首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Yoo HH  Chung IK 《Aging cell》2011,10(4):557-571
Human chromosome ends associate with shelterin, a six-protein complex that protects telomeric DNA from being recognized as sites of DNA damage. The shelterin subunit TRF2 has been implicated in the protection of chromosome ends by facilitating their organization into the protective capping structure and by associating with several accessory proteins involved in various DNA transactions. Here we describe the characterization of DDX39 DEAD-box RNA helicase as a novel TRF2-interacting protein. DDX39 directly interacts with the telomeric repeat binding factor homology domain of TRF2 via the FXLXP motif (where X is any amino acid). DDX39 is also found in association with catalytically competent telomerase in cell lysates through an interaction with hTERT but has no effect on telomerase activity. Whereas overexpression of DDX39 in telomerase-positive human cancer cells led to progressive telomere elongation, depletion of endogenous DDX39 by small hairpin RNA (shRNA) resulted in telomere shortening. Furthermore, depletion of DDX39 induced DNA-damage response foci at internal genome as well as telomeres as evidenced by telomere dysfunction-induced foci. Some of the metaphase chromosomes showed no telomeric signal at chromatid ends, suggesting an aberrant telomere structure. Our findings suggest that DDX39, in addition to its role in mRNA splicing and nuclear export, is required for global genome integrity as well as telomere protection and represents a new pathway for telomere maintenance by modulating telomere length homeostasis.  相似文献   

3.
4.
5.
6.
7.
8.
FUS/TLS is a nucleic acid binding protein that, when mutated, can cause a subset of familial amyotrophic lateral sclerosis (fALS). Although FUS/TLS is normally located predominantly in the nucleus, the pathogenic mutant forms of FUS/TLS traffic to, and form inclusions in, the cytoplasm of affected spinal motor neurons or glia. Here we report a yeast model of human FUS/TLS expression that recapitulates multiple salient features of the pathology of the disease-causing mutant proteins, including nuclear to cytoplasmic translocation, inclusion formation, and cytotoxicity. Protein domain analysis indicates that the carboxyl-terminus of FUS/TLS, where most of the ALS-associated mutations are clustered, is required but not sufficient for the toxicity of the protein. A genome-wide genetic screen using a yeast over-expression library identified five yeast DNA/RNA binding proteins, encoded by the yeast genes ECM32, NAM8, SBP1, SKO1, and VHR1, that rescue the toxicity of human FUS/TLS without changing its expression level, cytoplasmic translocation, or inclusion formation. Furthermore, hUPF1, a human homologue of ECM32, also rescues the toxicity of FUS/TLS in this model, validating the yeast model and implicating a possible insufficiency in RNA processing or the RNA quality control machinery in the mechanism of FUS/TLS mediated toxicity. Examination of the effect of FUS/TLS expression on the decay of selected mRNAs in yeast indicates that the nonsense-mediated decay pathway is probably not the major determinant of either toxicity or suppression.  相似文献   

9.
10.
Kanai Y  Dohmae N  Hirokawa N 《Neuron》2004,43(4):513-525
RNA transport is an important and fundamental event for local protein synthesis, especially in neurons. RNA is transported as large granules, but little is known about them. Here, we isolated a large RNase-sensitive granule (size: 1000S approximately) as a binding partner of conventional kinesin (KIF5). We identified a total of 42 proteins with mRNAs for CaMKIIalpha and Arc in the granule. Seventeen of the proteins (hnRNP-U, Pur alpha and beta, PSF, DDX1, DDX3, SYNCRIP, TLS, NonO, HSPC117, ALY, CGI-99, staufen, three FMRPs, and EF-1alpha) were extensively investigated, including their classification, binding combinations, and necessity for the "transport" of RNA. These proteins and the mRNAs were colocalized to the kinesin-associated granules in dendrites. The granules moved bidirectionally, and the distally directed movement was enhanced by the overexpression of KIF5 and reduced by its functional blockage. Thus, kinesin transports RNA via this granule in dendrites coordinately with opposite motors, such as dynein.  相似文献   

11.
Based on structural and functional similarities, translocated in liposarcoma/fusion (TLS/FUS) protein, Ewing sarcoma (EWS) protein and human TATA binding protein-associated factor (hTAF(II)68) have been grouped in the TLS-EWS-TAF(II)68 (TET) protein family. Translocations involving their genes lead to sarcomas. Polypyrimidine tract-binding protein-associated splicing factor (PSF), although not grouped in this family, presents structural and functional similarities with TET proteins and is involved in translocation leading to carcinoma. Beside their role in RNA metabolism, the precise cellular functions of these multifunctional proteins are not yet fully elucidated. We previously showed that both TLS/FUS and PSF display activities able to pair homologous DNA on membrane in an in vitro assay. In the present study, we address the question whether EWS and hTAF(II)68 also display pairing on membrane activities, and to a larger extent whether other proteins also exhibit such activity. We applied the pairing on membrane assay to 2-DE coupled to MS analysis for a global screening of DNA pairing on membrane activities. In addition to TLS/FUS and PSF, this test allowed us to identify EWS and hTAF(II)68, but no other proteins, indicating a feature specific to a protein family whose members share extensive structural similarities. This common activity suggests a role for TET proteins and PSF in genome plasticity control.  相似文献   

12.
13.
14.
Understanding the role of TDP-43 and FUS/TLS in ALS and beyond   总被引:1,自引:0,他引:1  
Dominant mutations in two DNA/RNA binding proteins, TDP-43 and FUS/TLS, are causes of inherited Amyotrophic Lateral Sclerosis (ALS). TDP-43 and FUS/TLS have striking structural and functional similarities, implicating alterations in RNA processing as central in ALS. TDP-43 has binding sites within a third of all mouse and human mRNAs in brain and this binding influences the levels and splicing patterns of at least 20% of those mRNAs. Disease modeling in rodents of the first known cause of inherited ALS-mutation in the ubiquitously expressed superoxide dismutase (SOD1)-has yielded non-cell autonomous fatal motor neuron disease caused by one or more toxic properties acquired by the mutant proteins. In contrast, initial disease modeling for TDP-43 and FUS/TLS has produced highly varied phenotypes. It remains unsettled whether TDP-43 and FUS/TLS mutants provoke disease from a loss of function or gain of toxicity or both. TDP-43 or FUS/TLS misaccumulation seems central not just to ALS (where it is found in almost all instances of disease), but more broadly in neurodegenerative disease, including frontal temporal lobular dementia (FTLD-U) and many examples of Alzheimer's or Huntington's disease.  相似文献   

15.
16.
The TLS/FUS gene is involved in a recurrent chromosomal translocation in human myxoid liposarcomas. We previously reported that TLS is a potential splicing regulator able to modulate the 5'-splice site selection in an E1A pre-mRNA. Using an in vitro selection procedure, we investigated whether TLS exhibits a specificity with regard to RNA recognition. The RNAs selected by TLS share a common GGUG motif. Mutation of a G or U residue within this motif abolishes the interaction of TLS with the selected RNAs. We showed that TLS can bind GGUG-containing RNAs with a 250 nm affinity. By UV cross-linking/competition and immunoprecipitation experiments, we demonstrated that TLS recognizes a GGUG-containing RNA in nuclear extracts. Each one of the RNA binding domains (the three RGG boxes and the RNA recognition motif) contributes to the specificity of the TLS.RNA interaction, whereas only RRM and RGG2-3 participate to the E1A alternative splicing in vivo. The specificity of the TLS.RNA interaction was also observed using as natural pre-mRNA, the G-rich IVSB7 intron of the beta-tropomyosin pre-mRNA. Moreover, we determined that RNA binding specificities of TLS and high nuclear ribonucleoprotein A1 were different. Hence, our results help define the role of the specific interaction of TLS with RNA during the splicing process of a pre-mRNA.  相似文献   

17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号