首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A sterile glucose-mineral salts broth was inoculated with conidia of Penicillium rubrum P-13 and P-3290. Radiolabeled compounds were added to some cultures, these being incubated quiescently at 28° C for 14 days. Other stationary cultures were grown for 21 days, received labeled compounds, and were then grown for 5 more days. The remaining cultures were inoculated with 72-h-old mycelial pellets, received labeled materials and were incubated with shaking for 60 h. Rubratoxin was resolved by thin-layer chromatography. Labeled [114C]acetate, [1,514C]citrate, [214C]malonate, [114C]glucose, [U14C]glucose or [114C]hexanoate were incorporated into rubratoxins A and B by P. rubrum 3290 and into rubratoxin B by P. rubrum 13. Incorporation of [114C]acetate and [214C]malonate increased when exogenous unlabeled acetate, malonate, pyruvate, or phosphoenol-pyruvate was added. Acetate incorporation was influenced by cultural conditions, attaining maximum amounts in quiescent cultures which received labeled acetate after 21 days of incubation. Acetate incorporation in shake cultures was enhanced by reduced nicotinamide adenine dinucleotide phosphate (NADPH) and by unlabeled exogenous citrate.Abbreviations GMS glucose-mineral salts - RCM replacement culture medium - TCA tricarboxylic acid - PEP phosphoenolpyruvate - RIC relative isotopic content - PI percent incorporation  相似文献   

2.
 The effects of high manganese [180 μM Mn(II)] concentration and addition of malonate (10 mM) were studied in nitrogen-limited cultures of the white-rot fungus, Phlebia radiata. High levels of manganese alone showed no systematic influence on the production of lignin peroxidase (LiP), manganese peroxidase (MnP) or laccase. In contrast, high-manganese containing cultures of P. radiata showed lower efficiency in the mineralization of 14C-ring-labelled synthetic lignin ([14C]DHP). The highest rates of mineralization, up to 30% in 18 days, were reached in low- manganese(2 μM)-containing cultures when malonate was omitted. Degradation of [14C]DHP was substantially restricted by the addition of malonate. The combination of high manganese and malonate resulted in increased levels of MnP and laccase production, whereas LiP production was repressed. Also, the profiles of expression of the MnP and LiP isozymes were affected. A new P. radiata MnP isozyme of pI 3.6 (MnP3) was found in the high-manganese cultures. Addition of malonate alone caused some repression but also stimulating effects on distinctive MnP and LiP isozymes. The results indicate that manganese and malonate are individual regulators of MnP and LiP expression and have different roles in the degradation of lignin by P. radiata. Received: 30 August 1995/Received revision: 10 January 1996/Accepted: 12 February 1996  相似文献   

3.
Malonate exerted a stronger inhibitory effect on brefeldin A production than on mycelia growth in cultures ofCurvularia lunata especially at inhibitory levels of 100 to 200 mm. The extent of 200 mm malonate inhibition of growth and brefeldin A production was greater in cultures treated with malonate prior to inoculation than those treated following 5 days after inoculation. Maleate at levels of 40 to 220 mm activated brefeldin A formation in cultures though exerting variable effects on mycelia growth.  相似文献   

4.
Carotenoid accumulation in Haematococcus pluvialis in mixotrophic growth   总被引:5,自引:0,他引:5  
The microalga Haematococcus pluvialis was cultured with NaNO3 from 0 to 1 g l–1 and optimal growth was obtained at 0.15 g l–1. Sodium acetate and malonate (from 0 to 2% w/v) enhanced the accumulation of astaxanthin three and five times higher, respectively, than in autotrophic control cultures. However, high concentration of those compounds strongly inhibited growth. The ratio chlorophyll a/total carotenoids was a good indicator of the extent of nitrogen deficiency in the cells.  相似文献   

5.
A sterile glucose-mineral salts broth was fortified with equimolar concentrations (10-3 M) of various organic acids and intermediates in the tricarboxylic acid cycle. Appropriate media were neutralized with 2 N NaOH, inoculated with spore suspensions or mycelial pellets ofPenicillium rubrum and incubated quiescently for 14 days or with shaking for 5 days. Rubratoxins were recovered from culture filtrates by ether extraction and resolved by thin-layer chromatography. Toxin formation in quiescent cultures was enhanced by malonate but was not markedly affected by ethyl malonate, shikimate, and acetate or by isocitrate or oxaloacetate added in the presence of malonate. Citrate, cis-aconitate, -ketoglutarate, succinate, fumarate, and malonate when present in the medium alone or in conjunction with malonate caused a 15 to 50% reduction in rubratoxin formation. Acetyl-CoA (10-5 M/flask) caused an 80% increase in toxin yield. Rubratoxin formation in shake cultures was not affected by succinate and malonate. All other combinations of intermediates and malonate caused a 10 to 50% reduction in toxin formation. At 10–3 M, citrate enhanced rubratoxin B formation and stimulated rubratoxin A production by as much as 100%. Above 10–3 M, citrate inhibited toxin production. Incorporation of [2-14C]acetate into rubratoxin was enhanced by malonate, fumarate, and malonate. A combination of pyruvate and malonate produced a 40% increase in [2-14C]acetate incorporation into rubratoxin. The highest reduction of labeled acetate incorporation (36%) was caused by succinate or -ketoglutarate combined with malonate.  相似文献   

6.
Malonate was studied for its effect on succinate dehydrogenase activity and conidiation. It Was found to stimulate the succinate dehydrogenase activity and also conidiation of Neurospora crassa. The efficiency of sucrose metabolization for cellular synthesis was improved in malonate supplemented cultures. High Concentration (0.5 M) had a distinct toxic effect on conidiation and economic efficiency. Teratological structures were observed at 0.5 M malonate concentration. A stimulation of the glyoxylate cycle is considered to be one of the factors responsible for the conidiogenic effect.  相似文献   

7.
Malonate decarboxylase of Malonomonas rubra is a complex enzyme system involving cytoplasmic and membrane-bound components. One of these is a biotin-containing protein of Mr 120'000, the location of which in the cytoplasm was deduced from the following criteria: (i) If the cytoplasm was incubated with avidin and the malonate decarboxylase subsequently completed with the membrane fraction the decarboxylase activity was abolished. The corresponding incubation of the membrane with avidin, however, was without effect. (ii) Western blot analysis identified the single biotin-containing polypeptide of Mr 120'000 within the cytoplasm. (iii) Transmission electron micrographs of immuno-gold labeled M. rubra cells clearly showed the location of the biotinyl protein within the cytoplasm, whereas the same procedure with Propionigenium modestum cells indicated the location of the biotin enzyme methylmalonyl-CoA decarboxylase in the cell membrane. The biotin-containing protein of the M. rubra malonate decarboxylase enzyme system was not retained by monomeric avidin-Sepharose columns but could be isolated with this column in a catalytically inactive form in the presence of detergents. If the high binding affinity of tetrameric avidin towards biotin was reduced by destructing part of the tryptophan residues by irradiation or oxidation with periodate, the inhibition of malonate decarboxylase by the modified avidin was partially reversed with an excess of biotin. Attempts to purify the biotin protein in its catalytically active state using modified avidin columns were without success.  相似文献   

8.
Abstract: Alterations in the glutathione system and impairment in energy metabolism have both been implicated in the loss of dopamine neurons in Parkinson's disease. This study examined the importance of cellular glutathione and the involvement of oxidative stress in the loss of mesencephalic dopamine and GABA neurons due to inhibition of energy metabolism with malonate, the reversible, competitive inhibitor of succinate dehydrogenase. Consistent with previous findings, exposure to malonate for 24 h followed by 48 h of recovery caused a dose-dependent loss of the dopamine population with little effect on the GABA population. Toxicity was assessed by simultaneous measurement of the high-affinity uptake of [3H]dopamine and [14C]GABA. Total glutathione content in rat mesencephalic cultures was decreased by 65% with a 24-h pretreatment with 10 µM buthionine sulfoxamine. This reduction in glutathione level greatly potentiated damage to both the dopamine and GABA populations and removed the differential susceptibility between the two populations in response to malonate. These findings point to a role for oxidative stress occurring during energy impairment by malonate. Consistent with this, several spin-trapping agents, α-phenyl-tert-butyl nitrone and two cyclic nitrones, MDL 101,002 and MDL 102,832, completely prevented malonate-induced damage to the dopamine neurons in the absence of buthionine sulfoxamine. The spin-trapping agents also completely prevented toxicity to both the dopamine and GABA populations when cultures were exposed to malonate after pretreatment with buthionine sulfoxamine to reduce glutathione levels. Counts of tyrosine hydroxylase-positive neurons verified enhancement of cell loss by buthionine sulfoxamine plus malonate and protection against cell loss by the spin-trapping agents. NMDA receptors have also been shown to play a role in malonate-induced dopamine cell loss and are associated with the generation of free radicals. Consistent with this, toxicity to the dopamine neurons due to a 1-h exposure to 50 µM glutamate was attenuated by the nitrone spin traps. These findings provide evidence for an oxidative challenge occurring during inhibition of energy metabolism by malonate and show that glutathione is an important neuroprotectant for midbrain neurons during situations when energy metabolism is impaired.  相似文献   

9.
The extracellular level of brefeldin A fluctuates with the length of malonate inhibition. Following treatment with malonate, myeelial multiplication as opposed to brefeldin A formation, was preferentially increased in the maleate, fumarate, succinate, citrate, methyl palmitate and glucose replacement cultures. Competitive maleate-malonate, fumarate — malonate, succinate — malonate and citrate-mal-onate-inhibited replacement cultures gave significantly higher mycelial and brefeldin A yields than the sole malonate-inhibited replacement cultures.  相似文献   

10.
Summary Fifteen organic acids were examined for their abilities to support the growth and anthocyanin accumulation by suspension cultures of wild carrot (Daucus carota L.) using ammonium as the sole nitrogen source. Glutarate, adipate, pimelate, azelate, cinnamate, and phthalate were toxic to the culture. They prevented growth and anthocyanin accumulation at 5 mM or less in media that were otherwise adequate for growth. Succinate, fumarate, malate, α-ketoglutarate, glutamate, maleate, malonate, tartarate, and citrate all supported growth and anthocyanin accumulation but in varying amounts. The growth achieved in medium containing 20 mM acid was higher at an initial pH of 5.5 than at an initial pH of 4.5. The growth achieved was dependent on the organic acid used, its concentration, and the initial pH of the medium. When growth occurred the final pH was higher than the initial pH with most of the acids. Anthocyanin accumulation was greatest with succinate at 14 to 20 mM at an initial pH of 4.2 or 4.3 and declined when the initial pH was above 4.3. These studies were supported by grants from General Foods Corporation and the W. Alton Jones Foundation.  相似文献   

11.
Rhizobium japonicum 61-A-101 grew and fixed nitrogen more effectively on media containing an organic acid and a pentose sugar than on media containing only one of these carbon sources. Peak specific activities in the range 10–15 nmol C2H4 · h-1 · mg protein-1 were found for these organisms in a spot of growth about 1 cm diameter on agar surfaces exposed to air. Increasing concentrations of the organic acids (succinate or malonate) in a medium containing arabinose resulted in longer lasting activity. The inclusion of a third carbon source, glycerol, gave activity which remained at the maximum from about the 8 to the 18 day after inoculation although no growth of the bacteria occurs during the last 8 or 10 days. At low concentration of organic acid l-arabinose was a much better carbon source for supporting nitrogenase activity of these organisms that the d-form. Both organic acids affected the morphology of the bacteria. Higher concentrations, especially of malonate, gave swollen and distorted cells. When bacteria growing on organic acid-containing agar plates were suspended and plated after appropriate dilution on yeast extract — mannitolglycerol agar there was heterogeneity of colony form, with up to 90% microcolonies after growth on high malonate concentrations. The effects of malonate may be correlated with characteristics of the bacteroid form inside the nodule which contains relatively high concentrations of organic acids, especially malonate.  相似文献   

12.
丙二酸是一种重要的有机二元羧酸,其应用价值遍及化工、医药、食品等领域。本文以大肠杆菌为底盘细胞,过表达了ppc、aspC、panD、pa0132、yneI和pyc基因,成功构建了丙二酸合成重组菌株大肠杆菌BL21(TPP)。该菌株在摇瓶发酵条件下,丙二酸产量达到0.61 g/L。在5 L发酵罐水平,采用间歇补料的方式丙二酸的积累量达3.32 g/L。本研究应用了融合蛋白技术,将ppc和aspC、pa0132和yneI分别进行融合表达,构建了工程菌BL21(SCR)。在摇瓶发酵水平,该菌株丙二酸的积累量达到了0.83 g/L,较出发菌株BL21(TPP)提高了36%。在5 L发酵罐中,工程菌BL21(SCR)的丙二酸产量最高达5.61 g/L,较出发菌株BL21(TPP)提高了69%。本研究实现了丙二酸在大肠杆菌中的生物合成,为构建丙二酸合成的细胞工厂提供了理论依据和技术基础,同时也对其他二元羧酸的生物合成具有启发和指导意义。  相似文献   

13.
Nutritional factors controlling derepression of nitrogenase activity in Parasponia-Rhizobium strain ANU 289 were studied in stationary and agitated liquid cultures. Altering type and/or concentrations of the constituents of the derepression medium in respect of carbon and nitrogen sources influenced both derepression kinetics as well as the maximal level of activity. Hexose sugars and disaccharides stimulated nitrogenase activity three to six-fold compared to pentose sugars. Activity was also modulated by combining sugars with some organic acids such as succinate, fumarate and pyruvate but not with others (e.g. -ketoglutarate, malate, malonate). Of the range of nitrogen sources tested, either casamino acids (at 0.05%, but not at 0.1%), glutamate, proline or to a lesser extent histidine (each at 5 mM N) supported significant derepression of nitrogenase activity. Notably glutamine, urea, alanine, ammonium sulfate, nitrate, nitrite (each at 5 mM N) and yeast extract (0.05%) failed to derepress or support nitrogenase activity. Ammonium (5 mM) abolished established nitrogenase activity of rapidly agitated cultures within 15 h after addition. This inhibitory effect was alleviated by the addition of methionine sulfoximime (10 mM). Thus, in view of strong glutamine effects, ammonium repression appears to be mediated by glutamine and not by ammonium itself.Abbreviations HEPES [4-(2-hydroxyethyl)-1-piperazine-ethane; sulfonic acid] - MOPS [3-(N-morpholino) propane sulphonic acid] - MSX Methionine sulfoximine  相似文献   

14.
From anoxic marine sediment samples, new anaerobic, microaerotolerant, Gram-negative, non-sporeforming bacteria were isolated which grew in mineral medium with malonate as sole source of carbon and energy. Cells were motile thin rods, often forming large aggregates. Malonate was decarboxylated to acetate with concomitant growth yields of 1.9–2.1 g dry cell matter per mol malonate degraded. Fumarate and malate were fermented to succinate and CO2. No other substrates were used. No inorganic electron acceptors were reduced. At least 150 mM NaCl was required for growth with either substrate. High amounts of a periplasmic cytochrome c were detected, as well as small amounts of a membrane-bound cytochrome b. All enzymes of the citric acid cycle were found to be present. The DNA base ratio was 48.3 mol% guanine plus cytosine. Since this new bacterium cannot be affiliated with any of the known genera and species, a new genus and species, Malonomonas rubra is proposed.  相似文献   

15.
A defined minimal medium was developed for an axenic strain of Peridinium (Indiana Culture No. LB 1336). Thiamine, biotin, and vitamin B12 did not stimulate growth. Of 15 organic carbon sources tried in light, fructose, galactose, glucose, malate, malonate, and pyruvate enhanced growth but propionate retarded growth. In dark-grown cultures only media with succinate permitted growth above the survival level. Stimulation of growth by organic carbon sources was markedly pH dependent.  相似文献   

16.
A total of 1949 cell cultures was tested for contamination with mollicutes by cultivation on and in mycoplasma media, 25.7% of the cell cultures was positive, 243 strains of Mycoplasma hyorhinis were isolated. Furthermore, mainly M. arginini and M. orale were detected, less often Acholeplasma laidlawii, M. fermentans and M. pneumoniae. Optimal conditions for isolation were discussed. About one third of 217 hybridoma cultures and two third of 57 myeloma cultures proved to be contaminated, all with M. hyorhinis. A DNA fluorochrome staining method (DAPI-test) was compared to cultivation for testing 1039 cell cultures. The efficiency of the DAPI-test could be estimated to be about 96% that of cultivation about 89%, but cultivation is more specific. The highest assurance is obtained when both methods are applied.  相似文献   

17.
A cultivation system with simultaneous growth of six bacterial cultures in separate bags in dialysis culture was developed. In a medium with no added carbon source (one half concentrated Hoagland solution, water deionized and distilled), cell number ofRhizobium japonicum increased during a 7 day period by a factor of 35, whereas the number ofEnterobacter aerogenes cells decreased to one half. With a concentration of 100 nM succinate as an additional carbon source in the inflow,Rhizobium japonicum 61-A-101 cell number increased by a factor of 50 during an 8 day period, whereas cell number ofEnterobacter cloacae NCTC 10005 only doubled and ofEnterobacter aerogenes NCTC 10006 decreased. At 10 mM concentration of succinate in the inflow, doubling time the twoEnterobacter strains was about 12 h, compared to about 24 h for theRhizobium japonicum strain. Varying the succinate concentration from 10 mM to 100 nM in the inflow,Rhizobium japonicum 61-A-101 surpassed theEnterobacter aerogenes strains in the growth rate between 1 mM and 100 M succinate in the inflowing medium. Three otherRhizobium japonicum strains (fix+ and fix-) did grow with a similar rate as strain 61-A-101 at very low concentrations of substrate. Growth rates for the strains were confirmed by protein data per culture. Growing in competition with twoPseudomonas strains,Rhizobium japonicum RH 31 Marburg (fix-) did overgrow alsoPseudomonas fluorescens, was however outgrown byPseudomonas putida. In utilizing low concentrations of a14C labelled organic acid (malonate), three strains ofRhizobium japonicum left 2–4 times smaller amounts of14C in the medium than two species ofPseudomonas and two species ofArthrobacter.On sabbatical leave at ANU  相似文献   

18.
Anaerobic decarboxylation of malonate to acetate was studied withSporomusa malonica, Klebsiella oxytoca, andRhodobacter capsulatus. WhereasS. malonica could grow with malonate as sole substrate (Y=2.0 g·mol–1), malonate decarboxylation byK. oxytoca was coupled with anaerobic growth only in the presence of a cosubstrate, e.g. sucrose or yeast extract (Y s =1.1–1.8 g·mol malonate–1).R. capsulatus used malonate anaerobically only in the light, and growth yields with acetate and malonate were identical. Malonate decarboxylation in cell-free extracts of all three bacteria was stimulated by catalytic amounts of malonyl-CoA, acetyl-CoA, or Coenzyme A plus ATP, indicating that actually malonyl-CoA was the substrate of decarboxylation. Less than 5% of malonyl-CoA decarboxylase activity was found associated with the cytoplasmic membrane. Avidin (except forK. oxytoca) and hydroxylamine inhibited the enzyme completely, EDTA inhibited partially. InS. malonica andK. oxytoca, malonyl-CoA decarboxylase was active only after growth with malonate; malonyl-CoA: acetate CoA transferase was found as well. These results indicate that malonate fermentation by these bacteria proceedsvia malonyl-CoA mediated by a CoA transferase and that subsequent decarboxylation to acetyl-CoA is catalyzed, at least withS. malonica andR. capsulatus, by a biotin enzyme.Abbreviations CoASH Coenzyme A - EDTA ethylenediamine tetraacetate  相似文献   

19.
Abstract: The role of the glutathione system in protecting dopamine neurons from a mild impairment of energy metabolism imposed by the competitive succinate dehydrogenase inhibitor, malonate, was investigated in vitro and in vivo. Treatment of mesencephalic cultures with 10 µ M buthionine sulfoxamine for 24 h reduced total glutathione levels in the cultures by 68%. Reduction of cellular glutathione per se was not toxic to the dopamine population, but potentiated toxicity when the cultures were exposed to malonate. In contrast, transgenic mice overexpressing glutathione peroxidase (hGPE) that received an intrastriatal infusion of malonate (3 µmol) into the left side had significantly less loss of striatal dopamine than their hGPE-negative littermates when assayed 1 week following infusion. These studies demonstrate that manipulation of the glutathione system influences susceptibility of dopamine neurons to damage due to energy impairment. The findings may provide insight into the loss of dopamine neurons in Parkinson's disease in which defects in both energy metabolism and the glutathione system have been identified.  相似文献   

20.
The relative importance of breakdown on the accumulation of indole alkaloids has been determined in suspension cultures of Tabernaemontana divaricata and Catharanthus roseus by the feeding of stable isotope labelled alkaloids. In all cultures a considerable amount of the alkaloid biosynthesized was broken down. The breakdown was found to be dependent on the culture period and the half-life was in the order of several days. The breakdown could not explain the difference between producing and non-producing cultures. Further it was determined that in both cultures the breakdown was due to both biotic and abiotic factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号