首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
《Process Biochemistry》2014,49(12):2071-2077
Lactate is an important industrial material with numerous potential applications, and its production from carbon dioxide is very attractive. d-Lactate is an essential monomer for production of thermostable polylactide. The photoautotrophic prokaryote cyanobacterium Synechocystis sp. PCC 6803 represents a promising host for biosynthesis of d-lactate from CO2 as it only contains d-lactate dehydrogenase. The production of d-lactate from CO2 by an engineered strain of Synechocystis sp. PCC 6803 with overexpressing d-lactate dehydrogenase and a soluble transhydrogenase has been reported recently. Here, we report an alternative engineering strategy to produce d-lactate from CO2. This strategy involves blocking two competitive pathways, the native poly-3-hydroxybutyrate and acetate pathways from the acetyl-CoA node, and introducing a more efficient d-lactate dehydrogenase into Synechocystis sp. PCC 6803. The engineered strain of Synechocystis sp. PCC 6803 was capable of producing 1.06 g/L of d-lactate from CO2. This alternative strategy for the production of optically pure d-lactate could also be used to produce other acetyl-CoA-derived chemicals from CO2 by using engineered cyanobacteria.  相似文献   

2.
The availability of a complete genome database for the cyanobacterium Synechocystissp. PCC6803 (glucose-tolerant strain) has raised expectations that this organism would become a reference strain for work aimed at understanding the CO2-concentrating mechanism (CCM) in cyanobacteria. However, the amount of physiological data available has been relatively limited. In this report we provide data on the relative contributions of net HCO3 uptake and CO2 uptake under steady state photosynthetic conditions. Cells were compared after growth at high CO2 (2% v/v in air) or limiting CO2 conditions (20 ppm CO2). Synechocystishas a very high dependence on net HCO3 uptake at low to medium concentrations of inorganic carbon (Ci). At high Ci concentrations net CO2 uptake became more important but did not contribute more than 40% to the rate of photosynthetic O2 evolution. The data also confirm that high Ci cells of Synechocystissp. PCC6803 possess a strong capacity for net HCO3 uptake under steady state photosynthetic conditions. Time course experiments show that induction of maximal Ci uptake capacity on a shift from high CO2 to low CO2 conditions was near completion by four hours. By contrast, relaxation of the induced state on return of cells to high CO2, takes in excess of 230 h. Experiments were conducted to determine if Synechocystissp. PCC6803 is able to exhibit a `fast induction' response under severe Ci limitation and whether glucose was capable of causing a rapid inactivation in Ci uptake capacity. Clear evidence for either response was not found. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Synechocystis sp. PCC 6803 PG is a cyanobacterial strain capable of synthesizing 1,2-propanediol from carbon dioxide (CO2) via a heterologous three-step pathway and a methylglyoxal synthase (MGS) originating from Escherichia coli as an initial enzyme. The production window is restricted to the late growth and stationary phase and is apparently coupled to glycogen turnover. To understand the underlying principle of the carbon partitioning between the Calvin-Benson-Bassham (CBB) cycle and glycogen in the context of 1,2-propanediol production, experiments utilizing 13C labeled CO2 have been conducted. Carbon fluxes and partitioning between biomass, storage compounds, and product have been monitored under permanent illumination as well as under dark conditions. About one-quarter of the carbon incorporated into 1,2-propanediol originated from glycogen, while the rest was derived from CO2 fixed in the CBB cycle during product formation. Furthermore, 1,2-propanediol synthesis was depending on the availability of photosynthetic active radiation and glycogen catabolism. We postulate that the regulation of the MGS from E. coli conflicts with the heterologous reactions leading to 1,2-propanediol in Synechocystis sp. PCC 6803 PG. Additionally, homology comparison of the genomic sequence to genes encoding for the methylglyoxal bypass in E. coli suggested the existence of such a pathway also in Synechocystis sp. PCC 6803. These findings are critical for all heterologous pathways coupled to the CBB cycle intermediate dihydroxyacetone phosphate via a MGS and reveal possible engineering targets for rational strain optimization.  相似文献   

4.

Background  

Synechocystis sp. PCC6803 is a cyanobacterium considered as a candidate photo-biological production platform - an attractive cell factory capable of using CO2 and light as carbon and energy source, respectively. In order to enable efficient use of metabolic potential of Synechocystis sp. PCC6803, it is of importance to develop tools for uncovering stoichiometric and regulatory principles in the Synechocystis metabolic network.  相似文献   

5.
Yang Y  Yin C  Li W  Xu X 《Journal of bacteriology》2008,190(5):1554-1560
Unlike Escherichia coli, the cyanobacterium Synechocystis sp. strain PCC 6803 is insensitive to chill (5°C) in the dark but rapidly losses viability when exposed to chill in the light (100 μmol photons m−2 s−1). Preconditioning at a low temperature (15°C) greatly enhances the chill-light tolerance of Synechocystis sp. strain PCC 6803. This phenomenon is called acquired chill-light tolerance (ACLT). Preconditioned wild-type cells maintained a substantially higher level of α-tocopherol after exposure to chill-light stress. Mutants unable to synthesize α-tocopherol, such as slr1736, slr1737, slr0089, and slr0090 mutants, almost completely lost ACLT. When exposed to chill without light, these mutants showed no or a slight difference from the wild type. When complemented, the slr0089 mutant regained its ACLT. Copper-regulated expression of slr0090 from PpetE controlled the level of α-tocopherol and ACLT. We conclude that α-tocopherol is essential for ACLT of Synechocystis sp. strain PCC 6803. The role of α-tocopherol in ACLT may be based largely on a nonantioxidant activity that is not possessed by other tocopherols or pathway intermediates.  相似文献   

6.
The photosynthetic growth of Synechocystis sp. PCC6803 ceased upon expression of Rhodobacter sphaeroides chlorophyllide a reductase (COR). However, an increase in cytosolic superoxide dismutase level in the recombinant Synechocystis sp. PCC6803 completely reversed the growth cessation. This demonstrates that COR generates superoxide in Synechocystis sp. PCC6803. Considering the dissolved oxygen (DO) level suitable for COR, the intracellular DO of this oxygenic photosynthetic cell appears to be low enough to support COR-mediated superoxide generation. The growth arrest of Synechocystis sp. PCC6803 by COR may give an insight into the evolutionary path from bacteriochlorophyll a biosynthetic pathway to chlorophyll a, which bypasses COR reaction.  相似文献   

7.
8.
This study aims to elucidate the molecular mechanism of an alternative electron flow (AEF) functioning under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803. Photosynthetic linear electron flow, evaluated as the quantum yield of photosystem II [Y(II)], reaches a maximum shortly after the onset of actinic illumination. Thereafter, Y(II) transiently decreases concomitantly with a decrease in the photosynthetic oxygen evolution rate and then recovers to a rate that is close to the initial maximum. These results show that CO2 limitation suppresses photosynthesis and induces AEF. In contrast to the wild type, Synechocystis sp. PCC 6803 mutants deficient in the genes encoding FLAVODIIRON2 (FLV2) and FLV4 proteins show no recovery of Y(II) after prolonged illumination. However, Synechocystis sp. PCC 6803 mutants deficient in genes encoding proteins functioning in photorespiration show AEF activity similar to the wild type. In contrast to Synechocystis sp. PCC 6803, the cyanobacterium Synechococcus elongatus PCC 7942 has no FLV proteins with high homology to FLV2 and FLV4 in Synechocystis sp. PCC 6803. This lack of FLV2/4 may explain why AEF is not induced under CO2-limited photosynthesis in S. elongatus PCC 7942. As the glutathione S-transferase fusion protein overexpressed in Escherichia coli exhibits NADH-dependent oxygen reduction to water, we suggest that FLV2 and FLV4 mediate oxygen-dependent AEF in Synechocystis sp. PCC 6803 when electron acceptors such as CO2 are not available.In photosynthesis, photon energy absorbed by PSI and PSII in thylakoid membranes oxidizes the reaction center chlorophylls (Chls), P700 in PSI and P680 in PSII, and drives the photosynthetic electron transport (PET) system. In PSII, water is oxidized to oxygen as the oxidized P680 accepts electrons from water. These electrons then reduce the cytochrome b6/f complex through plastoquinone (PQ) in the thylakoid membranes. Photooxidized P700 in PSI accepts electrons from the reduced cytochrome b6/f complex through plastocyanin or cytochrome c6. Electrons released in the photooxidation of P700 are used to produce NADPH through ferredoxin and ferredoxin NADP+ reductase. Thus, electrons flow from water to NADPH in the so-called photosynthetic linear electron flow (LEF). Importantly, LEF induces a proton gradient across the thylakoid membranes, which provides the driving force for ATP production by ATP synthases in the thylakoid membranes. NADPH and ATP serve as chemical energy donors in the photosynthetic carbon reduction cycle (Calvin cycle).It recently has been proposed that, in cyanobacteria, the photorespiratory carbon oxidation cycle (photorespiration) functions simultaneously with the Calvin cycle to recover carbon for the regeneration of ribulose-1,5-bisphosphate, one of the substrates of Rubisco (Hagemann et al., 2013). Rubisco catalyzes the primary reactions of carbon reduction as well as oxidation cycles. However, the presence of a specific carbon concentration mechanism (CCM) in cyanobacteria had been thought to prevent the operation of photorespiration. CCM maintains a high concentration of CO2 around Rubisco so that the oxygenase activity of Rubisco is suppressed (Badger and Price, 1992). However, recent studies on mutants deficient in photorespiration enzymes have shown that photorespiration functions, particularly under CO2-limited conditions, in cyanobacteria as it does in higher plants (Eisenhut et al., 2006, 2008).Decreased consumption of NADPH under CO2-limited or high-light conditions causes electrons to accumulate in the PET system. As a result, the photooxidation and photoreduction cycles of the reaction center Chls in PSI and PSII become uncoupled from the production of NADPH, inducing alternative electron flow (AEF) pathways (Mullineaux, 2014). In cyanobacteria, several AEFs that differ from those in higher plants are proposed to function as electron sinks (Mullineaux, 2014). Electrons accumulated in the PET system flow to oxygen through FLAVODIIRON1 (FLV1) and FLV3 proteins in PSI and the terminal oxidase, cytochrome c oxidase complex, and cytochrome bd-quinol oxidase (Pils and Schmetterer, 2001; Berry et al., 2002; Helman et al., 2003; Nomura et al., 2006; Lea-Smith et al., 2013). Cyanobacterial FLV comprises a diiron center, a flavodoxin domain with an FMN-binding site, and a flavin reductase domain (Vicente et al., 2002). In Synechocystis sp. PCC 6803, Helman et al. (2003) identified four genes encoding FLV1 to FLV4 and showed that FLV1 and FLV3 were essential for the photoreduction of oxygen by PSI. FLV1 and FLV3 were proposed to function as a heterodimer (Allahverdiyeva et al., 2013). FLV2/4 have been proposed to function in energy dissipation associated with PSII (Zhang et al., 2012). In addition, hydrogenases convert H+ to H2 with NADPH as an electron donor (Appel et al., 2000). Furthermore, Flores et al. (2005) suggested that the nitrate assimilation pathway functions in AEF when the cells live in medium containing nitrate.To elucidate the physiological functions of these AEFs, evaluation of the presence and capacity of each AEF pathway is required. Therefore, in vivo analyses of electron fluxes are essential. We had found that an electron flow uncoupled from photosynthetic oxygen evolution functioned under suppressed (CO2-limited) photosynthesis in the cyanobacterium Synechocystis sp. PCC 6803 but not in Synechococcus elongatus PCC 7942 (Hayashi et al., 2014), indicating that an AEF operated in Synechocystis sp. PCC 6803. This AEF was induced in high-[CO2]-grown Synechocystis sp. PCC 6803 during the transition from CO2-saturated photosynthesis to CO2-limited photosynthesis (Hayashi et al., 2014). In contrast, in Synechocystis sp. PCC 6803 grown at ambient CO2 concentration, AEF was detected immediately following the transition to CO2-limited photosynthesis (Hayashi et al., 2014), suggesting that AEF was already induced under ambient atmospheric conditions.The expression of the AEF activity observed under CO2-limited photosynthesis required the presence of oxygen in Synechocystis sp. PCC 6803 (Hayashi et al., 2014). In Synechocystis sp. PCC 6803, FLV1/3 were proposed to catalyze the photoreduction of oxygen (Helman et al., 2003). However, Hayashi et al. (2014) found no evidence that FLV1/3 operated under CO2-limited photosynthesis: a mutant Synechocystis sp. PCC 6803 deficient in FLV1/3 maintained almost constant electron flux under CO2-limited photosynthesis after the transition from CO2-saturated conditions. Thus, the postulated photoreduction of oxygen by FLV1/3 was not responsible for the electron flux observed under CO2-limited photosynthesis in Synechocystis sp. PCC 6803.In this study, we aimed to elucidate the molecular mechanism of the oxygen-dependent AEF functioning under CO2-limited photosynthesis in Synechocystis sp. PCC 6803. The possibility that FLV2 and FLV4 catalyze the photoreduction of oxygen under CO2-limited photosynthesis could not be excluded, given that AEF in high-[CO2]-grown Synechocystis sp. PCC 6803 was induced following the transition to CO2-limited photosynthesis (Hayashi et al., 2014). Both FLV2 and FLV4 are predicted to possess oxidoreductase motifs, similar to FLV1 and FLV3 (Helman et al., 2003; Zhang et al., 2012). Furthermore, the expression of two FLV genes (flv2 and flv4) was enhanced under low-[CO2] conditions (Zhang et al., 2009). Zhang et al. (2012) proposed that FLV2 and FLV4 did not donate electrons to oxygen on the basis of the finding that the Synechocystis sp. PCC 6803 mutants deficient in FLV1/3 showed no light-dependent oxygen uptake (Helman et al., 2003). However, Helman et al. (2003) cultivated Synechocystis sp. PCC 6803 strains deficient in FLV1 and FLV3 proteins under high-[CO2] conditions, and we cannot exclude the possibility that the FLV2 and FLV4 proteins were not produced in the studied cells. Taken together, it seems plausible that FLV2 and FLV4 mediate oxygen-dependent AEF following the transition to CO2-limited photosynthesis. To evaluate this possibility, we constructed Synechocystis sp. PCC 6803 mutants deficient in flv2 and flv4 and measured their oxygen evolution and Chl fluorescence simultaneously. The mutants showed suppressed LEF after transition to CO2-limited photosynthesis, similar to S. elongatus PCC 7942. We also tested the possibility that photorespiration functions as an electron sink under CO2-limited photosynthesis in Synechocystis sp. PCC 6803. A recent study revealed photorespiratory oxygen uptake in a flv1/3 mutant under CO2-depleted conditions (Allahverdiyeva et al., 2011). In this study, we found that the quantum yield of photosystem II [Y(II)] of mutants deficient in genes encoding proteins that function in photorespiration was similar to that of wild-type Synechocystis sp. PCC 6803. Thus, FLV2 and FLV4 appear to function in the oxygen-dependent AEF under CO2-limited photosynthesis in Synechocystis sp. PCC 6803. This inference is further supported by the lack of FLV2 and FLV4 homologs in the genome of S. elongatus PCC 7942 (Bersanini et al., 2014). In addition, we found oxygen-reducing activities of recombinant glutathione S-transferase (GST)-FLV4 fusion protein, similar to those of recombinant FLV3 protein (Vicente et al., 2002). In light of these results, we discuss the molecular mechanism of the oxygen-dependent AEF under CO2-limited photosynthesis and the physiological function of FLV proteins in Synechocystis sp. PCC 6803.  相似文献   

9.
Oxygenic phototrophs are vulnerable to damage by reactive oxygen species (ROS) that are produced in photosystem I (PSI) by excess photon energy over the demand of photosynthetic CO2 assimilation. In plant leaves, repetitive short-pulse (rSP) illumination produces ROS to inactivate PSI. The production of ROS is alleviated by oxidation of the reaction center chlorophyll in PSI, P700, during the illumination with the short-pulse light, which is supported by flavodiiron protein (FLV). In this study, we found that in the cyanobacterium Synechocystis sp. PCC 6803 P700 was oxidized and PSI was not inactivated during rSP illumination even in the absence of FLV. Conversely, the mutant deficient in respiratory terminal oxidases was impaired in P700 oxidation during the illumination with the short-pulse light to suffer from photo-oxidative damage in PSI. Interestingly, the other cyanobacterium Synechococcus sp. PCC 7002 could not oxidize P700 without FLV during rSP illumination. These data indicate that respiratory terminal oxidases are critical to protect PSI from ROS damage during rSP illumination in Synechocystis sp. PCC 6803 but not Synechococcus sp. PCC 7002.  相似文献   

10.
The widely distributed members of the Deg/HtrA protease family play an important role in the proteolysis of misfolded and damaged proteins. Here we show that the Deg protease rHhoA is able to degrade PsbO, the extrinsic protein of the Photosystem II (PSII) oxygen-evolving complex in Synechocystis sp. PCC 6803 and in spinach. PsbO is known to be stable in its oxidized form, but after reduction by thioredoxin it became a substrate for recombinant HhoA (rHhoA). rHhoA cleaved reduced eukaryotic (specifically, spinach) PsbO at defined sites and created distinct PsbO fragments that were not further degraded. As for the corresponding prokaryotic substrate (reduced PsbO of Synechocystis sp. PCC 6803), no PsbO fragments were observed. Assembly to PSII protected PsbO from degradation. For Synechocystis sp. PCC 6803, our results show that HhoA, HhoB, and HtrA are localized in the periplasma and/or at the thylakoid membrane. In agreement with the idea that PsbO could be a physiological substrate for Deg proteases, part of the cellular fraction of the three Deg proteases of Synechocystis sp. PCC 6803 (HhoA, HhoB, and HtrA) was detected in the PSII-enriched membrane fraction.  相似文献   

11.
Four novel Synechocystis sp. strain PCC 6803 genes (sll1495, sll0804, slr1306, and slr1125) which encode hypothetical proteins were determined by transposon mutagenesis to be required for optimal photoautotrophic growth. Mutations were also recovered in ccmK4, a carboxysome coat protein homologue, and me, the decarboxylating NADP(+)-dependent malic enzyme. This is the first report that these known genes are required for optimal photoautotrophy.  相似文献   

12.
Compensating changes in the pigment apparatus of photosynthesis that resulted from a complete loss of phycobilisomes (PBS) were investigated in the cells of a PAL mutant of cyanobacterium Synechocystis sp. PCC 6803. The ratio PBS/chlorophyll calculated on the basis of the intensity of bands in the action spectra of photosynthetic activity of two photosystems in the wild strain was 1: 70 for PSII and 1: 300 for PSI. Taking into consideration the number of chlorophyll molecules per reaction center in each photosystem, these ratios could be interpreted as association of PBS with dimers of PSII and trimers of PSI as well as greater dependence of PSII as compared with PSI on light absorption by PBS. The ratio PSI/PSII determined by photochemical cross-section of the reactions of two photosystems was 3.5: 1.0 for wild strain of Synechocystis sp. PCC 6803 and 0.7: 1.0 for the PAL mutant. A fivefold increase in the relative content of PSII in pigment apparatus corresponds to a 5-fold increase in the intensity of bands at 685 and 695 nm as related to the band of PSI at 726 nm recorded in low-temperature fluorescence spectrum of the PAL mutant. Inhibition of PSII with diuron resulted in a pronounced stimulation of chlorophyll fluorescence in the PAL mutant as compared to the wild strain of Synechocystis sp. PCC 6803; these data suggested an activation of electron transfer between PSII and PSI in the mutant cells. Thus, the lack of PBS in the mutant strain of Synechocystis sp. PCC 6803 was compensated for by the higher relative content of PSII in the pigment apparatus of photosynthesis and by a rise in the rate of linear electron transport.  相似文献   

13.

Background

Direct conversion of solar energy and carbon dioxide to drop in fuel molecules in a single biological system can be achieved from fatty acid-based biofuels such as fatty alcohols and alkanes. These molecules have similar properties to fossil fuels but can be produced by photosynthetic cyanobacteria.

Results

Synechocystis sp. PCC6803 mutant strains containing either overexpression or deletion of the slr1609 gene, which encodes an acyl-ACP synthetase (AAS), have been constructed. The complete segregation and deletion in all mutant strains was confirmed by PCR analysis. Blocking fatty acid activation by deleting slr1609 gene in wild-type Synechocystis sp. PCC6803 led to a doubling of the amount of free fatty acids and a decrease of alkane production by up to 90 percent. Overexpression of slr1609 gene in the wild-type Synechocystis sp. PCC6803 had no effect on the production of either free fatty acids or alkanes. Overexpression or deletion of slr1609 gene in the Synechocystis sp. PCC6803 mutant strain with the capability of making fatty alcohols by genetically introducing fatty acyl-CoA reductase respectively enhanced or reduced fatty alcohol production by 60 percent.

Conclusions

Fatty acid activation functionalized by the slr1609 gene is metabolically crucial for biosynthesis of fatty acid derivatives in Synechocystis sp. PCC6803. It is necessary but not sufficient for efficient production of alkanes. Fatty alcohol production can be significantly improved by the overexpression of slr1609 gene.  相似文献   

14.
15.
When cyanobacteria acclimate to nitrogen deficiency, they degrade their large (3–5-MDa), light-harvesting complexes, the phycobilisomes. This massive, yet specific, intracellular degradation of the pigmented phycobiliproteins causes a color change of cyanobacterial cultures from blue-green to yellow-green, a process referred to as chlorosis or bleaching. Phycobilisome degradation is induced by expression of the nblA gene, which encodes a protein of ∼7 kDa. NblA most likely acts as an adaptor protein that guides a Clp protease to the phycobiliproteins, thereby initiating the degradation process. Most cyanobacteria and red algae possess just one nblA-homologous gene. As an exception, the widely used “model organism” Synechocystis sp. PCC6803 expresses two such genes, nblA16803 and nblA26803, both of whose products are required for phycobilisome degradation. Here, we demonstrate that the two NblA proteins heterodimerize in vitro and in vivo using pull-down assays and a Förster energy-transfer approach, respectively. We further show that the NblA proteins form a ternary complex with ClpC (the HSP100 chaperone partner of Clp proteases) and phycobiliproteins in vitro. This complex is susceptible to ATP-dependent degradation by a Clp protease, a finding that supports a proposed mechanism of the degradation process. Expression of the single nblA gene encoded by the genome of the N2-fixing, filamentous cyanobacterium Nostoc sp. PCC7120 in the nblA1/nblA2 mutant of Synechocystis sp. PCC6803 induced phycobilisome degradation, suggesting that the function of the NblA heterodimer of Synechocystis sp. PCC6803 is combined in the homodimeric protein of Nostoc sp. PCC7120.  相似文献   

16.
Precipitation of calcite induced by Synechocystis sp. PCC6803   总被引:1,自引:0,他引:1  
Calcite with laminate structure was successfully prepared by culturing Synechocystis sp. PCC6803 with different concentrations of calcium chloride (CaCl2) in BG11 media. S. PCC6803 was examined by scanning electron microscopy (SEM), transmission electron microscopy (TEM), laser confocal scanning microscope (LCSM) and energy dispersive spectroscopy (EDS). The effects of Ca2+ concentrations and pH values on calcification were investigated and the micro morphs of the CaCO3 crystals were observed by means of SEM. These results showed that CaCO3 crystals could be more easily formed with increasing the concentration of CaCl2 in S. PCC6803 culture solution. S. PCC6803 could largely bind calcium ions, most of which were present in extracellular polymeric substances and on the cell wall. Inside the cells there were a lot of circular areas rich in calcium ions without the crystallization of calcium. Some cells produced a thicker gelatinous sheath outside of the translucent organic thin layer. And the cells inside also produced major changes that the original chloroplasts were almost transformed into starch grains whose sizes were from 0.5 to 1 μm with relatively uniform in sizes. At the same time the cell sizes significantly reduced to only about 8–9 μm almost changing to half of its original diameters. The calcite crystals with a highly preferred orientation induced by S. PCC6803 were observed with X-ray diffraction (XRD). A critical implication was that S. PCC6803 could induce bio-calcification and then mediate the further growth of CaCO3 crystals in the biological system.  相似文献   

17.
3-hydroxypropionic acid (3-HP) is an important platform chemical with a wide range of applications. So far large-scale production of 3-HP has been mainly through petroleum-based chemical processes, whose sustainability and environmental issues have attracted widespread attention. With the ability to fix CO2 directly, cyanobacteria have been engineered as an autotrophic microbial cell factory to produce fuels and chemicals. In this study, we constructed the biosynthetic pathway of 3-HP in cyanobacterium Synechocystis sp. PCC 6803, and then optimized the system through the following approaches: i) increasing expression of malonyl-CoA reductase (MCR) gene using different promoters and cultivation conditions; ii) enhancing supply of the precursor malonyl-CoA by overexpressing acetyl-CoA carboxylase and biotinilase; iii) improving NADPH supply by overexpressing the NAD(P) transhydrogenase gene; iv) directing more carbon flux into 3-HP by inactivating the competing pathways of PHA and acetate biosynthesis. Together, the efforts led to a production of 837.18 mg L−1 (348.8 mg/g dry cell weight) 3-HP directly from CO2 in Synechocystis after 6 days cultivation, demonstrating the feasibility photosynthetic production of 3-HP directly from sunlight and CO2 in cyanobacteria. In addition, the results showed that overexpression of the ribulose-1, 5-bisphosphate carboxylase/oxygenase (Rubisco) gene from Anabaena sp. PCC 7120 and Synechococcus sp. PCC 7942 led to no increase of 3-HP production, suggesting CO2 fixation may not be a rate-limiting step for 3-HP biosynthesis in Synechocystis.  相似文献   

18.
This study investigated metabolic responses in Synechocystis sp. strain PCC 6803 to photosynthetic impairment. We used 3-(3,4-dichlorophenyl)-1,1-dimethylurea (DCMU; a photosystem II inhibitor) to block O2 evolution and ATP/NADPH generation by linear electron flow. Based on 13C-metabolic flux analysis (13C-MFA) and RNA sequencing, we have found that Synechocystis sp. PCC 6803 employs a unique photoheterotrophic metabolism. First, glucose catabolism forms a cyclic route that includes the oxidative pentose phosphate (OPP) pathway and the glucose-6-phosphate isomerase (PGI) reaction. Glucose-6-phosphate is extensively degraded by the OPP pathway for NADPH production and is replenished by the reversed PGI reaction. Second, the Calvin cycle is not fully functional, but RubisCO continues to fix CO2 and synthesize 3-phosphoglycerate. Third, the relative flux through the complete tricarboxylic acid (TCA) cycle and succinate dehydrogenase is small under heterotrophic conditions, indicating that the newly discovered cyanobacterial TCA cycle (via the γ-aminobutyric acid pathway or α-ketoglutarate decarboxylase/succinic semialdehyde dehydrogenase) plays a minimal role in energy metabolism. Fourth, NAD(P)H oxidation and the cyclic electron flow (CEF) around photosystem I are the two main ATP sources, and the CEF accounts for at least 40% of total ATP generation from photoheterotrophic metabolism (without considering maintenance loss). This study not only demonstrates a new topology for carbohydrate oxidation but also provides quantitative insights into metabolic bioenergetics in cyanobacteria.  相似文献   

19.
Novel Cyanobacterial Biosensor for Detection of Herbicides   总被引:2,自引:0,他引:2       下载免费PDF全文
The aim of this work was to generate a cyanobacterial biosensor that could be used to detect herbicides and other environmental pollutants. A representative freshwater cyanobacterium, Synechocystis sp. strain PCC6803, was chromosomally marked with the luciferase gene luc (from the firefly Photinus pyralis) to create a novel bioluminescent cyanobacterial strain. Successful expression of the luc gene during growth of Synechocystis sp. strain PCC6803 cultures was characterized by measuring optical density and bioluminescence. Bioluminescence was optimized with regard to uptake of the luciferase substrate, luciferin, and the physiology of the cyanobacterium. Bioassays demonstrated that a novel luminescent cyanobacterial biosensor has been developed which responded to a range of compounds including different herbicide types and other toxins. This biosensor is expected to provide new opportunities for the rapid screening of environmental samples or for the investigation of potential environmental damage.  相似文献   

20.
Because cyanobacteria are photosynthetic, fast-growing microorganisms that can accumulate sucrose under salt stress, they have a potential application as a sugar source for the biomass-derived production of renewable fuels and chemicals. In the present study, the production of sucrose by the cyanobacteria Synechocystis sp. PCC6803, Synechococcus elongatus PCC7942, and Anabaena sp. PCC7120 was examined. The three species displayed different growth curves and intracellular sucrose accumulation rates in response to NaCl. Synechocystis sp. PCC6803 was used to examine the impact of modifying the metabolic pathway on the levels of sucrose production. The co-overexpression of sps (slr0045), spp (slr0953), and ugp (slr0207) lead to a 2-fold increase in intracellular sucrose accumulation, whereas knockout of ggpS (sll1566) resulted in a 1.5-fold increase in the production of this sugar. When combined, these genetic modifications resulted in a fourfold increase in intracellular sucrose accumulation. To explore methods for optimizing the transport of the intracellular sucrose to the growth medium, the acid-wash technique and the CscB (sucrose permease)-dependent export method were evaluated using Synechocystis sp. PCC6803. Whereas the acid-wash technique proved to be effective, the CscB-dependent export method was not effective. Taken together, these results suggest that using genetic engineering, photosynthetic cyanobacteria can be optimized for efficient sucrose production.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号