stability and increased dynamics across the domain interface with a proclivity to unfold, mediating a closed (inactive) active site. In contrast, five of the six ASD-associated mutations showed localized destabilization that contribute to the partial opening of the active site. Our results lend insight into distinctive structural effects of germline PTEN mutations associated with PTEN-ASD vs. those associated with PTEN-cancer, potentially aiding in identification of the shared and separate molecular features that contribute to autism or cancer, thus, providing a deeper understanding of genotype–phenotype relationships for germline PTEN mutations.  相似文献   

17.
The Min (multiple intestinal neoplasia) mouse with a germline mutation in the adenomatous polyposis coli gene serves as an animal model for familial adenomatous polyposis coli (FAP). The number and age at onset of colorectal adenomas varies in the offspring of Min mice crossed with other strains. The murine gene for the secretory phospholipase A2 (PLA2G2A) was found to be the main candidate for these variations. To test the hypothesis of a correlation between PLA2G2A gene alterations and human tumor development, we screened 14 patients with FAP and 20 patients with sporadic colorectal cancer for germline and somatic PLA2G2A gene mutations. None of the individuals with FAP showed PLA2G2A germline alterations. However, a germline mutation was observed in one patient with an apparently sporadic colorectal tumor; the wildtype allele was somatically lost in the tumor of this patient. Received: 12 February 1997 / Accepted: 9 May 1997  相似文献   

18.
19.
Lynch syndrome is caused by germline mutations of DNA mismatch repair (MMR) genes, most frequently MLH1 and MSH2. Recently, MMR-deficient crypt foci (MMR-DCF) have been identified as a novel lesion which occurs at high frequency in the intestinal mucosa from Lynch syndrome mutation carriers, but very rarely progress to cancer. To shed light on molecular alterations and clinical associations of MMR-DCF, we systematically searched the intestinal mucosa from Lynch syndrome patients for MMR-DCF by immunohistochemistry. The identified lesions were characterised for alterations in microsatellite-bearing genes with proven or suspected role in malignant transformation. We demonstrate that the prevalence of MMR-DCF (mean 0.84 MMR-DCF per 1 cm2 mucosa in the colorectum of Lynch syndrome patients) was significantly associated with patients’ age, but not with patients’ gender. No MMR-DCF were detectable in the mucosa of patients with sporadic MSI-H colorectal cancer (n = 12). Microsatellite instability of at least one tested marker was detected in 89% of the MMR-DCF examined, indicating an immediate onset of microsatellite instability after MMR gene inactivation. Coding microsatellite mutations were most frequent in the genes HT001 (ASTE1) with 33%, followed by AIM2 (17%) and BAX (10%). Though MMR deficiency alone appears to be insufficient for malignant transformation, it leads to measurable microsatellite instability even in single MMR-deficient crypts. Our data indicate for the first time that the frequency of MMR-DCF increases with patients’ age. Similar patterns of coding microsatellite instability in MMR-DCF and MMR-deficient cancers suggest that certain combinations of coding microsatellite mutations, including mutations of the HT001, AIM2 and BAX gene, may contribute to the progression of MMR-deficient lesions into MMR-deficient cancers.  相似文献   

20.
Small submicroscopic genomic deletions and duplications constitute up to 15% of all mutations underlying human monogenic diseases. In this study, we used newly designed high-resolution oligonucleotide microarrays with a median distance between the probes of 776 bp (average probe interval 2,271 bp) to detect gene deletions in nevoid basal cell carcinoma syndrome (NBCCS) patients. NBCCS, also called Gorlin syndrome, is characterized by developmental defects and tumorigenesis such as medulloblastomas and basal cell carcinomas, caused by mutations of the human patched-1 (PTCH1) gene. Two out of three deletions could not be detected by a conventional chromosomal analysis. A submicroscopic deletion as small as 165 kb was detected affecting only PTCH1, whereas the other two deletions were much larger (5 and 11 Mb). We demonstrated not only the exact number of genes involved in the deletion but also rapidly determined the junction sequences after pinpointing the breakpoint regions in all individuals analyzed. This report of an array-based determination of junction sequences of long deletions circumvented a labor-intensive analysis such as Southern blotting or FISH. Alu-mediated recombination in one case and non-homologous end joining in the other two were probably implicated in the generation of deletions. This method will contribute to the understanding of molecular pathogenesis of gene deletions as well as rapid genetic testing. Electronic supplementary material The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号