首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The yeast strain YPH857 carrying multiple genetic markers was shown to segregate clones that had the pleiotropic suppression phenotype. The phenotype was designated Ppsu+. This suppression involves deletion alleles of the TRP1 and HIS3 genes and an insertion in the URA3 gene. Unlike the original YPH857 culture that carries an unidentified mutation of resistance to cycloheximide, the Ppsu+ clones exhibited a decreased level of resistance to this inhibitor of protein synthesis. In addition, they have a lower mating ability and can produce asci on a standard medium for sporulation. A comparative analysis of total DNA from the YPH857 strain and Ppsu+ segregants by Southern blotting provided evidence for the presence of an extraneous nucleus in these segregants. Ppsu+ strains were shown to contain wild-type alleles, apart from deletion and insertional alleles typical for the YPH857 strain. Moreover, they contain the 2 microns DNA of the Scp3 type with deletion of one of the two EcoRI and HpaI recognition sites (whereas the 2 microns DNA of YPH857 belongs to the Scp1 type) and exhibit heterogeneity with respect to the presence of one EcoR1 recognition site in the gene of 5S ribosomal RNA. It was supposed that the "cryptic" nucleus belongs to a strain of low viability and can survive as an unexpressed DNA in a small fraction of cells. Nuclei from the cryptic and YPH857 strains can be fused at a low rate to yield Ppsu+ cells capable of sporulation. In certain cases, a Ppsu+ clone may be heterogeneous: some of its cells contain nuclei in an unfused heterokaryotic state. This assumption has been confirmed by selecting Cyhr colonies with the original YPH857 genome among Ppsu+ clones on the cycloheximide-containing medium.  相似文献   

2.
During the industrial production of ethanol using yeast, the cells are exposed to stresses that affect their growth and productivity; therefore, stress-tolerant yeast strains are highly desirable. To increase ethanol production from glycerol, a greater tolerance to osmotic and ethanol stress was engineered in yeast strains that were impaired in endogenous glycerol production by the overexpression of both SPT3 and SPT15, components of the SAGA (Spt-Ada-Gcn5-acetyltransferase) complex. The engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) formed significantly more biomass compared to the strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), and both engineered strains displayed increased biomass when compared to the control YPH499 fps1Δgpd2Δ (pESC-TRP) strain. The trehalose accumulation and ergosterol content of these strains were 2.3-fold and 1.6-fold higher, respectively, than the parent strains, suggesting that levels of cellular membrane components were correlated with the enhanced stress tolerance of the engineered strains. Consequently, the ethanol production of the engineered strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupSpt3.15Cas) was 1.8-fold more than that of strain YPH499fps1Δgpd2Δ (pGcyaDak, pGupCas), with about 8.1g/L ethanol produced. In conclusion, we successfully established that the co-expression of SPT3 and SPT15 that improved the fermentation performance of the engineered yeast strains which produced higher ethanol yields than stress-sensitive yeast strains.  相似文献   

3.
芽残酵母PHO85基因对细胞周期调控的影响   总被引:1,自引:0,他引:1  
By homo-recombination with yeast intergrating plasmids, a serial of haploid mutants of budding yeast YPH499 had been constructed, which included pho85 delta strain YPH600, pho85 delta cln1 delta strain YPH610, cln1 delta cln2 delta strain YPH640 and galactose inducible strain YPH630 (pho85 delta cln1 delta cln2 delta (GAL1-10PHO85)). By analyzing the growth rate of different strains, we concluded that PHO85 gene have greater influence than CLN1 and CLN2 genes on cell growth control. After transferred from galactose media to glucose media, the tri-mutant cells collected at intervals were observed with microscope and analyzed by FACS. The results showed that the tri-mutant cells arrest in G1 phase when they were transferred to glucose media.  相似文献   

4.
Heterokaryons capable of segregating clones of different phenotypes were obtained in saccharomycetes yeast. Clones expressing phenotypic traits encoded by the nuclear genome of one parent and the mitochondrial genome of another were shown to contain cells that carried the second phenotypically silent nucleus. The cryptic nucleus can be uncovered by growing these "cytoductants" on the corresponding medium. The use of strains carrying an insertion in the URA3 gene and the endogenic plasmid, 2 microns DNA, made it possible to detect this nucleus by blot hybridization.  相似文献   

5.
An α-neoagarooligosaccharide hydrolase, AgaNash, was purified from Cellvibrio sp. OA-2007, which utilizes agarose as a substrate. The agaNash gene, which encodes AgaNash, was obtained by comparing the N-terminal amino acid sequence of AgaNash with that deduced from the nucleotide sequence of the full-length OA-2007 genome. The agaNash gene combined with the Saccharomyces cerevisiae signal peptide α-mating factor was transformed into the YPH499 strain of S. cerevisiae to generate YPH499/pTEF-MF-agaNash, and the recombinant yeast was confirmed to produce AgaNash, though it was mainly retained within the recombinant cell. To enhance AgaNash secretion from the cell, the signal peptide was replaced with a combination of the signal peptide and a threonine- and serine-rich tract (T-S region) of the S. diastaticus STA1 gene. The new recombinant yeast, YPH499/pTEF-STA1SP-agaNash, was demonstrated to secrete AgaNash and hydrolyze neoagarobiose with an efficiency of as high as 84%, thereby producing galactose, which is a fermentable sugar for the yeast, and ethanol, at concentrations of up to 1.8 g/L, directly from neoagarobiose.  相似文献   

6.
7.
The effect of hydrogen peroxide on the survival and activity of antioxidant and associated enzymes in Saccharomyces cerevisiae has been studied. A difference found in the response of wild-type yeast strains treated with hydrogen peroxide was probably related to the different protective effects of antioxidant enzymes in these strains. Exposure of wild-type YPH250 cells to 0.25 mM H2O2 for 30 min increased activities of catalase and superoxide dismutase (SOD) by 3.4-and 2-fold, respectively. However, no activation of catalase in the EG103 strain, as well as of SOD in the YPH98 and EG103 wild strains was detected, which was in parallel to lower survival of these strains under oxidative stress. There is a strong positive correlation (R 2 = 0.95) between activities of catalase and SOD in YPH250 cells treated with different concentrations of hydrogen peroxide. It is conceivable that catalase would protect SOD against inactivation caused by oxidative stress and vice versa. Finally, yeast cell treatment with hydrogen peroxide can lead to either a H2O2-induced increase in activities of antioxidant and associated enzymes or their decrease depending on the H2O2 concentration used or the yeast strain specificity. Published in Russion in Biokhimiya, 2006, Vol. 71, No. 9, pp. 1243–1252.  相似文献   

8.
番茄红素作为一种高附加价值的萜类化合物已受到国内外研究者的广泛关注。首先对酿酒酵母Saccharomyces cerevisiae模式菌株S288c和YPH499合成番茄红素的能力进行分析比较,结果表明YPH499更适合作为底盘细胞用于番茄红素的合成。随后比较组成型启动子GPDpr、TEF1pr和诱导型启动子GAL1pr、GAL10pr对番茄红素合成的影响,结果发现以GPDpr、TEF1pr作为番茄红素合成途径基因crtE、crt B和crtI的启动子,摇瓶发酵60 h后,番茄红素产量为15.31 mg/L;以GAL1pr和GAL10pr为启动子时,其产量为123.89 mg/L,提高8.09倍。继续改造甲羟戊酸(MVA)途径,过量表达N-末端截短的关键酶基因t HMG1(3-羟基-3-甲基戊二酸单酰辅酶A还原酶),番茄红素产量为265.68 mg/L,单位菌体产量72.79 mg/g。文中所设计构建的异源表达番茄红素合成途径的酿酒酵母菌株单位细胞产量高,可以进一步改造和优化后用于番茄红素的工业化生产。  相似文献   

9.
Three enzymes responsible for the transhydrogenase-like shunt, including malic enzyme (encoded by MAE1), malate dehydrogenase (MDH2), and pyruvate carboxylase (PYC2), were overexpressed to regulate the redox state in xylose-fermenting recombinant Saccharomyces cerevisiae. The YPH499XU/MAE1 strain was constructed by overexpressing native Mae1p in the YPH499XU strain expressing xylose reductase and xylitol dehydrogenase from Scheffersomyces stipitis, and native xylulokinase. Analysis of the xylose fermentation profile under semi-anaerobic conditions revealed that the ethanol yield in the YPH499XU/MAE1 strain (0.38?±?0.01 g g?1 xylose consumed) was improved from that of the control strain (0.31?±?0.01 g g?1 xylose consumed). Reduced xylitol production was also observed in YPH499XU/MAE1, suggesting that the redox balance was altered by Mae1p overexpression. Analysis of intracellular metabolites showed that the redox imbalance during xylose fermentation was partly relieved in the transformant. The specific ethanol production rate in the YPH499XU/MAE1–MDH2 strain was 1.25-fold higher than that of YPH499XU/MAE1 due to the additional overexpression of Mdh2p, whereas the ethanol yield was identical to that of YPH499XU/MAE1. The specific xylose consumption rate was drastically increased in the YPH499XU/MAE1–MDH2–PYC2 strain. However, poor ethanol yield as well as increased production of xylitol was observed. These results demonstrate that the transhydrogenase function implemented in S. cerevisiae can regulate the redox state of yeast cells.  相似文献   

10.
Centromere structure and function in budding and fission yeasts   总被引:16,自引:0,他引:16  
  相似文献   

11.
Genes integrated near the telomeres of budding yeast have a variegated pattern of gene repression that is mediated by the silent information regulatory proteins Sir2p, Sir3p, and Sir4p. Immunolocalization and fluorescence in situ hybridization (FISH) reveal 6-10 perinuclear foci in which silencing proteins and subtelomeric sequences colocalize, suggesting that these are sites of Sir-mediated repression. Telomeres lacking subtelomeric repeat elements and the silent mating locus, HML, also localize to the periphery of the nucleus. Conditions that disrupt telomere proximal repression disrupt the focal staining pattern of Sir proteins, but not necessarily the localization of telomeric DNA. To monitor the telomere-associated pools of heterochromatin-binding proteins (Sir and Rap1 proteins) during mitotic cell division, we have performed immunofluorescence and telomeric FISH on populations of yeast cells synchronously traversing the cell cycle. We observe a partial release of Rap1p from telomeres in late G2/M, although telomeres appear to stay clustered during G2-phase and throughout mitosis. A partial release of Sir3p and Sir4p during mitosis also occurs. This is not observed upon HU arrest, although other types of DNA damage cause a dramatic relocalization of Sir and Rap1 proteins. The observed cell cycle dynamics were confirmed by direct epifluorescence of a GFP-Rap1p fusion. Using live GFP fluorescence we show that the diffuse mitotic distribution of GFP-Rap1p is restored to the interphase pattern of foci in early G1-phase.  相似文献   

12.
The role of catalase in response of the yeast Saccharomyces cerevisiae to oxidative stress induced by hydrogen peroxide under starvation was investigated. It was shown that under conditions used in this study 0.5 mM H2O2 did not change the number of viable cells in the wild strain YPH250, but this parameter was decreased by 15% in the acatalsaemic strain YWT1. Cells treatment with 0.5 mM H2O2 for 30 min did not modify the levels of carbonyl proteins in the parental strain, but caused its 1.4-fold increase in the defective strain. The observed 1.5-fold activation of catalase in the wild strain cells in response to H2O2-stress suggests that under starvation conditions catalase can be involved in the yeast cell protection, particularly they can prevent oxidative modification of some antioxidant and associated enzymes.  相似文献   

13.
RNA沉默技术作为探索基因功能的实验手段应用于多种生物.以编码酿酒酵母NADPH依赖型醛糖还原酶的GRE3基因为对象,检测酿酒酵母双链RNA介导的基因沉默效应.以pESC-LEU为骨架,构建重组质粒psiLENT-GRE3并用于转化酿酒酵母YPH499.用RT-PCR检测到诱导1 kb RNA双螺旋和136 bp loop结构引起的GRE3基因表达下调.结果表明,双链RNA介导的基因沉默技术,能够用作降低酿酒酵母某一特定基因表达水平的工具.并有助于理解芽殖酵母的RNA干扰现象.  相似文献   

14.
The redistribution of ergosterol molecules which occurs during bud and germ tube formation (dimorphism) in Candida albicans was studied using filipin, a sterol-specific antibiotic, and examined by the freeze-fracture technique. When cells were fixed in a glutaraldehyde solution containing 50 micrograms/ml of filipin, filipin-ergosterol complexes, which were recognized as either pits on the exoplasmic fracture face or protuberances on the protoplasmic fracture face, were homogeneously distributed on the yeast plasma membranes. The plasma membrane of young budding yeast cells demonstrated few filipin-ergosterol complexes compared to the parent yeast plasma membrane. In addition, at a certain time during enlargement of budding yeast cells, the complexes became virtually absent from the constricted region between daughter and parent yeast cell. On the other hand, when germ tubes emerged as cylindrical outgrowths from the parent yeast cells, filipin-ergosterol complexes were heterogeneously redistributed on the plasma membrane. These results suggest that ergosterol molecules may be in lower concentration in the plasma membrane at the constricted region of yeast cell than elsewhere on the plasmalemma of the yeast cell.  相似文献   

15.
Yeast silent information regulator 2 (SIR2) is involved in extension of yeast longevity by calorie restriction, and SIRT3, SIRT4, and SIRT5 are mammalian homologs of SIR2 localized in mitochondria. We have investigated the localization of these three SIRT proteins of mouse. SIRT3, SIRT4, and SIRT5 proteins were localized in different compartments of the mitochondria. When SIRT3 and SIRT5 were co-expressed in the cell, localization of SIRT3 protein changed from mitochondria to nucleus. These results suggest that the SIRT3, SIRT4, and SIRT5 proteins exert distinct functions in mitochondria. In addition, the SIRT3 protein might function in nucleus.  相似文献   

16.
The yeast cell nucleus has previously been shown to be divided into two regions by a variety of microscopic approaches. We used antibodies specific for the 2,2,7-trimethylguanosine cap structure of small nuclear ribonucleic acids (snRNAs) and for a protein component of small nuclear ribonucleoprotein particles to identify the distribution of small nuclear ribonucleoprotein particles within the yeast cell nucleus. These studies were performed with the fission yeast Schizosaccharomyces pombe and the budding yeast Saccharomyces cerevisiae. By using immunofluorescence microscopy and immunoelectron microscopy, most of the abundant snRNAs were localized to the portion of the nucleus which has heretofore been referred to as the nucleolus. This distribution of snRNAs is different from that found in mammalian cells and suggests that the nucleolar portion of the yeast nucleus contains functional domains in addition to those associated with RNA polymerase I activity.  相似文献   

17.
We have used the freeze-substitution fixation technique for electron microscopy of yeast cells that express the hepatitis B virus core antigen (HBcAg) following transformation with the cloned gene. Abundant spherical particles were found within the transformed cells. These particles had a uniform size and shape, measured about 21 nm in diameter, had electron-lucent centers, and consisted of many subunits. They were localized in both the cytoplasm and the nucleus. None of these particles was found in the cells of the parent strain. Comparison of the HBcAg particles isolated from the yeast cells and the particles within the yeast cells demonstrated that the 21-nm particles were in fact ultrastructurally superimposable on HBcAg. Thus, the HBcAg particles within the yeast cells were similar to the HBcAg particles in human liver tissues infected with hepatitis B virus, not only in their size and appearance, but also in their intracellular localization. These results suggest that the yeast cell has the same machinery for synthesis and intracellular translocation of the HBcAg polypeptides as the human cell.  相似文献   

18.
目的:为提高CRISPR/Cas9(clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9)靶向性奠定基础,同时证明酵母杂交系统在研究CRISPR/Cas9脱靶效应中的应用价值。方法:以实验室前期构建成功的activase基因编辑水稻株为研究对象,先采用T7核酸内切酶Ⅰ法初步预测30株基因编辑水稻株的脱靶率。随后以酵母杂交系统进一步预测脱靶率以及研究sgRNA结构对脱靶率的影响。首先,将activase靶向基因的标准sgRNA(standard sgRNA)和短sgRNA(truncated sgRNA)分别克隆至CRISPR/Cas9系统表达载体pDW3769中,构建对应的重组载体pHZ2和pHZ4,转化至YPH499酵母单倍体形成重组酵母YpHZ2和YpHZ4;其次,根据脱靶位点预测选择7组脱靶序列A、B、C、D、E、F、G以及靶向序列,分别克隆至包含报告基因mCherry的高拷贝载体pDW3133和低拷贝载体pDW3134,构建相应的高拷贝重组载体pHZ5、pHZ7、pHZ9、pHZ11、pHZ13、pHZ15、pHZ17和pHZ19,以及对应的低拷贝重组载体pHZ6、pHZ8、pHZ10、pHZ12、pHZ14、pHZ16、pHZ18和pHZ20,转化至YPH500酵母单倍体,构建重组酵母YpHZ5-20。随后,重组酵母YpHZ2和YpHZ4与重组酵母YpHZ5-20分别杂交,挑取双倍体酵母菌落,在不同的时间段下检测荧光数值,根据荧光值定量预测脱靶率。结果:酵母培养144~192 h时荧光最为显著,脱靶序列sgRNA与靶向基因sgRNA同源性越高,越易造成脱靶,但短sgRNA较标准sgRNA脱靶率低。根据水稻植株的脱靶检测显示脱靶率约20%,基于酵母杂交的检测结果显示脱靶率为20%~28%。结论:酵母细胞进入稳定期时荧光值最为显著,且与载体的拷贝数量成正比。sgRNA序列以及长短结构可影响CRISPR/Cas9的基因靶向性。两种方法的脱靶率预测结果相当,表明酵母杂交系统在评价CRISPR/Cas9系统的脱靶率以及研究脱靶影响因素中具有良好的应用价值。  相似文献   

19.
A binary system for gene activation and site specific integration based on conditional recombination of transfected sequences mediated by FLP recombinase from yeast was implemented in mammalian cells. In several cell lines, FLP rapidly and precisely recombined copies of its specific target sequences to activate an otherwise silent beta-galactosidase reporter gene. Clones of marked cells were generated by excisional recombination within a chromosomally integrated copy of the silent reporters. These clones exhibited intense blue colour with X-Gal staining solution.  相似文献   

20.
The Sir2 protein mediates gene silencing and repression of recombination at the rDNA repeats in budding yeast. Here we show that Sir2 executes these functions as a component of a nucleolar complex designated RENT (regulator of nucleolar silencing and telophase exit). Net1, a core subunit of this complex, preferentially cross-links to the rDNA repeats, but not to silent DNA regions near telomeres or to active genes, and tethers the RENT complex to rDNA. Net1 is furthermore required for rDNA silencing and nucleolar integrity. During interphase, Net1 and Sir2 colocalize to a subdomain within the nucleous, but at the end of mitosis a fraction of Sir2 leaves the nucleolus and disperses as foci throughout the nucleus, suggesting that the structure of rDNA silent chromatin changes during the cell cycle. Our findings suggest that a protein complex shown to regulate exit from mitosis is also involved in gene silencing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号