首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The blood-testis barrier (BTB) separates the seminiferous epithelium into the apical and basal compartments. The BTB has to operate timely and accurately to ensure the correct migration of germ cells, meanwhile maintaining the immunological barrier. Testin was first characterized from primary Sertoli cells, it is a secretory protein and a sensitive biomarker to monitor junctions between Sertoli and germ cells. Till now, the functions of testin on BTB dynamics and the involving mechanisms are unknown. Herein, testin acts as a regulatory protein on BTB integrity. In vitro testin knockdown by RNAi caused significant damage to the Sertoli cell barrier with no apparent changes in the protein levels of several major tight junction (TJ), adhesion junction, and gap junction proteins. Also, testin RNAi caused the diffusion of two TJ structural proteins, occludin and ZO-1, diffusing away from the Sertoli cell surface into the cytoplasm. Association and colocalization between ZO-1 and occludin were decreased after testin RNAi, examined by Co-IP and coimmunofluorescent staining, respectively. Furthermore, testin RNAi induced a dramatic disruption on the arrangement of actin filament bundles and a reduced F-actin/G-actin ratio. The actin regulatory protein ARP3 appeared at the Sertoli cell interface after testin RNAi without its protein level change, whereas overexpressing testin in Sertoli cells showed no effect on TJ barrier integrity. The above findings suggest that besides as a monitor for Sertoli-germ cell junction integrity, testin is also an essential molecule to maintain Sertoli–Sertoli junctions.  相似文献   

2.
Park CJ  Lee JE  Oh YS  Shim S  Nah WH  Choi KJ  Gye MC 《Theriogenology》2011,75(3):445-458
The expression of claudin-1 and -11, tight junctions (TJs) proteins was examined in immature and adult pheasant (Phasianus colchicus) testes. Claudin-1 and -11 cDNA were highly similar to those of human, mice, and chicken. Claudin-1 mRNA and protein (21 kDa) levels in immature testes were higher than those of adult testis. In immature testes until 6 weeks of age, Claudin-1 was found at contacts between adjacent Sertoli cells and between Sertoli cells and germ cells. In adult testis, Claudin-1 was found in early spermatocytes migrating the blood testis barrier (BTB). Blood vessels were positive for claudin-1. Claudin-11 mRNA and protein (21 kDa) increased during adulthood development of testis. In immature testis, Claudin-11 was found in apicolateral contacts between adjacent Sertoli cells, indicating its involvement in cell adhesion in immature testis. In adult testis, strong wavy Claudin-11 immunoreactivity was parallel to basal lamina at the basal part of seminiferous epithelium, indicating that Claudin-11 at the inter-Sertoli TJs may act as a structural element of the BTB. Weak Claudin-1 and -11 immunoreactivity at contacts between Sertoli cells to elongating/elongated spermatids, meiotic germ cells, and basal lamina suggests that they also participate in the cell-cell and cell-extracellular matrix adhesion in pheasant testis. Testosterone increased claudin-11 mRNA in testis organ culture and Sertoli cell primary culture, suggesting positive regulation of claudin-11 gene by androgen in Sertoli cells of pheasant testis. This is the first report on the claudins expression at BTB in avian testis.  相似文献   

3.
During spermatogenesis, preleptotene spermatocytes traverse the blood-testis barrier (BTB) in the seminiferous epithelium, which is reminiscent of viral pathogens breaking through the tight junctions of host epithelial cells. The process also closely resembles the migration of leukocytes across endothelial tight junctions to reach inflammation sites. Cell adhesion molecules of the immunoglobulin superfamily (e.g., JAM/CAR/nectin) participate in germ cell migration by conferring transient adhesion between Sertoli and germ cells through homophilic and heterophilic interactions. The same molecules also comprise the junctional complexes at the BTB. Interestingly, JAM/CAR/nectin molecules mediate virus uptake and leukocyte transmigration in strikingly similar manners. It is likely that the strategy used by viruses and leukocytes to break through junctional barriers is used by germ cells to open up the inter-Sertoli cell junctions. In associating these diverse cellular events, we highlight the "guiding" role of JAM/CAR/nectin molecules for germ cell passage. Knowledge on viral invasion and leukocyte transmigration has also shed insights into germ cell movement during spermatogenesis.  相似文献   

4.
When Sertoli cells were cultured in vitro on Matrigel-coated bicameral units, the assembly of the inter-Sertoli tight junction (TJ) permeability barrier correlated with an induction of occludin expression. Inclusion of a 22-amino acid peptide, NH(2)-GSQIYTICSQFYTPGGTGLYVD-COOH, corresponding to residues 209-230 in the second extracellular loop of rat occludin, at 0.2-4 microM into Sertoli cell cultures could perturb the assembly of Sertoli TJs dose-dependently and reversibly. This peptide apparently exerts its effects by interfering with the homotypic interactions of two occludin molecules between adjacent Sertoli cells at the sites of TJs, thereby disrupting TJs, which, in turn, causes a decline in transepithelial electrical resistance across the Sertoli cell epithelium. When similar experiments were performed using a 22-amino acid myotubularin peptide, NH(2)-TKVNERYELCDTYPALLAVPAN-COOH (residues 156-177), no effects on the assembly of inter-Sertoli TJs in vitro were noted. When a single dose of this synthetic occludin peptide was administered to adult rats intratesticularly at 1.5-10 mg/testis, germ cells began to deplete from the seminiferous epithelium within 8-16 days. By 27 days, virtually all tubules were devoid of germ cells. This antispermatogenic effect was reversible, because germ cells progressively repopulated the epithelium thereafter. Treated testes were indistinguishable from normal or control testes by 68 days post-occludin peptide treatment when assessed using histological analysis. In contrast, control rats receiving either no treatment, vehicle alone, or a 22-amino acid synthetic peptide of myotubularin displayed no changes in the testicular morphology at all time points. The occludin peptide-induced germ cell depletion was also accompanied by a disruption of the blood-testis barrier (BTB) when assessed by micropuncture techniques quantifying [(125)I]-BSA in rete testis fluid and seminiferous tubular fluid following i.v. administration of [(125)I]-BSA through the jugular vein. These results illustrate that the occludin peptide-induced disruption of the BTB may possibly affect the underlying adherens junctions, which causes premature release of germ cells from the epithelium and reversible infertility.  相似文献   

5.
The ectoplasmic specialization (ES) is a testis-specific, actin-based hybrid anchoring and tight junction. It is confined to the interface between Sertoli cells at the blood-testis barrier, known as the basal ES, as well as between Sertoli cells and developing spermatids designated the apical ES. The ES shares features of adherens junctions, tight junctions and focal contacts. By adopting the best features of each junction type, this hybrid nature of ES facilitates the extensive junction-restructuring events in the seminiferous epithelium during spermatogenesis. For instance, the alpha6beta1-integrin-laminin 333 complex, which is usually limited to the cell-matrix interface in other epithelia to facilitate cell movement, is a putative apical ES constituent. Furthermore, JAM-C and CAR, two tight junction integral membrane proteins, are also components of apical ES involving in spermatid orientation. We discuss herein the mechanisms that maintain the cross-talk between ES and blood-testis barrier to facilitate cell movement and orientation in the seminiferous epithelium.  相似文献   

6.
Spermatogenesis takes place in the seminiferous epithelium of the mammalian testis in which one type A1 spermatogonium (diploid, 2n) gives rise to 256 spermatids (haploid, 1n). To accomplish this, developing germ cells, such as preleptotene and leptotene spermatocytes, residing in the basal compartment of the seminiferous epithelium must traverse the blood-testis barrier (BTB) entering into the adluminal compartment for further development into round, elongating, and elongate spermatids. Recent studies have shown that the basement membrane in the testis (a modified form of extracellular matrix, ECM) is important to the event of germ cell movement across the BTB because proteins in the ECM were shown to regulate BTB dynamics via the interactions between collagens, proteases, and protease inhibitors, possibly under the regulation of cytokines. While these findings are intriguing, they are not entirely unexpected. For one, the basement membrane in the testis is intimately associated with the BTB, which represents the basolateral region of Sertoli cells. Also, Sertoli cell tight junctions (TJs) that constitute the BTB are present side-by-side with cell-cell actin-based adherens junctions (AJ, such as basal ectoplasmic specialization [ES]) and intermediate filament-based desmosome-like junctions. As such, the relative morphological layout between TJs, AJs, and desmosome-like junctions in the seminiferous epithelium is in sharp contrast to other epithelia where TJs are located at the apical portion of an epithelium or endothelium, furthest away from ECM, to be followed by AJs and desmosomes, which in turn constitute the junctional complex. For another, anchoring junctions between a cell epithelium and ECM found in multiple tissues, also known as focal contacts (or focal adhesion complex, FAC, an actin-based cell-matrix anchoring junction type), are the most efficient junction type that permits rapid junction restructuring to accommodate cell movement. It is therefore physiologically plausible, and perhaps essential, that the testis is using some components of the focal contacts to regulate rapid restructuring of AJs between Sertoli and germ cells when germ cells traverse the seminiferous epithelium. Indeed, recent findings have shown that the apical ES, a testis-specific AJ type in the seminiferous epithelium, is equipped with proteins of FAC to regulate its restructuring. In this review, we provide a timely update on this exciting yet rapidly developing field regarding how the homeostasis of basement membrane in the tunica propria regulates BTB dynamics and spermatogenesis in the testis, as well as a critical review on the molecular architecture and the regulation of ES in the seminiferous epithelium.  相似文献   

7.
Adjudin, an analogue of lonidamine, affects adhesion between Sertoli and most germ cells, resulting in reversible infertility in rats, rabbits and dogs. Previous studies have described the apical ectoplasmic specialization, a hybrid-type of Sertoli cell–elongating/elongated spermatid adhesive junction, as a key target of adjudin. In this study, we ask if the function of the blood–testis barrier which is constituted by co-existing tight junctions, desmosome-gap junctions and basal ectoplasmic specializations can be maintained when the seminiferous epithelium is under assault by adjudin. We report herein that administration of a single oral dose of adjudin to adult rats increased the levels of several tight junction and basal ectoplasmic specialization proteins during germ cell loss from the seminiferous epithelium. These findings were corroborated by a functional in vitro experiment when Sertoli cells were cultured on Matrigel?-coated bicameral units in the presence of adjudin and transepithelial electrical resistance was quantified across the epithelium. Indeed, the Sertoli cell permeability barrier was shown to become tighter after adjudin treatment as evidenced by an increase in transepithelial electrical resistance. Equally important, the blood–testis barrier in adjudin-treated rats was shown to be intact 2 weeks post-treatment when its integrity was monitored following vascular administration of inulin-fluorescein isothiocyanate which failed to permeate past the barrier and enter into the adluminal compartment. These results illustrate that a unique mechanism exists to maintain blood–testis barrier integrity at all costs, irrespective of the presence of germ cells in the seminiferous epithelium of the testis.  相似文献   

8.
In the seminiferous epithelium, morphologically diverse junctions mediate inter-Sertoli and Sertoli-germ cell adhesive contact, but the molecular composition of such junctions is not well known. At prototypical adherens junctions, proteins termed catenins bind to the intracellular domain of classic cadherins and regulate the strength of adhesion. Using a panel of monoclonal antibodies (5A7, 8D11, and 15D2), p120 catenin (p120) was localized in postnatal and adult rat testis cryosections and touch preparations by immunofluorescence. Immunoprecipitation of testis homogenates showed that at least four p120 isoforms were expressed from Postnatal Day 7 through adulthood. Both inter-Sertoli and Sertoli-germ cell junctions were p120-positive, however, individual p120 monoclonals were localized to specific junctions. The 5A7 and 8D11 antibodies colocalized with beta-catenin and plectin at inter-Sertoli and Sertoli-spermatocyte junctions. At inter-Sertoli junctions, p120 was juxtaposed to but did not colocalize with f-actin. Thus, p120 is likely a component of inter-Sertoli desmosome-like junctions. In contrast, the 15D2 monoclonal antibody specifically immunostained Sertoli-round spermatid and inter-Sertoli cell junctions in a dynamic pattern. From the time that round spermatids form to their differentiation into elongate spermatids, Sertoli-round spermatid 15D2 immunostaining cycled from a single mass to a curvilinear pattern, and finally to punctate structures scattered throughout the epithelium. This localization and stage-specific immunostaining pattern indicated that 15D2 recognized Sertoli-round spermatid desmosome-like junctions. Between Sertoli cells, 15D2 immunostained newly formed junctions (at Postnatal Days 21 through 43), but not mature junctions in the adult. From these data, we conclude that p120 is a component of most, if not all, desmosome-like junctions, and that desmosome-like junctions between different cell types contain a unique molecular composition.  相似文献   

9.
By differential display technique followed by RT-PCR and DNA sequence analyses, we isolated carcinoembryonic antigen-related cell adhesion molecule 6 (Ceacam6) and its novel spliced variant Ceacam6-Long (Ceacam6-L) from rat testis. Ceacam6-L mRNA was generated by retention of 67 nucleotide-length third intron in Ceacam6 gene. Ceacam6-L is a member of an immunoglobulin superfamily and encodes a protein of 50 kDa with a signal sequence at the N-terminus, one immunoglobulin (Ig)-like domain, three IgCAM domains, a transmembrane region, and a short intracellular region. Expression analyses by RT-PCR and Northern blot showed that Ceacam6-L was exclusively expressed in rat testis and first detectable at 5 wk during postnatal development of testis. We performed immunoblot analyses and immunohistochemistry using the anti-CEACAM6-L antibody. Confocal laser scanning microscopy revealed that CEACAM6-L was not present at blood-testis barrier junctions between Sertoli cells but localized at the interface between Sertoli cells and germ cells, possibly to work as an adhesion molecule in the apical compartment of the seminiferous epithelium. At stages VII-VIII, at which all of the elongated spermatids migrated to the luminal surface of the seminiferous tubules, CEACAM6-L was found to locate at the concave side of elongated spermatid heads, following the curvature of their sickle-shaped nuclei, suggesting that CEACAM6-L might be involved in the anchoring of spermatids to Sertoli cells and spermiation. We concluded that CEACAM6-L might be a novel adhesion molecule constructing the apical ectoplasmic specialization in testis.  相似文献   

10.
During spermatogenesis in mammalian testes, junction restructuring takes place at the Sertoli–Sertoli and Sertoli–germ cell interface, which is coupled with germ cell development, such as cell cycle progression, and translocation of the germ cell within the seminiferous epithelium. In the rat testis, restructuring of the blood–testis barrier (BTB) formed between Sertoli cells near the basement membrane and disruption of the apical ectoplasmic specialization (apical ES) between Sertoli cells and fully developed spermatids (spermatozoa) at the luminal edge of the seminiferous epithelium occur concurrently at stage VIII of the seminiferous epithelial cycle of spermatogenesis. These two processes are essential for the translocation of primary spermatocytes from the basal to the apical compartment to prepare for meiosis, and the release of spermatozoa into the lumen of the seminiferous epithelium at spermiation, respectively. Cytokines, such as TNFα and TGFβ3, are present at high levels in the microenvironment of the epithelium at this stage of the epithelial cycle. Since these cytokines were shown to disrupt the BTB integrity and germ cell adhesion, it was proposed that some cytokines released from germ cells, particularly primary spermatocytes, and Sertoli cells, would induce restructuring of the BTB and apical ES at stage VIII of the seminiferous epithelial cycle. In this review, the intricate role of cytokines and testosterone to regulate the transit of primary spermatocytes at the BTB and spermiation will be discussed. Possible regulators that mediate cytokine-induced junction restructuring, including gap junction and extracellular matrix, and the role of testosterone on junction dynamics in the testis will also be discussed.  相似文献   

11.
In the seminiferous tubule of the mammalian testis, one type A1 spermatogonium (diploid, 2n) divides and differentiates into 256 spermatozoa (haploid, n) during spermatogenesis. To complete spermatogenesis and produce approximately 150 x 10(6) spermatozoa each day in a healthy man, germ cells must migrate progressively across the seminiferous epithelium yet remain attach to the nourishing Sertoli cells. This active cell migration process involves precisely controlled restructuring events at the tight (TJ) and anchoring junctions at the cell-cell interface. While the hormonal events that regulate spermatogenesis by follicle-stimulating hormone and testosterone from the pituitary gland and Leydig cells, respectively, are known, less is known about the mechanism(s) that regulates junction restructuring during germ cell movement in the seminiferous epithelium. The relative position of tight (TJs) and anchoring junctions in the testis is of interest. Sertoli cell TJs that constitute the blood-testis barrier (BTB) are present side by side with anchoring junctions and are adjacent to the basement membrane. This intimate physical association with the TJs, the anchoring junctions and the basement membrane (a modified form of extracellular matrix, ECM) suggests a role for the ECM in the junction dynamics of the testis. Indeed, evidence is accumulating that ECM proteins are crucial to Sertoli cell TJ dynamics. In this review, we discuss the pivotal role of tumor necrosis factor alpha (TNFalpha) on BTB dynamics via its effects on the homeostasis of ECM proteins. In addition, discussion will also be focused on the novel findings regarding the role of non-basement-membrane-associated ECM proteins and components of focal adhesion (a cell-matrix anchoring junction type) in the regulation of junction dynamics in the testis.  相似文献   

12.
13.
Though roles of β-catenin signaling during testis development have been well established, relatively little is known about its role in postnatal testicular physiology. Even less is known about its role in post-meiotic germ cell development and differentiation. Here, we report that β-catenin is highly expressed in post-meiotic germ cells and plays an important role during spermiogenesis in mice. Spermatid-specific deletion of β-catenin resulted in significantly reduced sperm count, increased germ cell apoptosis and impaired fertility. In addition, ultrastructural studies show that the loss of β-catenin in post-meiotic germ cells led to acrosomal defects, anomalous release of immature spermatids and disruption of adherens junctions between Sertoli cells and elongating spermatids (apical ectoplasmic specialization; ES). These defects are likely due to altered expression of several genes reportedly involved in Sertoli cell-germ cell adhesion and germ cell differentiation, as revealed by gene expression analysis. Taken together, our results suggest that β-catenin is an important molecular link that integrates Sertoli cell-germ cell adhesion with the signaling events essential for post-meiotic germ cell development and maturation. Since β-catenin is also highly expressed in the Sertoli cells, we propose that binding of germ cell β-catenin complex to β-catenin complex on Sertoli cell at the apical ES surface triggers a signaling cascade that regulates post-meiotic germ cell differentiation.  相似文献   

14.
Summary Different types of cell contacts in the seminiferous tubules have been studied electron microscopically in some laboratory and domestic mammals. Specialized inter-Sertoli cell contacts are always present. Most of them show a narrow — partly perhaps closed — intercellular space at some distance from the basement membrane, above the spermatogonia but below the spermatocytes. Fibrillar material is present in the cytoplasm near the junction as well as subsurface cisterns of the endoplasmic reticulum. Two main types of narrow junctions and one wide junction are described. These junctions are interpreted as devices for adhesion and perhaps intercommunication between the basal parts of the Sertoli cells. The narrow junctions are also considered to impede the intercellular transport of substances to spermatocytes and spermatides and into the luminal fluid. This interpretation emphasizes the importance of the Sertoli cells as nurse cells for the spermatocytes and spermatids.Numerous fine branches of the Sertoli cells surround spermatocytes, spherical spermatids, and true residual bodies, and others protrude deeply into the postnuclear cytoplasm of elongated spermatids. The plasma membrane of developing spermatids turns thicker and becomes a distinct unit membrane. Dense, fibrillar material and long, narrow subsurface cisterns are always present in the Sertoli cells along their border to the acrosomal area of the elongated spermatids. This arrangement is interpreted as an attachment device of hemidesmosomal character.Intercellular bridges are considered to interconnect as many as four primary spermatocytes or sixteen spermatids.  相似文献   

15.
The elucidation of how individual components of the Sertoli cell junctional complexes form and are dismantled to allow not only individual cells but whole syncytia of germinal cells to migrate from the basal to the lumenal compartment of the seminiferous epithelium without causing a permeability leak in the blood-testis barrier is amongst the most enigmatic yet, challenging and timely questions in testicular physiology. The intriguing key event in this process is how the barrier modulates its permeability during the periods of formation and dismantling of individual Sertoli cell junctions. The purpose of this review is therefore to first provide a reliable account on the normal formation, maintenance and dismantling process of the Sertoli cells junctions, then to assess the influence of the expression of their individual proteins, of the cytoskeleton associated with the junctions, and of the lipid content in the seminiferous tubules on the regulation of the their permeability barrier function. To help focus on the formation and dismantling of the Sertoli cell junctions, several considerations are based on data gleaned not only from rodents but from seasonal breeders as well because these animal models are characterized by exhaustive periods of junction assembly during development and the onset of the seasonal re-initiation of spermatogenesis as well as by an extensive junction dismantling period at the beginning of testicular regression, something unavailable in normal physiological conditions in continual breeders. Thus, the modulation of the permeability barrier function of the Sertoli cell junctions is analyzed in the physiological context of the blood-epidydimis barrier and in particular of the blood-testis barrier rather than in the context of a detailed account of the molecular composition and signalisation pathways of cell junctions. Moreover, the considerations discussed in this review are based on measurements performed on seminiferous tubule-enriched fractions gleaned at regular time intervals during development and the annual reproductive cycle.  相似文献   

16.
The development and modulation of Sertoli cell junctions was studied in newborn and adult mink during the active and inactive spermatogenic phases. The techniques used were electron microscopy of freeze-fractured replicas and thin sections of tissues infused with horseradish peroxidase as a junction permeability tracer. In the newborn, freeze-fractured developing junctions had either spherical or fibrillar particles. In addition, junctional domains where particles were associated preferentially with the E-face, and others where particles were associated preferentially with the P-face, were found developing either singly or conjointly within a given membrane segment, thus yielding a heterogeneous junctional segment. Coincidently with the development of a tubular lumen and the establishment of a competent blood-testis barrier, junctional strands were composed primarily of particulate elements associated preferentially with the E-face. In adult mink during active spermatogenesis, cell junctions were found on the entire lateral Sertoli cell plasma membrane from the basal to the luminal pole of the cell. In the basal third of the Sertoli cell, membranous segments that faced a spermatogonium or a migrating spermatocyte displayed forming tight, gap, and adherens junctions. In the middle third, abutting membrane segments localized above germ cells were involved in continuous zonules and in adherens junctions. In the apical or luminal third, the zonules were discontinuous, and the association of junctional particles with the E-face furrow was lost. Gap junctions increased in both size and numbers. Junctional vesicles that appeared as annular gap and tight-junction profiles in thin sections or as hemispheres in freeze-fracture replicas were present. Reflexive tight and gap junctions were formed through the interaction of plasma membrane segments of the same Sertoli cell. Internalized junctional vesicles were also present in mature spermatids. During the inactive spermatogenic phase, cell junctions were localized principally in the basal third of the Sertoli cell; junctional strands resembled those of the newborn mink. During the active spermatogenic phase, continuous zonules were competent in blocking passage of the protein tracer. During the inactive phase the blood-testis barrier was incompetent in blocking entry of the tracer into the seminiferous epithelium. It is proposed that modulation of the Sertoli cell zonules being formed at the base and dismantled at the apex of the seminiferous epithelium follows the direction of germ cell migration and opposes the apicobasal direction of junction formation reported for most epithelia.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

17.
Summary In this paper we present evidence for the presence of actin-related junctions between neighboring Sertoli cells and between Sertoli cells and spermatids in the testis of the guppy (Poecilia reticulata). In the guppy, spermatogenesis occurs in spermatocysts that are lined by a simple squamous to cuboidal epithelium formed of Sertoli cells. At a certain stage of differentiation, elongate spermatids occur in Sertoli cell recesses in the apical surface of Sertoli cells. When evaluated by electron microscopy, junctions occur between Sertoli cells and spermatids situated in the recesses. In these regions, obvious linkages occur between the plasma membrane of Sertoli cell recesses and the adjacent spermatids. Moreover, large concentrations of microfilaments occur in the Sertoli cell cytoplasm immediately underlying the crypts. Also, junctional complexes are apparent between neighboring Sertoli cells near the apical surface of the epithelium. These complexes consist of microfilament-related components (probably contributing to both tight and adhesion junctions), which occur closest to the lumen, and intermediate-filament related desmosomes, which occur more basally. In fixed frozen sections of guppy testis, probes for filamentous actin (rhodamine phalloidin) and myosin II (polyclonal antisera raised against human platelet myosin II) react with function regions between neighboring Sertoli cells and between Sertoli cells and spermatids. We conclude that actin-related junctions occur at both these sites and that the actin networks have contractile properties because they contain myosin II.  相似文献   

18.
In different epithelia, cell membranes contacting one another form intercellular junctional complexes including tight, adherens and gap junctions, which could mutually influence the expression of each other. We have here investigated the role of Cx43 in the control of adherens and tight junction proteins (N-cadherin, β-catenin, occludin and ZO-1) by using conditional Sertoli cell knockout Cx43 (SCCx43KO−/−) transgenic mice and specific anti-Cx43 siRNA. Gap junction coupling and Cx43 levels were reduced in SCCx43KO−/− as compared to Wild-type testes. Ultrastructural analysis revealed disappearance of gap junctions, the presence of tight and adherens junctions and persistent integrity of the blood-testis barrier in SCCx43KO−/− testis. Occludin, N-cadherin and β-catenin levels were enhanced in SCCx43KO−/− mice as compared to Wild-type animals whereas ZO-1 levels were reduced. Cx43 siRNA blocked gap junction functionality in Sertoli cells and altered tight and adherens protein levels. The Cx43 control of tight and adherens junctions appeared channel-dependent since gap junction blockers (glycyrrhetinic acid and oleamide) led to similar results. These data suggest that the control of spermatogenesis by Cx43 may be mediated through Sertoli cell Cx43 channels, which are required, not only in cell/cell communication between Sertoli and germ cells, but also in the regulation of other junctional proteins essential for the blood-testis barrier.  相似文献   

19.
An in vitro culture system using Sertoli cells was employed to assess the expression of component genes pertinent to occluding junctions (OJ) (such as zonula occludens-1, ZO-1), anchoring junctions (AJ) (such as N-cadherin and beta-catenin), and communicating gap junctions (GJ) (such as connexin 33, Cx33) when they are being formed in vitro. Freshly isolated Sertoli cells from 20-day-old rats with a purity of greater than 90% were cultured either at low- (2.5 x 10(4) cells/cm(2)) or high-cell density (0.6 x 10(6) cells/cm(2)) on Matrigel-coated dishes for 7 days in vitro to allow the establishment of specialized junctions. In low cell density Sertoli cell cultures, specialized OJ such as tight junctions did not form during the entire culture period when assessed by the transepithelial electrical resistance (TER). In high cell density cultures, there was an increase in ZO-1 expression in days 1 to 3 preceding the establishment of tight junctions by day 4. When Sertoli cells were cultured at both cell densities, there was a transient increase in Sertoli cell N-cadherin expression, which peaked by days 4-5, suggesting the time course for the establishment of AJ may overlap with the OJ. A significant increase in the expression of Sertoli cell beta-catenin was also detected by days 5-7 in the high but not low cell density cultures. The expression of Cx33 was also enhanced at days 4-5 in both high and low density cultures. These results suggest that OJ, AJ, and GJ are formed between Sertoli cells in high density cultures, whereas OJ cannot be formed in low density cultures. A full-length cDNA clone coding for rat testicular beta-catenin was also isolated. The deduced amino acid sequence of rat beta-catenin yielded a 781 amino acid polypeptide which displayed a 99.9% identity with the mouse homolog. Conditioned medium of germ cells induced a dose-dependent stimulation on Sertoli cell beta-catenin expression, suggesting germ cells may affect the N-cadherin/beta-catenin-mediated signal transduction pathway. In summary, this study illustrates several target genes can be used as molecular markers to monitor the inter-Sertoli junction formation. This system should be applicable to screen new male contraceptives in vitro targeted at the interference of junction formation by disrupting the timely expression of genes necessary for junction establishment and/or maintenance.  相似文献   

20.
In order to characterize trout Sertoli cells and germ cells obtained after testis dissociation and cell separation, we have studied their morphology, ultrastructure, survival, and ability to express differentiated activities in primary cultures. After dissociation, the fine structure of Sertoli cells does not differ from that observed in situ and only minor changes are shown for at least 13 days. Until they are flattened in a monolayer, they keep the ability to retain germ cells on their surface. When flattened, some of them are able to divide. At the opposite of meiotic germ cells, spermatogonia can develop independently of Sertoli cells. They are able to proliferate during at least 10 days. Spermatocytes and spermatids are obtained as single cells and multinucleated giant cells (symplasts). In the absence of somatic cells, their maximal viability is approximately 5 days, whereas spermatocytes adhering to Sertoli cells can survive at least 10–12 days, provided trout lipoproteins are present. Spermatocytes are able to differentiate to spermatids, although this process is impaired for some ceils. The adhesion of spermatogonia and spermatocytes to Sertoli cells is specific, mediated by desmosome-like junctions and favored by lipoproteins. These data are compared to what is known in mammals and in amphibians.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号