首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Since hydride transfer is completely rate limiting for yeast formate dehydrogenase [Blanchard, J.S., & Cleland, W. W. (1980) Biochemistry 19, 3543], the intrinsic isotope effects on this reaction are fully expressed. Primary deuterium, 13C, and 18O isotope effects in formate and the alpha-secondary deuterium isotope effect at C-4 of the nucleotide have been measured for nucleotide substrates with redox potentials varying from -0.320 (NAD) to -0.258 V (acetylpyridine-NAD). As the redox potential gets more positive, the primary deuterium isotope effect increases from 2.2 to 3.1, the primary 13C isotope effect decreases from 1.042 to 1.036, the alpha-secondary deuterium isotope effect drops from 1.23 to 1.06, and Vmax decreases. The 18O isotope effects increase from 1.005 to 1.008 per single 18O substitution in formate (these values are dominated by the normal isotope effect on the dehydration of formate during binding; pyridinealdehyde-NAD gives an inverse value, possibly because it is not fully dehydrated during binding). These isotope effects suggest a progression toward earlier transition states as the redox potential of the nucleotide becomes more positive, with NAD having a late and acetyl-pyridine-NAD a nearly symmetrical transition state. By contrast, the I2 oxidation of formate in dimethyl sulfoxide has a very early transition state (13k = 1.0154; Dk = 2.2; 18k = 0.9938), which becomes later as the proportion of water in the solvent increases (13k = 1.0265 in 40% dimethyl sulfoxide and 1.0362 in water). alpha-secondary deuterium isotope effects with formate dehydrogenase are decreased halfway to the equilibrium isotope effect when deuterated formate is the substrate, showing that the bending motion of the secondary hydrogen is coupled to hydride transfer in the transition state and that tunneling of the two hydrogens is involved. The 15N isotope effect of 1.07 for NAD labeled at N-1 of the nicotinamide ring suggests that N-1 becomes pyramidal during the reaction. 18O fractionation factors for formate ion relative to aqueous solution are 1.0016 in sodium formate crystal, 1.0042 bound to Dowex-1, and 1.0040 as an ion pair (probably hydrated) in CHCl3. The CO2 analogue azide binds about 10(4) times better than the formate analogue nitrate to enzyme-nucleotide complexes (even though the Ki values for both and the affinity for formate vary by 2 orders of magnitude among the various nucleotides), but the ratio is not sensitive to the redox potential of the nucleotide. Thus, not the nature of the transition state but rather the shape of the initial binding pocket for formate is determining the relative affinity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

2.
N S Rotberg  W W Cleland 《Biochemistry》1991,30(16):4068-4071
Secondary 15N isotope effects at the N-1 position of 3-acetylpyridine adenine dinucleotide have been determined, by using the internal competition technique, for horse liver alcohol dehydrogenase (LADH) with cyclohexanol as a substrate and yeast formate dehydrogenase (FDH) with formate as a substrate. On the basis of less precise previous measurements of these 15N isotope effects, the nicotinamide ring of NAD has been suggested to adopt a boat conformation with carbonium ion character at C-4 during hydride transfer [Cook, P. F., Oppenheimer, N. J. & Cleland, W. W. (1981) Biochemistry 20, 1817]. If this mechanism were valid, as N-1 becomes pyramidal an 15N isotope effect of up to 2-3% would be observed. In the present study the equilibrium 15N isotope effect for the reaction catalyzed by LADH was measured as 1.0042 +/- 0.0007. The kinetic 15N isotope effect for LADH catalysis was 0.9989 +/- 0.0006 for cyclohexanol oxidation and 0.997 +/- 0.002 for cyclohexanone reduction. The kinetic 15N isotope effect for FDH catalysis was 1.004 +/- 0.001. These values suggest that a significant 15N kinetic isotope effect is not associated with hydride transfer for LADH and FDH. Thus, in contrast with the deformation mechanism previously postulated, the pyridine ring of the nucleotide apparently remains planar during these dehydrogenase reactions.  相似文献   

3.
Homoisocitrate dehydrogenase (HIcDH, 3-carboxy-2-hydroxyadipate dehydrogenase) catalyzes the fourth reaction of the alpha-aminoadipate pathway for lysine biosynthesis, the conversion of homoisocitrate to alpha-ketoadipate using NAD as an oxidizing agent. A chemical mechanism for HIcDH is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. According to the pH-rate profiles, two enzyme groups act as acid-base catalysts in the reaction. A group with a p K a of approximately 6.5-7 acts as a general base accepting a proton as the beta-hydroxy acid is oxidized to the beta-keto acid, and this residue participates in all three of the chemical steps, acting to shuttle a proton between the C2 hydroxyl and itself. The second group acts as a general acid with a p K a of 9.5 and likely catalyzes the tautomerization step by donating a proton to the enol to give the final product. The general acid is observed in only the V pH-rate profile with homoisocitrate as a substrate, but not with isocitrate as a substrate, because the oxidative decarboxylation portion of the isocitrate reaction is limiting overall. With isocitrate as the substrate, the observed primary deuterium and (13)C isotope effects indicate that hydride transfer and decarboxylation steps contribute to rate limitation, and that the decarboxylation step is the more rate-limiting of the two. The multiple-substrate deuterium/ (13)C isotope effects suggest a stepwise mechanism with hydride transfer preceding decarboxylation. With homoisocitrate as the substrate, no primary deuterium isotope effect was observed, and a small (13)C kinetic isotope effect (1.0057) indicates that the decarboxylation step contributes only slightly to rate limitation. Thus, the chemical steps do not contribute significantly to rate limitation with the native substrate. On the basis of data from solvent deuterium kinetic isotope effects, viscosity effects, and multiple-solvent deuterium/ (13)C kinetic isotope effects, the proton transfer step(s) is slow and likely reflects a conformational change prior to catalysis.  相似文献   

4.
P F Canellas  W W Cleland 《Biochemistry》1991,30(36):8871-8876
Carbon-13 and deuterium isotope effects have been measured on the reaction catalyzed by rabbit muscle glyceraldehyde-3-phosphate dehydrogenase in an effort to locate the rate-limiting steps. With D-glyceraldehyde 3-phosphate as substrate, hydride transfer is a major, but not the only, slow step prior to release of the first product, and the intrinsic primary deuterium and 13C isotope effects on this step are 5-5.5 and 1.034-1.040, and the sum of the commitments to catalysis is approximately 3. The 13C isotope effects on thiohemiacetal formation and thioester phosphorolysis are 1.005 or less. The intrinsic alpha-secondary deuterium isotope effect at C-4 of the nicotinamide ring of NAD is approximately 1.4; this large normal value (the equilibrium isotope effect is 0.89) shows tight coupling of hydrogen motions in the transition state accompanied by tunneling. With D-glyceraldehyde as substrate, the isotope effects are similar, but the sum of commitments is approximately 1.5, so that hydride transfer is more, but still not solely, rate limiting for this slow substrate. The observed 13C and deuterium equilibrium isotope effects on the overall reaction from the hydrated aldehyde are 0.995 and 1.145, while the 13C equilibrium isotope effect for conversion of a thiohemiacetal to a thioester is 0.994, and that for conversion of a thioester to an acyl phosphate is 0.997. Somewhat uncertain values for the 13C equilibrium isotope effects on aldehyde dehydration and formation of a thiohemiacetal are 1.003 and 1.004.  相似文献   

5.
The effect of pressure on the capture of a substrate alcohol by yeast alcohol dehydrogenase is biphasic. Solvent isotope effects accompany both phases and are expressed differently at different pressures. These differences allow the extraction of an inverse intrinsic kinetic solvent isotope effect of 1.1 (i.e., (D(2(O)))V/K = 0.9) accompanying hydride transfer and an inverse equilibrium solvent isotope effect of 2.6 (i.e., (D(2(O)))K(s) = 0.4) accompanying the binding of nucleotide, NAD(+). The value of the kinetic effect is consistent with a reactant-state E-NAD(+)-Zn-OH(2) having a fractionation factor of phi approximately 0.5 for the zinc-bound water in conjunction with a transition-state proton exiting a low-barrier hydrogen bond with a fractionation factor between 0.6 and 0.9. The value of the equilibrium effect is consistent with restrictions of torsional motions of multiple hydrogens of the enzyme protein during the conformational change that accompanies the binding of NAD(+). The absence of significant commitments to catalysis accompanying the kinetic solvent isotope effect means that this portion of the proton transfer occurs in the same reactive step as hydride transfer in a concerted chemical mechanism. The success of this analysis suggests that future measurements of solvent isotope effects as a function of pressure, in the presence of moderate commitments to catalysis, may yield precise estimates of intrinsic solvent isotope effects that are not fully expressed on capture at atmospheric pressure.  相似文献   

6.
The effect of pH on steady state kinetic parameters for the yeast alcohol dehydrogenase-catalyzed reduction of aldehydes and oxidation of alcohols has been studied. The oxidation of p-CH3 benzyl alcohol-1,1-h2 and -1,1-d2 by NAD+ was found to be characterized by large deuterium isotope effects (kH/kD = 4.1 plus or minus 0.1) between pH 7.5 and 9.5, indicating a rate-limiting hydride trahsfer step in this pH range; a plot of kCAT versus pH could be fit to a theoretical titration curve, pK = 8.25, where kCAT increases with increasing pH. The Michaelis constnat for p-CH3 benzyl alcohol was independent of pH. The reduction of p-CH3 benzaldehyde by NADH and reduced nicotinamide adenine dinucleotide with deuterium in the 4-A position (NADD) cound not be studied below pH 8.5 due to substrate inhibition; however, between pH 8.5 and 9.5, kCAT was found to decrease with increasing pH and to be characterized by significant isotope effects (kH/kD = 3.3 plus or minus 0.3). In the case of acetaldehyde reduction by NADH and NADD, isotope effects were found to be small and exxentially invariant (kH/kD = 2.O plus or minus 0.4) between pH 7.2 and 9.5, suggesting a partially rate-limiting hydride transger step for this substrate; a plot of kCAT/K'b (where K'b is the Michaelis constant for acetaldehyde) versus pH could be fit to a titration curve, pK = 8.25. The titration curve for acetaldehyde reduction has the same pK but is opposite in direction to that observed for p-CH3 benzyl alcohol oxidation. The data presented in this paper indicate a dependence on different enzyme forms for aldehyde reduction and alcohol oxidation and are consistent with a single active site side chain, pK = 8.25, which functions in acid-base catalysis of the hydride transfer step.  相似文献   

7.
The kinetics of yeast and liver alcohol dehydrogenase (YADH and LADH) have been investigated by spectrophotometry at pressures between 1 and 2000 bar. For YADH the common random two substrate mechanism has been used as a model for evaluation of the pressure variation of five kinetic constants in the ethanol-NAD reaction. The dissociation volume associated with each constant is estimated and it is found that the dissociation of binary complexes is followed by large volume decreases, while the dissociation of ternary complexes is followed by smaller volume increases. There is a volume increase following formation of the activated complex in the rate determining step, and the over-all reaction rate decreases with pressure, going to zero at 2000 bar. LADH shows a complicated behaviour at high pressure. This is believed to be due to the substrate inhibition phenomenon occurring at ethanol concentrations above 10 mM. At such concentrations the reaction rate increases with pressure, reaching a maximum at about 1200 bar and goes to zero at 2500 bar. At ethanol concentrations lower than 10 mM there is a small decrease of reaction rate with pressure. To relate the volume Changes of the over-all process to those of the intermediate complexes, the partial molal volume of ethanol, acetaldehyde, NAD+ and NADH are determined by density measuraments.  相似文献   

8.
Quirk DJ  Northrop DB 《Biochemistry》2001,40(3):847-851
High pressure causes biphasic effects on the oxidation of formate by yeast formate dehydrogenase as expressed on the kinetic parameter V/K, which measures substrate capture. Moderate pressure increases capture by accelerating hydride transfer. The transition state for hydride transfer has a smaller volume than the free formate plus the capturing form of enzyme, with DeltaV(double dagger) = -9.7 +/- 1.0 mL/mol. Pressures above 1.5 kbar decrease capture, reminiscent of effects on the conformational change associated with the binding of nicotinamide adenine dinucleotide (NAD(+)) to yeast alcohol dehydrogenase [Northrop, D. B., and Y. K. Cho (2000) Biochemistry 39, 2406-2412]. The collision complex, E-NAD(+), has a smaller volume than the more tightly bound reactant-state complex, E-NAD(+), with DeltaV = +83.4 +/- 5.2 mL/mol. A comparison of the effects of pressure on the oxidation of normal and deuteroformate shows that the entire isotope effect on hydride transfer, 2.73 +/- 0.20, arises solely from transition-state phenomena, as was also observed previously with yeast alcohol dehydrogense. In contrast, normal primary isotope effects arise solely from different zero-point energies in reactant states, and those that express hydrogen tunneling arise from a mixture of both reactant-state and transition-state phenomena. Moreover, pressure increases the primary intrinsic deuterium isotope effect, the opposite of what was observed with yeast alcohol dehydrogense. The lack of a decrease in the isotope effect is also contrary to empirical precedents from chemical reactions suspected of tunneling and to theoretical constructs of vibrationally enhanced tunneling in enzymatic reactions. Hence, this new experimental design penetrates transition states of enzymatic catalysis as never before, reveals the presence of phenomena foreign to chemical kinetics, and calls for explanations of how enzymes work beyond the tenants of physical organic chemistry.  相似文献   

9.
A new, acyclic NAD-analog, acycloNAD+ has been synthesized where the nicotinamide ribosyl moiety has been replaced by the nicotinamide (2-hydroxyethoxy)methyl moiety. The chemical properties of this analog are comparable to those of β-NAD+ with a redox potential of −324 mV and a 341 nm λmax for the reduced form. Both yeast alcohol dehydrogenase (YADH) and horse liver alcohol dehydrogenase (HLADH) catalyze the reduction of acycloNAD+ by primary alcohols. With HLADH 1-butanol has the highest Vmax at 49% that of β-NAD+. The primary deuterium kinetic isotope effect is greater than 3 indicating a significant contribution to the rate limiting step from cleavage of the carbon–hydrogen bond. The stereochemistry of the hydride transfer in the oxidation of stereospecifically deuterium labeled n-butanol is identical to that for the reaction with β-NAD+. In contrast to the activity toward primary alcohols there is no detectable reduction of acycloNAD+ by secondary alcohols with HLADH although these alcohols serve as competitive inhibitors. The net effect is that acycloNAD+ has converted horse liver ADH from a broad spectrum alcohol dehydrogenase, capable of utilizing either primary or secondary alcohols, into an exclusively primary alcohol dehydrogenase. This is the first example of an NAD analog that alters the substrate specificity of a dehydrogenase and, like site-directed mutagenesis of proteins, establishes that modifications of the coenzyme distance from the active site can be used to alter enzyme function and substrate specificity. These and other results, including the activity with α-NADH, clearly demonstrate the promiscuity of the binding interactions between dehydrogenases and the riboside phosphate of the nicotinamide moiety, thus greatly expanding the possibilities for the design of analogs and inhibitors of specific dehydrogenases.  相似文献   

10.
Liver alcohol dehydrogenase (LADH; E.C. 1.1.1.1) provides an excellent system for probing the role of binding interactions with NAD(+) and alcohols as well as with NADH and the corresponding aldehydes. The enzyme catalyzes the transfer of hydride ion from an alcohol substrate to the NAD(+) cofactor, yielding the corresponding aldehyde and the reduced cofactor, NADH. The enzyme is also an excellent catalyst for the reverse reaction. X-ray crystallography has shown that the NAD(+) binds in an extended conformation with a distance of 15 A between the buried reacting carbon of the nicotinamide ring and the adenine ring near the surface of the horse liver enzyme. A major criticism of X-ray crystallographic studies of enzymes is that they do not provide dynamic information. Such data provide time-averaged and space-averaged models. Significantly, entries in the protein data bank contain both coordinates as well as temperature factors. However, enzyme function involves both dynamics and motion. The motions can be as large as a domain closure such as observed with liver alcohol dehydrogenase or as small as the vibrations of certain atoms in the active site where reactions take place. Ternary complexes produced during the reaction of the enzyme binary entity, E-NAD(+), with retinol (vitamin A alcohol) lead to retinal (vitamin A aldehyde) release and the enzyme binary entity E-NADH. Retinal is further metabolized via the E-NAD(+)-retinal ternary complex to retinoic acid (vitamin A acid). To unravel the mechanistic aspects of these transformations, the kinetics and energetics of interconversion between various ternary complexes are characterized. Proton transfers along hydrogen bond bridges and NADH hydride transfers along hydrophobic entities are considered in some detail. Secondary kinetic isotope effects with retinol are not particularly large with the wild-type form of alcohol dehydrogenase from horse liver. We analyze alcohol dehydrogenase catalysis through a re-examination of the reaction coordinates. The ground states of the binary and ternary complexes are shown to be related to the corresponding transition states through topology and free energy acting along the reaction path.  相似文献   

11.
The multiple isotope effect method of Hermes et al. [Hermes, J. D., Roeske, C. A., O'Leary, M. H., & Cleland, W. W. (1982) Biochemistry 21, 5106-5114] has been used to study the mechanism of the oxidative decarboxylation catalyzed by 6-phosphogluconate dehydrogenase from yeast. 13C kinetic isotope effects of 1.0096 and 1.0081 with unlabeled or 3-deuterated 6-phosphogluconate, plus a 13C equilibrium isotope effect of 0.996 and a deuterium isotope effect on V/K of 1.54, show that the chemical reaction after the substrates have bound is stepwise, with hydride transfer preceding decarboxylation. The kinetic mechanism of substrate addition is random at pH 8, since the deuterium isotope effect is the same when either NADP or 6-phosphogluconate or 6-phosphogluconate-3-d is varied at fixed saturating levels of the other substrate. Deuterium isotope effects on V and V/K decrease toward unity at high pH at the same time that V and V/K are decreasing, suggesting that proton removal from the 3-hydroxyl may precede dehydrogenation. Comparison of the tritium effect of 2.05 with the other measured isotope effects gives limits of 3-4 on the intrinsic deuterium and of 1.01-1.05 for the intrinsic 13C isotope effect for C-C bond breakage in the forward direction and suggests that reverse hydride transfer is 1-4 times faster than decarboxylation.  相似文献   

12.
Y K Cho  D B Northrop 《Biochemistry》1999,38(23):7470-7475
High pressure causes biphasic effects on the oxidation of benzyl alcohol by yeast alcohol dehydrogenase as expressed in the kinetic parameter V/K which measures substrate capture. Moderate pressure increases the rate of capture of benzyl alcohol by activating the hydride transfer step. This means that the transition state for hydride transfer has a smaller volume than the free alcohol plus the capturing form of enzyme, with a DeltaV of -39 +/- 1 mL/mol, a value that is relatively large. This is the first physical property of an enzymatic transition state thus characterized, and it offers new possibilities for structure-activity analyses. Pressures of >1.5 kbar decrease the rate of capture of benzyl alcohol by favoring a conformation of the enzyme which binds nicotinamide adenine dinucleotide (NAD+) less tightly. This means that the ground state for tight binding, E-NAD+, has a larger volume than the collision complex, E-NAD+, with a DeltaV of 73 +/- 2 mL/mol. The equilibrium constant of the conformational change Keq is 75 +/- 13 at 1 atm. The effects of pressure on the capture of NAD+ have no activation phase because the conformational change is now being expressed kinetically instead of thermodynamically, together with but in opposition to hydride transfer, causing the effects to cancel. For yeast alcohol dehydrogenase, this conformational change had not been detected previously, but similar conformational changes have been found by spectroscopic means in other dehydrogenases, and some of them are also sensitive to pressure. The opposite signs for the volume change of tighter binding and hydride transfer run contrary to Pauling's hypothesis that substrates are bound more tightly in the transition state than in the Michaelian reactant state.  相似文献   

13.
Rubach JK  Ramaswamy S  Plapp BV 《Biochemistry》2001,40(42):12686-12694
The participation of Val-292 in catalysis by alcohol dehydrogenase and the involvement of dynamics were investigated. Val-292 interacts with the nicotinamide ring of the bound coenzyme and may facilitate hydride transfer. The substitution of Val-292 with Ser (V292S) increases the dissociation constants for the coenzymes (NAD(+) by 50-fold, NADH by 75-fold) and the turnover numbers by 3-7-fold. The V292S enzyme crystallized in the presence of NAD(+) and 2,3,4,5,6-pentafluorobenzyl alcohol has an open conformation similar to the structure of the wild-type apo-enzyme, rather than the closed conformation observed for ternary complexes with wild-type enzyme. The V292S substitution perturbs the conformational equilibrium of the enzyme and decreases the kinetic complexity, which permits study of the hydride transfer step with steady-state kinetics. Eyring plots show that the DeltaH for the oxidation (V(1)) of the protio and deuterio benzyl alcohols is 13 kcal/mol and that the kinetic isotope effect of 4.1 is essentially temperature-independent. Eyring plots for the catalytic efficiency for reduction of benzaldehyde (V(2)/K(p)) with NADH or NADD are distinctly convex, being temperature-dependent from 5 to 25 degrees C and temperature-independent from 25 to 50 degrees C; the kinetic isotope effect of 3.2 for V(2)/K(p) is essentially independent of the temperature. The temperature dependencies and isotope effects for V(1) and V(2)/K(p) are not adequately explained by semiclassical transition state theory and are better explained by hydride transfer occurring through vibrationally assisted tunneling.  相似文献   

14.
K H Dahl  M F Dunn 《Biochemistry》1984,23(26):6829-6839
Liver alcohol dehydrogenase (LADH) carboxymethylated at Cys-46 (CMLADH) forms two different ternary complexes with 4-trans-(N,N-dimethylamino)cinnamaldehyde (DACA). The complex with reduced nicotinamide adenine dinucleotide (NADH) is characterized by a 38-nm red shift of the long-wavelength pi, pi* transition to 436 nm, while the complex with oxidized nicotinamide adenine dinucleotide (NAD+) is characterized by a 60-nm red shift to 458 nm. CMLADH also forms a ternary complex with NAD+ and the Z isomer of 4-trans-(N,N-dimethylamino)cinnamaldoxime in which the absorption of the oxime (lambda max = 354 nm) is red shifted 80 nm to 434 nm. Pyrazole and 4-methylpyrazole are weak competitive inhibitors of ligand binding to the substrate site of native LADH. These inhibitors were found to form ternary complexes with CMLADH and NADH which are more stable than the corresponding complexes with the native enzyme. The transient reductions of the aldehydes DACA and p-nitrobenzaldehyde (NBZA) were studied under single-turnover conditions. Carboxymethylation decreases the DACA reduction rate 80-fold and renders the process essentially independent of pH over the region 5-9, whereas this process depends on a pKa of 6.0 in the native enzyme. At pH 7.0, the rate constant for NBZA reduction also is decreased at least 80-fold to a value of 7.7 +/- 0.3 s-1. Since primary kinetic isotope effects are observed when NADH is substituted with (4R)-4-deuterio-NADH (kH/kD = 3.0 for DACA and kH/kD = 2.3 for NBZA), the rate-limiting step for both aldehydes involves hydride transfer. The altered pH dependence is concluded to be due to an increase in the pK value of the zinc-coordinated DACA-alcohol in the ternary complex with NAD+ by more than 3 units. This perturbation is brought about by the close proximity of the negatively charged carboxymethyl carboxylate.  相似文献   

15.
In the present study we show that the enzymatic activity of the coenzyme nicotinamide adenine dinucleotide (NAD+) and its analogues (C(O)NH2 replaced by C(S)NH2, C(O)CH3, C(O)H and CN) with horse liver alcohol dehydrogenase (LADH) (alcohol:NAD+ oxidoreductase, EC 1.1.1.1) can be rationalized by their conformation in the active site determined with molecular mechanics (AMBER, assisted model building with energy refinement). In order to establish the relation between the hydride transfer rate and the conformation of the NAD+ and its analogues, kinetic experiments with the poor substrate isopropanol were carried out. It appears that the enzymatic activity can be readily explained by the geometry of the pyridinium ring, in particular the magnitude of the 'out-of-plane' rotation of the carboxamide side chain (or analogues). The latter is nicely illustrated in the case of 3-cyanopyridine adenine dinucleotide which lacks any 'out-of-plane' rotation and concomitantly exhibits no significant enzymatic activity.  相似文献   

16.
The compounds 3-hydroxy-4-nitrobenzaldehyde and 3-hydroxy-4-nitrobenzyl alcohol are introduced as new chromophoric substrates for probing the catalytic mechanism of horse liver alcohol dehydrogenase (LADH). Ionization of the phenolic hydroxyl group shifts the spectrum of the aldehyde from 360 to 433 nm (pKa = 6.0), whereas the spectrum of the alcohol shifts from 350 to 417 nm (pKa = 6.9). Rapid-scanning, stopped-flow (RSSF) studies at alkaline pH show that the LADH-catalyzed interconversion of these compounds occurs via the formation of an enzyme-bound intermediate with a blue-shifted spectrum. When reaction is limited to a single turnover of enzyme sites, the formation and decay of the intermediate when aldehyde reacts with enzyme-bound reduced nicotinamide adenine dinucleotide E(NADH) are characterized by two relaxations (lambda f approximately equal to 3 lambda s). Detailed stopped-flow kinetic studies were carried out to investigate the disappearance of aldehyde and NADH, the formation and decay of the intermediate, the displacement of Auramine O by substrate, and 2H kinetic isotope effects. It was found that NADH oxidation takes place at the rate of the slower relaxation (lambda s); when NADD is substituted for NADH, lambda s is subject to a small primary isotope effect (lambda Hs/lambda Ds = 2.0); and the events that occur in lambda s precede lambda f. These findings identify the intermediate as a ternary complex containing bound oxidized nicotinamide adenine dinucleotide (NAD+) and some form of 3-hydroxy-4-nitrobenzyl alcohol. The blue-shifted spectrum of the intermediate strongly implies a structure wherein the phenolic hydroxyl is neutral. When constrained to a mechanism that assumes only the neutral phenolic form of the substrate binds and reacts and that the intermediate is an E(NAD+, product) complex, computer simulations yield RSSF and single-wavelength time courses that are qualitatively and semiquantitatively consistent with the experimental data. We conclude that the LADH substrate site can be divided into two subsites: a highly polar, electropositive subsite in the vicinity of the active-site zinc and, just a few angstroms away, a rather nonpolar region. The polar subsite promotes formation of the two interconverting reactive ternary complexes. The nonpolar region is the binding site for the hydrocarbon-like side chains of substrates and in the case of 3-hydroxy-4-nitrobenzaldehyde conveys specificity for the neutral form of the phenolic group.  相似文献   

17.
Reported kinetic pH dependence data for alcohol dehydrogenase from Drosophila melanogaster are analyzed with regard to differences in rate behaviour between this non-metallo enzyme and the zinc-containing liver alcohol dehydrogenase present in vertebrates. For the Drosophila enzyme a mechanism of action is proposed according to which catalytic proton release to solution during alcohol oxidation occurs at the binary-complex level as an obligatory step preceding substrate binding. Such proton release involves an ionizing group with a pKa of about 7.6 in the enzyme.NAD+ complex, tentatively identified as a tyrosyl residue. The ionized form of this group is proposed to participate in the binding of alcohol substrates and to act as a nucleophilic catalyst of the subsequent step of hydride ion transfer from the bound alcohol to NAD+. Herein lie fundamental mechanistic differences between the metallo and non-metallo short chain alcohol dehydrogenases.  相似文献   

18.
We have examined aspects of the second catalytic activity of alcohol dehydrogenase from horse liver (LADH), which involves an apparent dismutation of an aldehyde substrate into alcohol and acid in the presence of LADH and NAD. Using the substrate p-trifluoromethylbenzaldehyde, we have observed various bound complexes by 19F NMR in an effort to further characterize the mechanism of the reaction. The mechanism appears to involve the catalytic activity of LADH · NAD · aldehyde complex which reacts to form an enzyme · NADH · acid complex. The affinity of the acid product for LADH · NADH is weak and the acid product readily desorbs from the ternary complex. The resulting LADH · NADH can then react with a second molecule of aldehyde to form NAD and the corresponding alcohol. The result is the conversion of two molecules of aldehyde to one each of acid and alcohol, with LADH and NAD acting catalytically. This sequence of reactions can also explain the slow formation of acid product observed when alcohol and NAD are incubated with the enzyme.  相似文献   

19.
1. The steady-state parameters kcat and Km and the rate constants of hydride transfer for the substrates isopropanol/acetone; (S)-2-butanol, (R)-2-butanol/2-butanone; (S)-2-pentanol, (R)-2-pentanol/2-pentanone; 3-pentanol/3-pentanone; (S)-2-octanol and (R)-2-octanol have been determined for the native Zn(II)-containing horse-liver alcohol dehydrogenase (LADH) and the specific active-site-substituted Co(II)LADH. 2. A combined evaluation of steady-state kinetic data and rate constants obtained from stopped-flow measurements, allowed the determination of all rate constants of the following ordered bi-bi mechanism: E in equilibrium E.NAD in equilibrium E.NAD.R1R2 CHOH in equilibrium E.NADH.R1R2CO in equilibrium E.NADH in equilibrium E. 3. On the basis of the different substrate specificities of LADH and yeast alcohol dehydrogenase (YADH), a procedure has been developed to evaluate the enantiomeric product composition of ketone reductions. 2-Butanone and 2-pentanone reductions revealed (S)-2-butanol (86%) and (S)-2-pentanol (95%) as the major products. 4. The observed enantioselectivity implies the existence of two productive ternary complexes; E.NADH.(pro-S) 2-butanone and E.NADH.(pro-R) 2-butanone. All rate constants describing the kinetic pathways of the system (S)-2-butanol, (R)-2-butanol/2-butanone have been determined. These data have been used to estimate the expected enantiomer product composition of 2-butanone reductions using apparent kcat/Km values for the two different ternary-complex configurations of 2-butanone. Additionally, these data have been used for computer simulations of the corresponding reaction cycles. Calculated, simulated and experimental data were found to be in good agreement. Thus, the system (S)-2-butanol, (R)-2-butanol/2-butanone is the first example of a LADH-catalyzed reaction for which the stereochemical course could be described in terms of rate constants of the underlying mechanism. 5. The effects of Co(II) substitution on the different steps of the kinetic pathway have been investigated. The free energy of activation is higher for alcohol oxidation and lower for ketone reduction when catalyzed by Co(II)LADH in comparison to Zn(II)LADH. However, the free energies of binding are affected by metal substitution in such a way that the enantioselectivity of ketone reduction is not significantly changed by the substitution of Co(II) for Zn(II). 6. Evaluation of the data shows that substrate specificity and stereoselectivity result from combination of the free energies of binding and activation, with differences in binding energies as the dominating factors. In this regard, the interactions of substrate molecules with the protein moiety are dominant over the interactions with the catalytic metal ion.  相似文献   

20.
Saccharopine dehydrogenase [N6-(glutaryl-2)-L-lysine:NAD oxidoreductase (L-lysine forming)] catalyzes the final step in the alpha-aminoadipate pathway for lysine biosynthesis. It catalyzes the reversible pyridine nucleotide-dependent oxidative deamination of saccharopine to generate alpha-Kg and lysine using NAD+ as an oxidizing agent. The proton shuttle chemical mechanism is proposed on the basis of the pH dependence of kinetic parameters, dissociation constants for competitive inhibitors, and isotope effects. In the direction of lysine formation, once NAD+ and saccharopine bind, a group with a pKa of 6.2 accepts a proton from the secondary amine of saccharopine as it is oxidized. This protonated general base then does not participate in the reaction again until lysine is formed at the completion of the reaction. A general base with a pKa of 7.2 accepts a proton from H2O as it attacks the Schiff base carbon of saccharopine to form the carbinolamine intermediate. The same residue then serves as a general acid and donates a proton to the carbinolamine nitrogen to give the protonated carbinolamine. Collapse of the carbinolamine is then facilitated by the same group accepting a proton from the carbinolamine hydroxyl to generate alpha-Kg and lysine. The amine nitrogen is then protonated by the group that originally accepted a proton from the secondary amine of saccharopine, and products are released. In the reverse reaction direction, finite primary deuterium kinetic isotope effects were observed for all parameters with the exception of V2/K(NADH), consistent with a steady-state random mechanism and indicative of a contribution from hydride transfer to rate limitation. The pH dependence, as determined from the primary isotope effect on DV2 and D(V2/K(Lys)), suggests that a step other than hydride transfer becomes rate-limiting as the pH is increased. This step is likely protonation/deprotonation of the carbinolamine nitrogen formed as an intermediate in imine hydrolysis. The observed solvent isotope effect indicates that proton transfer also contributes to rate limitation. A concerted proton and hydride transfer is suggested by multiple substrate/solvent isotope effects, as well as a proton transfer in another step, likely hydrolysis of the carbinolamine. In agreement, dome-shaped proton inventories are observed for V2 and V2/K(Lys), suggesting that proton transfer exists in at least two sequential transition states.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号