首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Mammalian platelets contain an array of antimicrobial peptides, termed platelet microbicidal proteins (PMPs). Human and rabbit PMPs include known chemokines, such as platelet factor-4 (hPF-4); PMP-1 is the rabbit orthologue of hPF-4. Chemokines that also exert direct antimicrobial activity have been termed kinocidins. A consensus peptide domain library representing mammalian PF-4 family members was analyzed to define structural domains contributing to antimicrobial activity against a panel of human pathogens. Secondary conformations were assessed by circular dichroism spectrometry, and molecular modeling was employed to investigate structural correlates of antimicrobial efficacy. Antimicrobial activity against isogenic peptide-susceptible or -resistant Staphylococcus aureus, Salmonella typhimurium, and Candida albicans strain pairs mapped to the C-terminal hemimer (38-74) and modular domains thereof (49-63 and 60-74). Increasing electrostatic charge and steric bulk were general correlates of efficacy. Structural data corroborated spatial distribution of charge, steric bulk and putative secondary structure with organism-specific efficacy. Microbicidal efficacies of the cPMP antimicrobial hemimer and C-terminal peptide (60-74) were retained in a complex human-blood biomatrix assay. Collectively, these results suggest that modular determinants arising from structural components acting independently and cooperatively govern the antimicrobial functions of PF-4 family kinocidins against specific target pathogens.  相似文献   

2.
Piretanide, 4-phenoxy-3-(pyrrolidinyl)-5-sulphamoyl benzoic acid, apart from being an efficient diuretic, enhances endogenous plasma fibrinolytic activity after a single dose of 6 mg administered by oral route. After ingestion of the drug, acceleration of fibrinolytic acitivity became manifest within 1 h, reached its peak in 3 h and was associated with a fall in fibrinogen and diminished urokinase excretion. Piretanide did not cause lysis of fibrinin vitro. Primary platelet aggregation, induced by adenosine-diphosphate, was inhibited by piretanide. Inin vitro experiments piretanide led to effective inhibition of adenosine-diphosphate-induced platelet aggregation with complete inhibition at 5 mM concentration. Piretanide led to a highly significant decrease of platelet factor-4 release.  相似文献   

3.
Chemokines are small (8-12 kDa) effector proteins that potentiate leukocyte chemonavigation. Beyond this role, certain chemokines have direct antimicrobial activity against human pathogenic organisms; such molecules are termed kinocidins. The current investigation was designed to explore the structure-activity basis for direct microbicidal activity of kinocidins. Amino acid sequence and 3-dimensional analyses demonstrated these molecules to contain iterations of the conserved γ-core motif found in broad classes of classical antimicrobial peptides. Representative CXC, CC and C cysteine-motif-group kinocidins were tested for antimicrobial activity versus human pathogenic bacteria and fungi. Results demonstrate that these molecules exert direct antimicrobial activity in vitro, including antibacterial activity of native IL-8 and MCP-1, and microbicidal activity of native IL-8. To define molecular determinants governing its antimicrobial activities, the IL-8 γ-core (IL-8γ) and α-helical (IL-8α) motifs were compared to native IL-8 for antimicrobial efficacy in vitro. Microbicidal activity recapitulating that of native IL-8 localized to the autonomous IL-8α motif in vitro, and demonstrated durable microbicidal activity in human blood and blood matrices ex vivo. These results offer new insights into the modular architecture, context-related deployment and function, and evolution of host defense molecules containing γ-core motifs and microbicidal helices associated with antimicrobial activity.  相似文献   

4.
Chemokines are small (8-12 kDa) effector proteins that potentiate leukocyte chemonavigation. Beyond this role, certain chemokines have direct antimicrobial activity against human pathogenic organisms; such molecules are termed kinocidins. The current investigation was designed to explore the structure-activity basis for direct microbicidal activity of kinocidins. Amino acid sequence and 3-dimensional analyses demonstrated these molecules to contain iterations of the conserved gamma-core motif found in broad classes of classical antimicrobial peptides. Representative CXC, CC and C cysteine-motif-group kinocidins were tested for antimicrobial activity versus human pathogenic bacteria and fungi. Results demonstrate that these molecules exert direct antimicrobial activity in vitro, including antibacterial activity of native IL-8 and MCP-1, and microbicidal activity of native IL-8. To define molecular determinants governing its antimicrobial activities, the IL-8 gamma-core (IL-8gamma) and alpha-helical (IL-8alpha) motifs were compared to native IL-8 for antimicrobial efficacy in vitro. Microbicidal activity recapitulating that of native IL-8 localized to the autonomous IL-8alpha motif in vitro, and demonstrated durable microbicidal activity in human blood and blood matrices ex vivo. These results offer new insights into the modular architecture, context-related deployment and function, and evolution of host defense molecules containing gamma-core motifs and microbicidal helices associated with antimicrobial activity.  相似文献   

5.
Abstract Antimicrobial RNases are small cationic proteins belonging to the vertebrate RNase A superfamily and endowed with a wide range of antipathogen activities. Vertebrate RNases, while sharing the active site architecture, are found to display a variety of noncatalytical biological properties, providing an excellent example of multitask proteins. The antibacterial activity of distant related RNases suggested that the family evolved from an ancestral host-defence function. The review provides a structural insight into antimicrobial RNases, taking as a reference the human RNase 3, also named eosinophil cationic protein (ECP). A particular high binding affinity against bacterial wall structures mediates the protein action. In particular, the interaction with the lipopolysaccharides at the Gram-negative outer membrane correlates with the protein antimicrobial and specific cell agglutinating activity. Although a direct mechanical action at the bacteria wall seems to be sufficient to trigger bacterial death, a potential intracellular target cannot be discarded. Indeed, the cationic clusters at the protein surface may serve both to interact with nucleic acids and cell surface heterosaccharides. Sequence determinants for ECP activity were screened by prediction tools, proteolysis and peptide synthesis. Docking results are complementing the structural analysis to delineate the protein anchoring sites for anionic targets of biological significance.  相似文献   

6.
Antimicrobial polymers, designed to mimic the salient structural features of host defense peptides, are an emerging class of materials with potential for applications to combat infectious disease. Because the putative mode of action relies on physiochemical parameters of peptides such as hydrophobicity and cationic charge, rather than specific receptor-mediated interactions, the activity of the polymers can be modulated by tuning key structural parameters. While a wide diversity of chemical structures have been reported as antimicrobial polymers, a precise understanding of the structural factors which control their activity is a subject of current investigations. In this mini-review, we will outline the design principles that have been developed so far to fine tune the activity of these antimicrobial agents. The roles played by specific structural features such as cationic charge, hydrophobicity, and molecular weight will be discussed. Future directions of the field and potential challenges will be proposed.  相似文献   

7.
Designed histidine-rich amphipathic cationic peptides, such as LAH4, have enhanced membrane disruption and antibiotic properties when the peptide adopts an alignment parallel to the membrane surface. Although this was previously achieved by lowering the pH, here we have designed a new generation of histidine-rich peptides that adopt a surface alignment at neutral pH. In vitro, this new generation of peptides are powerful antibiotics in terms of the concentrations required for antibiotic activity; the spectrum of target bacteria, fungi, and parasites; and the speed with which they kill. Further modifications to the peptides, including the addition of more hydrophobic residues at the N terminus, the inclusion of a helix-breaking proline residue or using D-amino acids as building blocks, modulated the biophysical properties of the peptides and led to substantial changes in toxicity to human and parasite cells but had only a minimal effect on the antibacterial and antifungal activity. Using a range of biophysical methods, in particular solid-state NMR, we show that the peptides are highly efficient at disrupting the anionic lipid component of model membranes. However, we also show that effective pore formation in such model membranes may be related to, but is not essential for, high antimicrobial activity by cationic amphipathic helical peptides. The information in this study comprises a new layer of detail in the understanding of the action of cationic helical antimicrobial peptides and shows that rational design is capable of producing potentially therapeutic membrane active peptides with properties tailored to their function.  相似文献   

8.
Antimicrobial host defense peptides (HDPs) are a critical component of the innate immunity with microbicidal, endotoxin-neutralizing, and immunostimulatory properties. HDPs kill bacteria primarily through non-specific membrane lysis, therefore with a less likelihood of provoking resistance. Extensive structure–activity relationship studies with a number of HDPs have revealed that net charge, amphipathicity, hydrophobicity, and structural propensity are among the most important physicochemical and structural parameters that dictate their ability to interact with and disrupt membranes. A delicate balance among these factors, rather than a mere alteration of a single factor, is critically important for HDPs to ensure the antimicrobial potency and target cell selectivity. With a better understanding of the structural determinants of HDPs for their membrane-lytic activities, it is expected that novel HDP-based antimicrobials with minimum toxicity to eukaryotic cells can be developed for resistant infections, which have become a global public health crisis.  相似文献   

9.
To evaluate the platelet function in sickle cell syndromes we measured the beta-thromboglobulin (beta-TG) and platelet factor 4 (PF-4) plasma values of 45 patients suffering from homozygous sickle cell anaemia (10) and sickle cell beta-thalassaemia (35) in steady state. The results were compared to those of 32 normal controls. Both the beta-TG and PF-4 levels were found to be significantly higher in patients than in controls but the beta-TG:PF-4 ratio was significantly lower in the patients group. This finding and the absence of any statistical correlation between platelet number and beta-TG or PF-4 indicate that platelets seem to be somehow activated in sickle cell syndromes, both in homozygotes and sickle cell/beta-thalassaemia heterozygotes. This platelet activation seems to exist even in steady state sickle cell disease patients, regardless of the functional status of the spleen.  相似文献   

10.
Within the past decade our understanding of thromboembolic disorders has become even more sophisticated as recent discoveries have suggested the influence of gene variants on the development of atherosclerotic disease and arterial thrombosis. Candidate genes encode proteins involved in processes relevant to atherosclerosis, ranging from cholesterol metabolism to arterial thrombosis. Platelets are key elements in primary hemostasis, but also in arterial thrombosis. Moreover, a number of genetic polymorphisms of platelet proteins may also induce gain or loss of function, supporting a role predisposing some individuals to thrombotic events. However, after thousands of studies, much controversy remains whether individual platelet polymorphisms contribute to an increased likelihood of thromboembolic disorders. Although platelet polymorphisms are a promising addition to more established cardiovascular risk factors, identifying genetic variants as a single cause of cardiovascular disease would be an oversimplification; instead, the contribution of these polymorphisms should also be considered in the context of a multifactorial disease. Gene-gene and gene-environment studies would identify specific combinations associated with a high risk to suffer from these diseases. The platelet's genetic heterogeneity should also be considered in every aspect of clinical medicine, ranging from susceptibility to diseases, pathogenesis, and clinical outcome to diversity in responses to drug treatment (pharmacogenomics), and bleeding.  相似文献   

11.
The following hydrazono derivatives (I-XIX) of type (A) (sequence in text) where Rn = (sequence in text ) (I-XVII); (sequence in text) (XVIII); -CCl3 (XIX); and Xn = H (I); 2-Cl (II); 3-Cl (III); 4-Cl (IV); 2-NO2 (V); 3-NO2 (VI); 4-NO2 (VII); 2-OH (VIII); 3-OH (IX); 4-OH (X); 4-F (XI); 3,4-OCH3,OH (XII); 3,4,5-OCH3,OH,J (XIII); 3,4-OCH3,OCH3 (XIV); 2,4-Cl2 (XV); 3,4-Cl2 (XVI); 2,6-Cl2 (XVII); were prepared and characterized in an attempt to make available for testing a representative selection of hitherto unreported 4-hydroxyisophthalic acid derivatives. The new compounds in question were obtained in satisfactory yield by condensation of 4-hydroxyisophthalic acid hydrazide with the appropriate aldehydes. The prepared compounds were tested for their possible activity against Gram-positive (S. epidermidis, B. subtilis, B. anthracis) and Gram-negative bacteria (P. aeruginosa, B. melitensis, S. typhi O, S. typhi H, S. infantis, S. paratyphi B, E. coli Bb, E. coli 7075), and fungi (C. albicans, A. niger, S. cerevisiae). The "in vitro" antimicrobial assays were carried out using the paper disk technique (Kirby-Bauer modified). The influence of certain structural modifications on the antimicrobial activity was evaluated.  相似文献   

12.
In response to upstream signals, proteins in the Wiskott-Aldrich Syndrome protein (WASP) family regulate actin nucleation via the Arp2/3 complex. Despite intensive study of the function of WASP family proteins in nucleation, it is not yet understood how their distinct structural organization contributes to actin-based motility. Herein, we analyzed the activities of WASP and Scar1 truncation derivatives by using a bead-based motility assay. The minimal region of WASP sufficient to direct movement was the C-terminal WCA fragment, whereas the corresponding region of Scar1 was insufficient. In addition, the proline-rich regions of WASP and Scar1 and the Ena/VASP homology 1 (EVH1) domain of WASP independently enhanced motility rates. The contributions of these regions to motility could not be accounted for by their direct effects on actin nucleation with the Arp2/3 complex, suggesting that they stimulate motility by recruiting additional factors. We have identified profilin as one such factor. WASP- and Scar1-coated bead motility rates were significantly reduced by depletion of profilin and VASP and could be more efficiently rescued by a combination of VASP and wild-type profilin than by VASP and a mutant profilin that cannot bind proline-rich sequences. Moreover, motility of WASP WCA beads was not affected by the depletion or addback of VASP and profilin. Our results suggest that recruitment of factors, including profilin, by the proline-rich regions of WASP and Scar1 and the EVH1 domain of WASP stimulates cellular actin-based motility.  相似文献   

13.
Structurally characterizing partially folded states is problematic given the nature of these transient species. A peptide 20mer, T38AQLIATLKNGRKISLDLQA57 (P20), which has been shown to partially fold in a relatively stable turn/loop conformation (LKNGR) and transient beta-sheet structure, is a good model for studying backbone and side-chain mobilities in a transiently folded peptide by using 13C-NMR relaxation. Here, four residues in P20, A43, T44, G48, and 151, chosen for their positions in or near the loop conformation and for compositional variety, have been selectively 13C-enriched. Proton-coupled and decoupled 13C-NMR relaxation experiments have been performed to obtain the temperature dependencies (278 K to 343 K) of auto- and cross-correlation motional order parameters and correlation times. In order to differentiate sequence-neighbor effects from folding effects, two shorter peptides derived from P20, IATLK (P5) and NGRKIS (P6), were similarly 13C-enriched and investigated. For A43, T44, G48, and 151 residues in P20 relative to those in P5/P6, several observations are consistent with partial folding in P20: (1) C alpha H motional tendencies are all about the same, vary less with temperature, and are relatively more restricted, (2) G48 C alpha H2 phi (t) psi (t) rotations are more correlated, and (3) methyl group rotations are slower and yield lower activation energies consistent with formation of hydrophobic "pockets." In addition, T44 and 151 C beta H mobilities in P20 are more restricted at lower temperature than those of their C alpha H and display significantly greater sensitivity to temperature suggesting a larger enthalpic contribution to side-chain mobility. Moreover, at higher temperatures, side-chain methyls and methylenes in P20 are more motionally restricted than those in P5/P6, suggesting that some type of "folded" or "collapsed" structure remains in P20 for what normally would be considered an "unfolded" state.  相似文献   

14.
A mild and simple method was developed to prepare a series of fifteen 5-aminoimidazole 4-carboxamidrazones, starting from the easily accessible 5-amino-4-cyanoformimidoyl imidazoles. The antimicrobial activity of these novel amidrazones was screened against Gram positive (Staphylococcus aureus) and Gram negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and Candida sp. (Candida albicans, Candida krusei, Candida parapsilosis). Only a subset of compounds displayed fair-moderate activity against S. aureus and E. coli but all exhibited activity against Candida sp. The three most potent antifungal compounds were further tested against Cryptococcus neoformans, Aspergillus fumigatus and three dermatophytes (Trichophyton rubrum, Trichophyton mentagrophytes, Microsporum gypseum). These three hit compounds strongly inhibited C. krusei and C. neoformans growth, although their activity on filamentous fungi was very weak when compared to the activity on yeasts.  相似文献   

15.
We observed gelation of a 23-residue peptide derived from the beta-sheet domain of platelet factor-4 (PF4(24)(-)(46)). The gels were primarily heterogeneous mixtures of 50-200 microm spherical aggregates in a less-dense gel matrix. Infrared and circular dichroism spectroscopies showed gelation involving the conversion of PF4(24)(-)(46) from random coil to beta-sheet. We used aggregation-induced NMR resonance broadening to show that temperature, pH, and ionic strength influenced PF4(24)(-)(46) gelation rates. Under identical solution conditions, gel formation took days at T /= 50 degrees C. Gelation was most rapid at pH values near the pK(a) of the central His35 residue. Increases in solution ionic strength reduced the critical gelation concentration of PF4(24)(-)(46). Our results suggest that PF4(24)(-)(46) gels by a process combining aspects of both heat-set and beta-fibril gelation mechanisms.  相似文献   

16.
Ligation of CD28 or CTLA-4 with some biologicals can activate T cells due to an unexpected superagonist or inverse agonist activity, respectively. The risk of such an outcome limits the therapeutic development of these reagents. Thus, identifying the molecular determinants of superagonist/inverse agonist properties for biologicals targeting costimulatory/inhibitory receptors has not only fundamental value but also important therapeutic implications. In this study, we show that ligation of CTLA-4 with either soluble B7.1 Ig (but not B7.2 Ig) or with a recombinant bispecific in-tandem single chain Fv known as 24:26 induces TCR-independent, T cell activation. Such an inverse agonist activity requires CD28 expression and high CTLA-4 expression and is not seen when CTLA-4 is ligated by membrane-bound B7.1 or B7.2. At the molecular level, the inverse agonist activity of B7.1 Ig or 24:26 correlates with their ability to induce the formation of unique dimer-based, CTLA-4 oligomers on the T cell surface and involves CTLA-4 signaling through its cytoplasmic domain. Our results provide a potential mechanism to explain and to predict inverse agonist activity for CTLA-4 ligands.  相似文献   

17.
Piscidins are linear, amphipathic, antimicrobial peptides (AMPs) with broad, potent, activity spectrum. Piscidins and other members of the piscidin family appear to comprise the most common group of AMPs in teleost fish. All piscidins and related members of the piscidin family described to date are 18–26 amino acids long. We report here the isolation of a novel 5329.25 Da, 44-residue (FFRHLFRGAKAIFRGARQGXRAHKVVSRYRNRDVPETDNNQEEP) antimicrobial peptide from hybrid striped bass (Morone chrysops female x M. saxatilis male). We have named this peptide “piscidin 4” since it has considerable (to > 65%) N-terminal sequence homology to piscidins 1–3 and this distinctive, 10 to 11-residue, N-terminus is characteristic of piscidins. The native peptide has a modified amino acid at position 20 that, based upon mass spectrometry data, is probably a hydroxylated tryptophan. Synthetic piscidin 4 (with an unmodified tryptophan at position 20) has similar antibacterial activity to that of the native peptide. Piscidin 4 demonstrates potent, broad-spectrum, antibacterial activity against a number of fish and human pathogens, including multi-drug resistant bacteria. Its potent antimicrobial activity suggests that piscidin 4 plays a significant role in the innate defense system of hybrid striped bass.  相似文献   

18.
Platelet factor-4 is a protein belonging to the family of ELR-negative CXC chemokines which binds to fibroblast growth factor and inhibits its mitogenic activity. Platelet factor-4 also inhibits tumor growth by mechanisms involving antiangiogenesis. Antiangiogenic activity in vitro has also been shown for the 24-residue C-terminal fragment of the protein, which decreases the affinity between basic fibroblast growth factor and its cell-surface receptor. In this study, the preferential conformation of this fragment in solution has been determined and has been found to be composed of two helical subdomains. In addition, we show that the fragment forms a specific 1:1 complex with acidic and basic fibroblast growth factors and that both subdomains are probably required for inhibition of fibroblast growth factor-driven mitogenesis. Finally, we show that the binding of the fragment alters the structure of the fibroblast growth factors, although some of such alterations do not seem related with the inhibition of mitogenic activity. Since this fragment has recently been shown to inhibit fibroblast growth factor-induced angiogenesis in vivo when injected intraperitoneally, these results are relevant for developing new antiangiogenic treatments.  相似文献   

19.
Bacteria encounter a myriad of potentially growth-compromising conditions in nature and in hosts of pathogenic bacteria. These 'stresses' typically elicit protective and/or adaptive responses that serve to enhance bacterial survivability. Because they impact upon many of the same cellular components and processes that are targeted by antimicrobials, adaptive stress responses can influence antimicrobial susceptibility. In targeting and interfering with key cellular processes, antimicrobials themselves are 'stressors' to which protective stress responses have also evolved. Cellular responses to nutrient limitation (nutrient stress), oxidative and nitrosative stress, cell envelope damage (envelope stress), antimicrobial exposure and other growth-compromising stresses, have all been linked to the development of antimicrobial resistance in Gram-negative bacteria - resulting from the stimulation of protective changes to cell physiology, activation of resistance mechanisms, promotion of resistant lifestyles (biofilms), and induction of resistance mutations.  相似文献   

20.
A series of 1,3 -bis-anilides of 4-hydroxyisophthalic acid was prepared and tested for antibacterial and antifungal activity. The prepared compounds (I-XVIII), of general structure (A), (Formula: see text) where Xn = H (I); 2-F (II); 3-F (III); 4-F (IV); 2-Cl (V); 3-Cl (VI); 4-Cl (VII); 2-Br (VIII); 3-Br (IX); 4-Br (X); 2-J (XI); 3-J (XII); 4-J (XIII); 2,5-Cl2 (XIV); 2,4-Br2 (XV); 2,3,4-Cl3 (XVI), 2,4,5-Cl3 (XVII); 2,4,6-Cl3 (XVIII), were investigated for the purpose of determining the effect of halogen-substitution on the aniline rings of (A). All of these compounds were prepared in satisfactory hield by reaction of 4-hydroxyisophthalic acid with the appropriate aromatic amine at 175 degrees for 3 hours. The 1,3-bis-anilides prepared in this investigation were screened for antimicrobial activity by a disk-diffusion assay (Kirby-Bauer modified). The organisms used were laboratory cultures of S. aureus, B. subtilis, B. anthracis, M. paratuberculosis 607, E. coli Bb, S. typhi, S. typhimurium, S. paratyphi B, Pr. vulgaris, Kl. pneumoniae, Ps. aeruginosa, C. albicans, and A. niger. The results of this investigation indicated that most of the 1,3-bis-(halogen-anilides) of 4-hydroxyisophthalic acid had little or no antifungal activity "in vitro", while showed significant activity against Gram+ and Gram- bacteria. Some fluoro-derivatives showed inhibitory activity especially toward S. aureus and M. paratuberculosis. Iodo-derivatives showed broad-spectrum "in vitro" antimicrobial activity, and had some antifungal activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号